from __future__ import print_function from miasm.core.graph import * g = DiGraph() g.add_node('a') g.add_node('b') g.add_edge('a', 'b') g.add_edge('a', 'c') g.add_edge('a', 'c') g.add_edge('c', 'c') print(g) print([x for x in g.successors('a')]) print([x for x in g.predecessors('a')]) print([x for x in g.predecessors('b')]) print([x for x in g.predecessors('c')]) print([x for x in g.successors('c')]) """ Test from: https://en.wikipedia.org/wiki/Dominator_(graph_theory) """ g1 = DiGraph() g1.add_edge(1, 2) g1.add_edge(2, 3) g1.add_edge(2, 4) g1.add_edge(3, 5) g1.add_edge(4, 5) g1.add_edge(5, 2) g1.add_edge(2, 6) dominators = g1.compute_dominators(1) assert(dominators == {1: set([1]), 2: set([1, 2]), 3: set([1, 2, 3]), 4: set([1, 2, 4]), 5: set([1, 2, 5]), 6: set([1, 2, 6])}) assert(list(g1.walk_dominators(1, dominators)) == []) assert(list(g1.walk_dominators(2, dominators)) == [1]) assert(list(g1.walk_dominators(3, dominators)) == [2, 1]) assert(list(g1.walk_dominators(4, dominators)) == [2, 1]) assert(list(g1.walk_dominators(5, dominators)) == [2, 1]) assert(list(g1.walk_dominators(6, dominators)) == [2, 1]) # Regression test with multiple heads g2 = DiGraph() g2.add_edge(1, 2) g2.add_edge(2, 3) g2.add_edge(3, 4) g2.add_edge(5, 6) g2.add_edge(6, 3) g2.add_edge(4, 7) g2.add_edge(4, 8) g2.add_edge(7, 9) g2.add_edge(8, 9) dominators = g2.compute_dominators(5) assert(dominators == {3: set([3, 5, 6]), 4: set([3, 4, 5, 6]), 5: set([5]), 6: set([5, 6]), 7: set([3, 4, 5, 6, 7]), 8: set([3, 4, 5, 6, 8]), 9: set([3, 4, 5, 6, 9])}) assert(list(g2.walk_dominators(1, dominators)) == []) assert(list(g2.walk_dominators(2, dominators)) == []) assert(list(g2.walk_dominators(3, dominators)) == [6, 5]) assert(list(g2.walk_dominators(4, dominators)) == [3, 6, 5]) assert(list(g2.walk_dominators(5, dominators)) == []) assert(list(g2.walk_dominators(6, dominators)) == [5]) assert(list(g2.walk_dominators(7, dominators)) == [4, 3, 6, 5]) assert(list(g2.walk_dominators(8, dominators)) == [4, 3, 6, 5]) assert(list(g2.walk_dominators(9, dominators)) == [4, 3, 6, 5]) postdominators = g1.compute_postdominators(6) assert(postdominators == {1: set([1, 2, 6]), 2: set([2, 6]), 3: set([2, 3, 5, 6]), 4: set([2, 4, 5, 6]), 5: set([2, 5, 6]), 6: set([6])}) assert(list(g1.walk_postdominators(1, postdominators)) == [2, 6]) assert(list(g1.walk_postdominators(2, postdominators)) == [6]) assert(list(g1.walk_postdominators(3, postdominators)) == [5, 2, 6]) assert(list(g1.walk_postdominators(4, postdominators)) == [5, 2, 6]) assert(list(g1.walk_postdominators(5, postdominators)) == [2, 6]) assert(list(g1.walk_postdominators(6, postdominators)) == []) postdominators = g1.compute_postdominators(5) assert(postdominators == {1: set([1, 2, 5]), 2: set([2, 5]), 3: set([3, 5]), 4: set([4, 5]), 5: set([5])}) assert(list(g1.walk_postdominators(1, postdominators)) == [2, 5]) assert(list(g1.walk_postdominators(2, postdominators)) == [5]) assert(list(g1.walk_postdominators(3, postdominators)) == [5]) assert(list(g1.walk_postdominators(4, postdominators)) == [5]) assert(list(g1.walk_postdominators(5, postdominators)) == []) assert(list(g1.walk_postdominators(6, postdominators)) == []) postdominators = g2.compute_postdominators(4) assert(postdominators == {1: set([1, 2, 3, 4]), 2: set([2, 3, 4]), 3: set([3, 4]), 4: set([4]), 5: set([3, 4, 5, 6]), 6: set([3, 4, 6])}) assert(list(g2.walk_postdominators(1, postdominators)) == [2, 3, 4]) assert(list(g2.walk_postdominators(2, postdominators)) == [3, 4]) assert(list(g2.walk_postdominators(3, postdominators)) == [4]) assert(list(g2.walk_postdominators(4, postdominators)) == []) assert(list(g2.walk_postdominators(5, postdominators)) == [6, 3, 4]) assert(list(g2.walk_postdominators(6, postdominators)) == [3, 4]) assert(list(g2.walk_postdominators(7, postdominators)) == []) assert(list(g2.walk_postdominators(8, postdominators)) == []) assert(list(g2.walk_postdominators(9, postdominators)) == []) idoms = g1.compute_immediate_dominators(1) assert(idoms == {2: 1, 3: 2, 4: 2, 5: 2, 6: 2}) idoms = g2.compute_immediate_dominators(1) assert(idoms == {2: 1, 3: 2, 4: 3, 7: 4, 8: 4, 9: 4}) idoms = g2.compute_immediate_dominators(5) assert(idoms == {3: 6, 4: 3, 6: 5, 7: 4, 8: 4, 9: 4}) frontier = g1.compute_dominance_frontier(1) assert(frontier == {2: set([2]), 3: set([5]), 4: set([5]), 5: set([2])}) frontier = g2.compute_dominance_frontier(1) assert(frontier == {7: set([9]), 8: set([9])}) frontier = g2.compute_dominance_frontier(5) assert(frontier == {7: set([9]), 8: set([9])}) # Regression test with natural loops and irreducible loops g3 = DiGraph() g3.add_edge(1, 2) g3.add_edge(1, 3) g3.add_edge(2, 4) g3.add_edge(2, 5) g3.add_edge(3, 7) g3.add_edge(3, 8) g3.add_edge(4, 9) g3.add_edge(5, 9) g3.add_edge(7, 6) g3.add_edge(8, 6) g3.add_edge(9, 6) g3.add_edge(9, 2) g3.add_edge(9, 1) g3.add_edge(7, 8) g3.add_edge(8, 7) loops = set([(backedge, frozenset(body)) for backedge, body in g3.compute_natural_loops(1)]) assert(loops == {((9, 1), frozenset({1, 2, 4, 5, 9})), ((9, 2), frozenset({2, 4, 5, 9}))}) sccs = set([frozenset(scc) for scc in g3.compute_strongly_connected_components()]) assert(sccs == {frozenset({6}), frozenset({7, 8}), frozenset({3}), frozenset({1, 2, 4, 5, 9})}) # Equality graph = DiGraph() graph.add_edge(1, 2) graph.add_edge(2, 3) graph2 = DiGraph() graph2.add_edge(2, 3) graph2.add_edge(1, 2) assert graph == graph2 # Copy graph4 = graph.copy() assert graph == graph4 # Merge graph3 = DiGraph() graph3.add_edge(3, 1) graph3.add_edge(1, 4) graph4 += graph3 for node in graph3.nodes(): assert node in graph4.nodes() for edge in graph3.edges(): assert edge in graph4.edges() assert graph4.nodes() == graph.nodes().union(graph3.nodes()) assert sorted(graph4.edges()) == sorted(graph.edges() + graph3.edges()) # MatchGraph ## Build a MatchGraph using MatchGraphJoker j1 = MatchGraphJoker(name="dad") j2 = MatchGraphJoker(name="son") ### Check '>>' helper matcher = j1 >> j2 >> j1 ### Check __str__ print(matcher) ### Ensure form assert isinstance(matcher, MatchGraph) assert len(matcher.nodes()) == 2 assert len(matcher.edges()) == 2 ## Match a simple graph graph = DiGraph() graph.add_edge(1, 2) graph.add_edge(2, 1) graph.add_edge(2, 3) sols = list(matcher.match(graph)) assert len(sols) == 0 ## Modify restrictions j2 = MatchGraphJoker(name="son", restrict_out=False) matcher = j1 >> j2 >> j1 sols = list(matcher.match(graph)) assert len(sols) == 1 assert sols[0] == {j1: 1, j2: 2} ## Check solution combinaison (ie a -> b and b -> a) j1 = MatchGraphJoker(name="dad", restrict_out=False) matcher = j1 >> j2 >> j1 sols = list(matcher.match(graph)) assert len(sols) == 2 assert len([sol for sol in sols if sol[j1] == 1]) == 1 assert len([sol for sol in sols if sol[j1] == 2]) == 1 ## Check filter j2 = MatchGraphJoker(name="son", restrict_out=False, filt=lambda graph, node: node < 2) matcher = j1 >> j2 >> j1 sols = list(matcher.match(graph)) assert len(sols) == 1 assert sols[0] == {j1: 2, j2: 1} ## Check building with 'add' helper j1 = MatchGraphJoker(name="dad") j2 = MatchGraphJoker(name="son") j3 = MatchGraphJoker(name="sonson", restrict_in=False) matcher = j1 >> j2 matcher += j2 >> j3 assert isinstance(matcher, MatchGraph) assert len(matcher.nodes()) == 3 assert len(matcher.edges()) == 2 ## Check restrict_in graph = DiGraph() graph.add_edge(1, 2) graph.add_edge(2, 3) graph.add_edge(4, 3) sols = list(matcher.match(graph)) assert len(sols) == 1 assert sols[0] == {j1: 1, j2: 2, j3: 3} # Test replace_node graph = DiGraph() graph.add_edge(1, 2) graph.add_edge(2, 2) graph.add_edge(2, 3) graph.replace_node(2, 4) assert graph.nodes() == set([1, 3, 4]) assert sorted(graph.edges()) == [(1, 4), (4, 3), (4, 4)] # Test compute_weakly_connected_components graph = DiGraph() graph.add_edge(1, 2) graph.add_edge(2, 2) graph.add_edge(3, 4) components = graph.compute_weakly_connected_components() assert sorted(components) == [set([1, 2]), set([3, 4])]