from transformers import pipeline from os import path, listdir, makedirs from datetime import timedelta from time import monotonic from argparse import ArgumentParser parser = ArgumentParser(prog='classifier.py') parser.add_argument('-f', '--full', action='store_true', help="use whole dataset") parser.add_argument('-m', '--multi_label', action='store_true', help="enable multi_label for the classifier") parser.add_argument('--model', default="facebook/bart-large-mnli", type=str, help="main model to use") parser.add_argument('--compare', nargs='?', const="MoritzLaurer/deberta-v3-large-zeroshot-v2.0", type=str, help="second model for comparison") args = parser.parse_args() positive_categories = ['semantic', 'TCG', 'assembly', 'architecture', 'mistranslation', 'register', 'user-level'] architectures = ['x86', 'arm', 'risc-v', 'i386', 'alpha', 'ppc'] negative_categories = ['boot', 'network', 'KVM', 'vnc', 'graphic', 'device', 'socket', 'debug', 'files', 'PID', 'permissions', 'performance', 'kernel', 'peripherals', 'VMM', 'hypervisor', 'virtual', 'operating system'] categories = positive_categories + negative_categories + architectures def list_files_recursive(directory): result = [] for entry in listdir(directory): full_path = path.join(directory, entry) if path.isdir(full_path): result = result + list_files_recursive(full_path) else: result.append(full_path) return result def output(text : str, category : str, labels : list, scores : list, identifier : str): file_path = f"output/{category}/{identifier}" makedirs(path.dirname(file_path), exist_ok = True) with open(file_path, "w") as file: for label, score in zip(labels, scores): if label == "SPLIT": file.write(f"--------------------\n") else: file.write(f"{label}: {score:.3f}\n") file.write("\n") file.write(text) def get_category(classification : dict): highest_category = classification['labels'][0] if not args.multi_label: return highest_category if all(i < 0.8 for i in classification["scores"]): return "none" elif sum(1 for i in classification["scores"] if i > 0.85) >= 20: return "all" elif classification["scores"][0] - classification["scores"][-1] <= 0.2: return "unknown" result = highest_category arch = None pos = None for label, score in zip(classification["labels"], classification["scores"]): if label in negative_categories and (not arch and not pos or score >= 0.92): return label if label in positive_categories and not pos and score > 0.8: pos = label if not arch: result = label else: result = label + "-" + arch if label in architectures and not arch and score > 0.8: arch = label if pos: result = pos + "-" + label return result def compare_category(classification : dict, category : str): if sum(1 for i in positive_categories if i in category) < 1: return category for label, score in zip(classification["labels"], classification["scores"]): if label in positive_categories and score >= 0.85: return category if label in category and score >= 0.85: return category return "review" def main(): classifier = pipeline("zero-shot-classification", model=args.model) if args.compare: compare_classifier = pipeline("zero-shot-classification", model=args.compare) bugs = list_files_recursive("../results/scraper/mailinglist") if not args.full: bugs = bugs + list_files_recursive("../results/scraper/gitlab/semantic_issues") bugs = bugs + [ "../results/scraper/launchpad/1809546", "../results/scraper/launchpad/1156313" ] else: bugs = bugs + list_files_recursive("../results/scraper/launchpad") bugs = bugs + list_files_recursive("../results/scraper/gitlab/issues_text") print(f"{len(bugs)} number of bugs will be processed") for bug in bugs: print(f"Processing {bug}") with open(bug, "r") as file: text = file.read() result = classifier(text, categories, multi_label=args.multi_label) category = get_category(result) if args.compare: compare_result = compare_classifier(text, categories, multi_label=args.multi_label) category = compare_category(compare_result, category) result['labels'] = result['labels'] + ['SPLIT'] + compare_result['labels'] result['scores'] = result['scores'] + [0] + compare_result['scores'] output(text, category, result['labels'], result['scores'], path.basename(bug)) if __name__ == "__main__": start_time = monotonic() main() end_time = monotonic() print(timedelta(seconds=end_time - start_time))