about summary refs log tree commit diff stats
path: root/src/emu/x87emu_private.c
blob: f30681cc3ac73b026a0efbf4ef6dac9df8f21113 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>

#include "debug.h"
#include "x64emu_private.h"
#include "x87emu_private.h"
//#include "x64run_private.h"

void fpu_do_free(x64emu_t* emu, int i)
{
    emu->fpu_tags |= 0b11 << (i);   // empty
    // check if all empty
    if(emu->fpu_tags != TAGS_EMPTY)
        return;
    emu->fpu_stack = 0;
}

void reset_fpu(x64emu_t* emu)
{
    memset(emu->x87, 0, sizeof(emu->x87));
    memset(emu->fpu_ld, 0, sizeof(emu->fpu_ld));
    emu->cw.x16 = 0x37F;
    emu->sw.x16 = 0x0000;
    emu->top = 0;
    emu->fpu_stack = 0;
    emu->fpu_tags = TAGS_EMPTY;
}

void fpu_fbst(x64emu_t* emu, uint8_t* d) {
    // very aproximative... but should not be much used...
    uint8_t p;
    uint8_t sign = 0x00;
    double tmp, v = ST0.d;
    if(ST0.d<0.0) 
    {
        sign = 0x80;
        v = -v;
    }
    for (int i=0; i<9; ++i) {
        tmp = floor(v/10.0);
        p = (v - 10.0*tmp);
        v = tmp;
        tmp = floor(v/10.0);
        p |= ((uint8_t)(v - 10.0*tmp))<<4;
        v = tmp;

        *(d++)=p;
    }
    tmp = floor(v/10.0);
    p = (v - 10.0*tmp);
    p |= sign;
    *(d++)=p;
    // no flags....
}

void fpu_fbld(x64emu_t* emu, uint8_t* s) {
    uint8_t p;
    uint64_t tmp = 0;
    uint64_t m = 1;
    for (int i=0; i<9; ++i) {
        p =*(s++);
        tmp += m * (p&0x0f);
        m *= 10;
        tmp += m * ((p>>4)&0x0f);
        m *= 10;
    }
    ST0.d = tmp;
    p =*(s++);
    ST0.d += m * (p&0x0f);
    if(p&0x80)
        ST0.d = -ST0.d;
}


#define FPU_t mmx87_regs_t
#define BIAS80 16383
#define BIAS64 1023
// long double (80bits) -> double (64bits)
void LD2D(void* ld, void* d)
{
    if(BOX64ENV(x87_no80bits)) {
        *(uint64_t*)d = *(uint64_t*)ld;
        return;
    }
    FPU_t result;
    #pragma pack(push, 1)
    struct {
        FPU_t f;
        int16_t b;
    } val;
    #pragma pack(pop)
    #if 1
    memcpy(&val, ld, 10);
    #else
    val.f.ud[0] = *(uint32_t*)ld;
    val.f.ud[1] = *(uint32_t*)(char*)(ld+4);
    val.b  = *(int16_t*)((char*)ld+8);
    #endif
    // do specific value first (0, infinite...)
    // bit 63 is "integer part"
    if((uint32_t)(val.b&0x7fff)==0x7fff) {
        // infinity and nans
        int t = (val.f.q&0x7fffffffffffffffLL)?0:1;
        if(t) {    // infinite
            result.ud[1] = (val.b>>4) << 20;
            result.ud[0] = 0;
        } else {      // NaN
            result.ud[1] = (val.b>>4) << 20 | ((val.f.q>>(63-20))&0x000fffff);
            result.ud[0] = (val.f.q>>(63-56))&0xffffffff;
            if(!(result.q&0x000fffffffffffffLL))
                result.q |= 1;
        }
        *(uint64_t*)d = result.q;
        return;
    }
    int32_t exp64 = (((uint32_t)(val.b&0x7fff) - BIAS80) + BIAS64);
    int32_t exp64final = exp64&0x7ff;
    if(((uint32_t)(val.b&0x7fff)==0) || (exp64<-1074)) {
        //if(val.f.q==0)
        // zero
        //if(val.f.q!=0)
        // denormal, but that's to small value for double 
        uint64_t r = (val.b&0x8000)?0x8000000000000000LL:0LL;
        *(uint64_t*)d = r;
        return;
    }

    if(exp64<=0 && val.f.q) {
        // try to see if it can be a denormal
        int one = -exp64-1022;
        uint64_t r = 0;
        if(val.b&0x8000)
            r |= 0x8000000000000000L;
        r |= val.f.q>>one;
        *(uint64_t*)d = r;
        return;

    }

    if(exp64>=0x7ff) {
        // to big value...
        result.d = HUGE_VAL;
        if(val.b&0x8000)
            result.ud[1] |= 0x80000000;
        *(uint64_t*)d = result.q;
        return;
    }

    uint64_t mant64 = (val.f.q >> 11) & 0xfffffffffffffL;
    uint32_t sign = (val.b&0x8000)?1:0;
    result.q = mant64;
    result.ud[1] |= (sign <<31)|((exp64final&0x7ff) << 20);

    *(uint64_t*)d = result.q;
}

// double (64bits) -> long double (80bits)
void D2LD(void* d, void* ld)
{
    if(BOX64ENV(x87_no80bits)) {
        *(uint64_t*)ld = *(uint64_t*)d;
        return;
    }
    #pragma pack(push, 1)
    struct {
        FPU_t f;
        int16_t b;
    } val;
    #pragma pack(pop)
    FPU_t s;
    s.q = *(uint64_t*)d;   // use memcpy to avoid risk of Bus Error?
    // do special value first
    if((s.q&0x7fffffffffffffffL)==0) {
        // zero...
        val.f.q = 0;
        val.b = (s.ud[1]&0x80000000)?0x8000:0;
        memcpy(ld, &val, 10);
        return;
    }

    int32_t sign80 = (s.ud[1]&0x80000000)?1:0;
    int32_t exp80 =  s.ud[1]&0x7ff00000;
    int32_t exp80final = (exp80>>20);
    uint64_t mant80 = s.q&0x000fffffffffffffL;
    uint64_t mant80final = (mant80 << 11);
    if(exp80final==0x7ff) {
        // NaN and Infinite
        exp80final = 0x7fff;
        if(mant80==0x0)
            mant80final = 0x8000000000000000L; //infinity
        else
            mant80final |= 0x8000000000000000L; //(quiet)NaN
    } else {
        if(exp80!=0){ 
            mant80final |= 0x8000000000000000L;
            exp80final += (BIAS80 - BIAS64);
        } else {
            // denormals -> normal (the case of 0 has been dealt with already)
            exp80final = BIAS80-BIAS64;
            int one = __builtin_clz(mant80final) + 1;
            exp80final -= one;
            mant80final<<=one;
        }
    }
    val.b = ((int16_t)(sign80)<<15)| (int16_t)(exp80final);
    val.f.q = mant80final;
    memcpy(ld, &val, 10);
    /*memcpy(ld, &f.ll, 8);
    memcpy((char*)ld + 8, &val.b, 2);*/
}

double FromLD(void* ld)
{
    if(BOX64ENV(x87_no80bits))
        return *(double*)ld;
    double ret; // cannot add = 0; it break factorio (issue when calling fmodl)
    LD2D(ld, &ret);
    return ret;
}

#ifndef HAVE_LD80BITS
long double LD2localLD(void* ld)
{
    // local implementation may not be try Quad precision, but double-double precision, so simple way to keep the 80bits precision in the conversion
    double ret; // cannot add = 0; it break factorio (issue when calling fmodl)
    LD2D(ld, &ret);
    return ret;
}
#else
long double LD2localLD(void* ld)
{
    return *(long double*)ld;
}
#endif

void fpu_loadenv(x64emu_t* emu, char* p, int b16)
{
    if(b16) {
        uint16_t* p16 = (uint16_t*)p;
        emu->cw.x16 = *p16++;
        emu->sw.x16 = *p16++;
        // tagword: 2bits*8
        // tags... (only full = 0b11 / free = 0b00)
        emu->fpu_tags = *(p16++);
        // intruction pointer: 16bits
        // data (operand) pointer: 16bits
        // last opcode: 11bits save: 16bits restaured (1st and 2nd opcode only)
    } else {
        uint32_t* p32 = (uint32_t*)p;
        emu->cw.x16 = *p32++;
        emu->sw.x16 = *p32++;
        // tagword: 2bits*8
        // tags... (only free = 0b11 / full = 0b00)
        emu->fpu_tags = *(p32++);
        // intruction pointer: 16bits
        // data (operand) pointer: 16bits
        // last opcode: 11bits save: 16bits restaured (1st and 2nd opcode only)
    }
    emu->top = emu->sw.f.F87_TOP;
}

void fpu_savenv(x64emu_t* emu, char* p, int b16)
{
    emu->sw.f.F87_TOP = emu->top&7;
    if(b16) {
        uint16_t* p16 = (uint16_t*)p;
        *p16++ = emu->cw.x16;
        *p16++ = emu->sw.x16;
        // tagword: 2bits*8
        // tags...
        *p16++ = emu->fpu_tags;
    } else {
        uint32_t* p32 = (uint32_t*)p;
        *p32++ = emu->cw.x16;
        *p32++ = emu->sw.x16;
        // tagword: 2bits*8
        // tags...
        *p32++ = emu->fpu_tags;

    }
    // other stuff are not pushed....
}

// this is the 64bits version (slightly different than the 32bits!)
typedef struct xsave32_s {
    uint16_t ControlWord;        /* 000 */
    uint16_t StatusWord;         /* 002 */
    uint8_t  TagWord;            /* 004 */
    uint8_t  Reserved1;          /* 005 */
    uint16_t ErrorOpcode;        /* 006 */
    uint32_t ErrorOffset;        /* 008 */
    uint16_t ErrorSelector;      /* 00c */
    uint16_t Reserved2;          /* 00e */
    uint32_t DataOffset;         /* 010 */
    uint16_t DataSelector;       /* 014 */
    uint16_t Reserved3;          /* 016 */
    uint32_t MxCsr;              /* 018 */
    uint32_t MxCsr_Mask;         /* 01c */
    sse_regs_t FloatRegisters[8];/* 020 */  // fpu/mmx are store in 128bits here
    sse_regs_t XmmRegisters[8];  /* 0a0 */
    uint8_t  Reserved4[56*4];    /* 120 */
} xsave32_t;
typedef struct xsave64_s {
    uint16_t ControlWord;        /* 000 */
    uint16_t StatusWord;         /* 002 */
    uint8_t  TagWord;            /* 004 */
    uint8_t  Reserved1;          /* 005 */
    uint16_t ErrorOpcode;        /* 006 */
    uint64_t ErrorOffset;        /* 008 */
    uint64_t DataOffset;         /* 010 */
    uint32_t MxCsr;              /* 018 */
    uint32_t MxCsr_Mask;         /* 01c */
    sse_regs_t FloatRegisters[8];/* 020 */  // fpu/mmx are store in 128bits here
    sse_regs_t XmmRegisters[16]; /* 0a0 */
    uint8_t  Reserved4[96];      /* 1a0 */
} xsave64_t;

void fpu_fxsave32(x64emu_t* emu, void* ed)
{
    xsave32_t *p = (xsave32_t*)ed;
    // should save flags & all
    int top = emu->top&7;
    int stack = 8-top;
    if(emu->fpu_tags == TAGS_EMPTY)
        stack = 0;
    emu->sw.f.F87_TOP = top;
    p->ControlWord = emu->cw.x16;
    p->StatusWord = emu->sw.x16;
    p->MxCsr = emu->mxcsr.x32;
    uint8_t tags = 0;
    for (int i=0; i<8; ++i)
        tags |= (((emu->fpu_tags>>(i*2))&0b11)?0:1)<<i;
    p->TagWord = tags;
    p->ErrorOpcode = 0;
    p->ErrorOffset = 0;
    p->ErrorSelector = 0;
    p->DataOffset = 0;
    p->DataSelector = 0;
    // copy FPU/MMX regs...
    for(int i=0; i<8; ++i)
        memcpy(&p->FloatRegisters[i].q[0], (i<stack)?&ST(i):&emu->mmx[i], sizeof(mmx87_regs_t));
    // copy SSE regs
    memcpy(p->XmmRegisters, emu->xmm, 8*16);
}

void fpu_fxsave64(x64emu_t* emu, void* ed)
{
    // the subtelties of the REX.W are not handled in fxsave64/fxrstor64
    xsave64_t *p = (xsave64_t*)ed;
    // should save flags & all
    int top = emu->top&7;
    int stack = 8-top;
    if(emu->fpu_tags == TAGS_EMPTY)
        stack = 0;
    emu->sw.f.F87_TOP = top;
    p->ControlWord = emu->cw.x16;
    p->StatusWord = emu->sw.x16;
    p->MxCsr = emu->mxcsr.x32;
    uint8_t tags = 0;
    for (int i=0; i<8; ++i)
        tags |= (((emu->fpu_tags>>(i*2))&0b11)?0:1)<<i;
    p->TagWord = emu->fpu_tags;
    p->ErrorOpcode = 0;
    p->ErrorOffset = 0;
    p->DataOffset = 0;
    // copy FPU/MMX regs...
    for(int i=0; i<8; ++i)
        memcpy(&p->FloatRegisters[i].q[0], (i<stack)?&ST(i):&emu->mmx[i], sizeof(mmx87_regs_t));
    // copy SSE regs
    memcpy(p->XmmRegisters, emu->xmm, 16*16);
}

void fpu_fxrstor32(x64emu_t* emu, void* ed)
{
    xsave32_t *p = (xsave32_t*)ed;
    emu->cw.x16 = p->ControlWord;
    emu->sw.x16 = p->StatusWord;
    emu->mxcsr.x32 = p->MxCsr;
    if(BOX64ENV(sse_flushto0))
        applyFlushTo0(emu);
    emu->top = emu->sw.f.F87_TOP;
    uint8_t tags = p->TagWord;
    emu->fpu_tags = 0;
    for (int i=0; i<8; ++i)
        emu->fpu_tags |= (((tags>>i)&1)?0:0b11)<<(i*2);
    int top = emu->top&7;
    int stack = 8-top;
    if(emu->fpu_tags == TAGS_EMPTY)
        stack = 0;
    // copy back MMX regs...
    for(int i=0; i<8; ++i)
        memcpy((i<stack)?&ST(i):&emu->mmx[i], &p->FloatRegisters[i].q[0], sizeof(mmx87_regs_t));
    // copy SSE regs
    memcpy(emu->xmm, p->XmmRegisters, 8*16);
}

void fpu_fxrstor64(x64emu_t* emu, void* ed)
{
    // the subtelties of the REX.W are not handled in fxsave64/fxrstor64
    xsave64_t *p = (xsave64_t*)ed;
    emu->cw.x16 = p->ControlWord;
    emu->sw.x16 = p->StatusWord;
    emu->mxcsr.x32 = p->MxCsr;
    if(BOX64ENV(sse_flushto0))
        applyFlushTo0(emu);
    emu->top = emu->sw.f.F87_TOP;
    uint8_t tags = p->TagWord;
    emu->fpu_tags = 0;
    for(int i=0; i<8; ++i)
        emu->fpu_tags |= (((tags>>i)&1)?0:0b11)<<(i*2);
    int top = emu->top&7;
    int stack = 8-top;
    if(emu->fpu_tags == TAGS_EMPTY)
        stack = 0;
    // copy back MMX regs...
    for(int i=0; i<8; ++i)
        memcpy((i<stack)?&ST(i):&emu->mmx[i], &p->FloatRegisters[i].q[0], sizeof(mmx87_regs_t));
    // copy SSE regs
    memcpy(emu->xmm, p->XmmRegisters, 16*16);
}

typedef struct xsaveheader_s {
    uint64_t xstate_bv;
    uint64_t xcomp_bv;
    uint8_t  reserved[64-16];
} xsaveheader_t;

void fpu_xsave_mask(x64emu_t* emu, void* ed, int is32bits, uint64_t mask)
{
    xsave64_t *p = (xsave64_t*)ed;
    xsaveheader_t *h = (xsaveheader_t*)(p+1);
    uint32_t rfbm = (0b111&mask);
    h->xstate_bv =(h->xstate_bv&~mask)|rfbm;
    h->xcomp_bv = 0;
    if(h->xstate_bv&0b001) {
        int top = emu->top&7;
        int stack = 8-top;
        if(emu->fpu_tags == TAGS_EMPTY)
            stack = 0;
        emu->sw.f.F87_TOP = top;
        p->ControlWord = emu->cw.x16;
        p->StatusWord = emu->sw.x16;
        p->MxCsr = emu->mxcsr.x32;
        uint8_t tags = 0;
        for (int i=0; i<8; ++i)
            tags |= (((emu->fpu_tags>>(i*2))&0b11)?0:1)<<i;
        p->TagWord = emu->fpu_tags;
        p->ErrorOpcode = 0;
        p->ErrorOffset = 0;
        p->DataOffset = 0;
        // copy FPU/MMX regs...
        for(int i=0; i<8; ++i)
            memcpy(&p->FloatRegisters[i].q[0], (i<stack)?&ST(i):&emu->mmx[i], sizeof(mmx87_regs_t));
    }
    if(((h->xstate_bv&0b010)||(h->xstate_bv&0b100))&&!(h->xstate_bv&0b001)) {
        p->MxCsr = emu->mxcsr.x32;
    }
    // copy SSE regs
    if(h->xstate_bv&0b10) {
        memcpy(&p->XmmRegisters[0], &emu->xmm[0], 16*(is32bits?8:16));
    }
    if(h->xstate_bv&0b100) {
        sse_regs_t* avx = (sse_regs_t*)(h+1);
        memcpy(&avx[0], &emu->ymm[0], 16*(is32bits?8:16));
    }
}

void fpu_xsave(x64emu_t* emu, void* ed, int is32bits)
{
    uint64_t mask = R_EAX | (((uint64_t)R_EDX)<<32);
    fpu_xsave_mask(emu, ed, is32bits, mask);
}

void fpu_xrstor(x64emu_t* emu, void* ed, int is32bits)
{
    uint64_t mask = R_EAX | (((uint64_t)R_EDX)<<32);
    return fpu_xrstor_mask(emu, ed, is32bits, mask);
}

void fpu_xrstor_mask(x64emu_t* emu, void* ed, int is32bits, uint64_t mask) {
    xsave64_t *p = (xsave64_t*)ed;
    xsaveheader_t *h = (xsaveheader_t*)(p+1);
    int compressed = (h->xcomp_bv>>63);
    uint32_t rfbm = (0b111&mask);
    uint32_t to_restore = rfbm & h->xstate_bv;
    uint32_t to_init = rfbm & ~h->xstate_bv;
    // check componant to restore
    if(to_restore&0b001) {
        emu->cw.x16 = p->ControlWord;
        emu->sw.x16 = p->StatusWord;
        emu->mxcsr.x32 = p->MxCsr;
        if(BOX64ENV(sse_flushto0))
            applyFlushTo0(emu);
        emu->top = emu->sw.f.F87_TOP;
        uint8_t tags = p->TagWord;
        emu->fpu_tags = 0;
        for(int i=0; i<8; ++i)
            emu->fpu_tags |= (((tags>>i)&1)?0:0b11)<<(i*2);
        int top = emu->top&7;
        int stack = 8-top;
        if(emu->fpu_tags == TAGS_EMPTY)
            stack = 0;
        // copy back MMX regs...
        for(int i=0; i<8; ++i)
            memcpy((i<stack)?&ST(i):&emu->mmx[i], &p->FloatRegisters[i].q[0], sizeof(mmx87_regs_t));
    } else if(to_init&0b001) {
        reset_fpu(emu);
    }
    if(((to_restore&0b010)||(to_restore&0b100))&&!(to_restore&0b001)) {
        emu->mxcsr.x32 = p->MxCsr;
    }
    if(to_restore&0b010) {
        // copy SSE regs
        memcpy(&emu->xmm[0], &p->XmmRegisters[0], 16*(is32bits?8:16));
    } else if(to_init&0b010) {
        memset(&emu->xmm[0], 0, 16*(is32bits?8:16));
    }
    if(to_restore&0b100) {
        // copy AVX upper part of regs
        sse_regs_t* avx = (sse_regs_t*)(h+1);
        memcpy(&emu->ymm[0], &avx[0], 16*(is32bits?8:16));
    } else if(to_init&0b100) {
        memset(&emu->ymm[0], 0, 16*(is32bits?8:16));
    }
}

typedef union f16_s {
    uint16_t u16;
    struct {
        uint16_t fraction:10;
        uint16_t exponant:5;
        uint16_t sign:1;
    };
} f16_t;

typedef union f32_s {
    uint32_t u32;
    struct {
        uint32_t fraction:23;
        uint32_t exponant:8;
        uint32_t sign:1;
    };
} f32_t;

uint32_t cvtf16_32(uint16_t v)
{
    f16_t in = (f16_t)v;
    f32_t ret = {0};
    ret.sign = in.sign;
    ret.fraction = in.fraction<<13;
    if(!in.exponant)
        ret.exponant = 0;
    else if(in.exponant==0b11111)
        ret.exponant = 0b11111111;
    else {
        int e = in.exponant - 15;
        ret.exponant = e + 127;
    }
    return ret.u32;
}
uint16_t cvtf32_16(uint32_t v, uint8_t rounding)
{
    f32_t in = (f32_t)v;
    f16_t ret = {0};
    ret.sign = in.sign;
    rounding&=3;
    if(!in.exponant) {
        // zero and denormals
        ret.exponant = 0;
        if(in.fraction && ((rounding==1 && ret.sign) || ((rounding==2) && !ret.sign))) 
            ret.fraction = 1; // rounding artifact
        else
            ret.fraction = 0;   // no way a 32bits denormal is something else the 0 in 16bits
        return ret.u16;
    } else if(in.exponant==0b11111111) {
        // nan and infinites
        ret.exponant = 0b11111;
        ret.fraction = in.fraction;
        if(in.fraction && !ret.fraction)
            ret.fraction = 0b1000000000;
        return ret.u16;
    } else {
        // regular numbers
        int e = in.exponant - 127;
        uint16_t f = (in.fraction>>13)|0b10000000000;   // add back implicit msb
        uint16_t r = in.fraction&0b1111111111111;
        switch(rounding) {
            case 0: // nearest even
                if(r>=0b1000000000000)
                    ++f;
                break;
            case 1: // round down
                f += r?ret.sign:0;
                break;
            case 2: // round up
                f += r?(1-ret.sign):0;
                break;
            case 3: // truncate
                break;
        }
        if(f>0b11111111111) {   // implicit msb included
            ++e;
            f>>=1;
        }
        // remove implicit msb
        if(f) {
            while(!(f&0b10000000000)) {
                f<<=1;
                --e;
            }
        }
        // there is no msb to remove, as it's implicit and was not added back before
        if(!f) e = -15;
        else if(e<-14) { 
            // flush to zero
            f >>= (-15-e);
            e = -15;
            if((rounding==1 && ret.sign) || ((rounding==2) && !ret.sign)) 
                f = 1; // rounding artifact
        }
        else if(e>15) { 
            if((rounding==1 && !in.sign) || (rounding==2 && in.sign) || (rounding==3)) {
                // Clamp to max
                f=0b1111111111;
                e = 15;
            } else {
                // overflow to inifity
                f=0;
                e = 16;
            }
        } else f&=0b1111111111; // remove implicit msb (bit 11)
        ret.fraction = f;
        ret.exponant = e+15;
    }

    return ret.u16;
}