about summary refs log tree commit diff stats
path: root/miasm/ir/symbexec.py
blob: 2e6b07df14abd3fd52a23da36c1639a333a6eaf1 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
from __future__ import print_function
from builtins import range
import logging
try:
    from collections.abc import MutableMapping
except ImportError:
    from collections import MutableMapping

from future.utils import viewitems

from miasm.expression.expression import ExprOp, ExprId, ExprLoc, ExprInt, \
    ExprMem, ExprCompose, ExprSlice, ExprCond
from miasm.expression.simplifications import expr_simp_explicit
from miasm.ir.ir import AssignBlock

log = logging.getLogger("symbexec")
console_handler = logging.StreamHandler()
console_handler.setFormatter(logging.Formatter("[%(levelname)-8s]: %(message)s"))
log.addHandler(console_handler)
log.setLevel(logging.INFO)


def get_block(lifter, ircfg, mdis, addr):
    """Get IRBlock at address @addr"""
    loc_key = ircfg.get_or_create_loc_key(addr)
    if not loc_key in ircfg.blocks:
        offset = mdis.loc_db.get_location_offset(loc_key)
        block = mdis.dis_block(offset)
        lifter.add_asmblock_to_ircfg(block, ircfg)
    irblock = ircfg.get_block(loc_key)
    if irblock is None:
        raise LookupError('No block found at that address: %s' % lifter.loc_db.pretty_str(loc_key))
    return irblock


class StateEngine(object):
    """Stores an Engine state"""

    def merge(self, other):
        """Generate a new state, representing the merge of self and @other
        @other: a StateEngine instance"""

        raise NotImplementedError("Abstract method")


class SymbolicState(StateEngine):
    """Stores a SymbolicExecutionEngine state"""

    def __init__(self, dct):
        self._symbols = frozenset(viewitems(dct))

    def __hash__(self):
        return hash((self.__class__, self._symbols))

    def __eq__(self, other):
        if self is other:
            return True
        if self.__class__ != other.__class__:
            return False
        return self.symbols == other.symbols

    def __ne__(self, other):
        return not self == other

    def __iter__(self):
        for dst, src in self._symbols:
            yield dst, src

    def iteritems(self):
        """Iterate on stored memory/values"""
        return self.__iter__()

    def merge(self, other):
        """Merge two symbolic states
        Only equal expressions are kept in both states
        @other: second symbolic state
        """

        symb_a = self.symbols
        symb_b = other.symbols
        intersection = set(symb_a).intersection(set(symb_b))
        out = {}
        for dst in intersection:
            if symb_a[dst] == symb_b[dst]:
                out[dst] = symb_a[dst]
        return self.__class__(out)

    @property
    def symbols(self):
        """Return the dictionary of known symbols"""
        return dict(self._symbols)


INTERNAL_INTBASE_NAME = "__INTERNAL_INTBASE__"


def get_expr_base_offset(expr):
    """Return a couple representing the symbolic/concrete part of an addition
    expression.

    If there is no symbolic part, ExprId(INTERNAL_INTBASE_NAME) is used
    If there is not concrete part, 0 is used
    @expr: Expression instance

    """
    if expr.is_int():
        internal_intbase = ExprId(INTERNAL_INTBASE_NAME, expr.size)
        return internal_intbase, int(expr)

    if not expr.is_op('+'):
        return expr, 0
    if expr.args[-1].is_int():
        args, offset = expr.args[:-1], int(expr.args[-1])
        if len(args) == 1:
            return args[0], offset
        return ExprOp('+', *args), offset
    return expr, 0


class MemArray(MutableMapping):
    """Link between base and its (offset, Expr)

    Given an expression (say *base*), this structure will store every memory
    content relatively to an integer offset from *base*.

    The value associated to a given offset is a description of the slice of a
    stored expression. The slice size depends on the configuration of the
    MemArray. For example, for a slice size of 8 bits, the assignment:
    - @32[EAX+0x10] = EBX

    will store for the base EAX:
    - 0x10: (EBX, 0)
    - 0x11: (EBX, 1)
    - 0x12: (EBX, 2)
    - 0x13: (EBX, 3)

    If the *base* is EAX+EBX, this structure can store the following contents:
    - @32[EAX+EBX]
    - @8[EAX+EBX+0x100]
    But not:
    - @32[EAX+0x10] (which is stored in another MemArray based on EAX)
    - @32[EAX+EBX+ECX] (which is stored in another MemArray based on
      EAX+EBX+ECX)

    """

    def __init__(self, base, expr_simp=expr_simp_explicit):
        self._base = base
        self.expr_simp = expr_simp
        self._mask = int(base.mask)
        self._offset_to_expr = {}

    @property
    def base(self):
        """Expression representing the symbolic base address"""
        return self._base

    @property
    def mask(self):
        """Mask offset"""
        return self._mask

    def __contains__(self, offset):
        return offset in self._offset_to_expr

    def __getitem__(self, offset):
        assert 0 <= offset <= self._mask
        return self._offset_to_expr.__getitem__(offset)

    def __setitem__(self, offset, value):
        raise RuntimeError("Use write api to update keys")

    def __delitem__(self, offset):
        assert 0 <= offset <= self._mask
        return self._offset_to_expr.__delitem__(offset)

    def __iter__(self):
        for offset, _ in viewitems(self._offset_to_expr):
            yield offset

    def __len__(self):
        return len(self._offset_to_expr)

    def __repr__(self):
        out = []
        out.append("Base: %s" % self.base)
        for offset, (index, value) in sorted(viewitems(self._offset_to_expr)):
            out.append("%16X %d %s" % (offset, index, value))
        return '\n'.join(out)

    def copy(self):
        """Copy object instance"""
        obj = MemArray(self.base, self.expr_simp)
        obj._offset_to_expr = self._offset_to_expr.copy()
        return obj

    @staticmethod
    def offset_to_ptr(base, offset):
        """
        Return an expression representing the @base + @offset
        @base: symbolic base address
        @offset: relative offset integer to the @base address
        """
        if base.is_id(INTERNAL_INTBASE_NAME):
            ptr = ExprInt(offset, base.size)
        elif offset == 0:
            ptr = base
        else:
            ptr = base + ExprInt(offset, base.size)
        return ptr.canonize()

    def read(self, offset, size):
        """
        Return memory at @offset with @size as an Expr list
        @offset: integer (in bytes)
        @size: integer (in bits), byte aligned

        Consider the following state:
        - 0x10: (EBX, 0)
        - 0x11: (EBX, 1)
        - 0x12: (EBX, 2)
        - 0x13: (EBX, 3)

        A read at 0x10 of 32 bits should return: EBX
        """

        assert size % 8 == 0
        # Parts is (Expr's offset, size, Expr)
        parts = []
        for index in range(size // 8):
            # Wrap read:
            # @32[EAX+0xFFFFFFFF] is ok and will read at 0xFFFFFFFF, 0, 1, 2
            request_offset = (offset + index) & self._mask
            if request_offset in self._offset_to_expr:
                # Known memory portion
                off, data = self._offset_to_expr[request_offset]
                parts.append((off, 1, data))
                continue

            # Unknown memory portion
            ptr = self.offset_to_ptr(self.base, request_offset)
            data = ExprMem(ptr, 8)
            parts.append((0, 1, data))

        # Group similar data
        # XXX TODO: only little endian here
        index = 0
        while index + 1 < len(parts):
            off_a, size_a, data_a = parts[index]
            off_b, size_b, data_b = parts[index+1]
            if data_a == data_b and off_a + size_a == off_b:
                # Read consecutive bytes of a variable
                # [(0, 8, x), (1, 8, x)] => (0, 16, x)
                parts[index:index+2] = [(off_a, size_a + size_b, data_a)]
                continue
            if data_a.is_int() and data_b.is_int():
                # Read integer parts
                # [(0, 8, 0x11223344), (1, 8, 0x55667788)] => (0, 16, 0x7744)
                int1 = self.expr_simp(data_a[off_a*8:(off_a+size_a)*8])
                int2 = self.expr_simp(data_b[off_b*8:(off_b+size_b)*8])
                assert int1.is_int() and int2.is_int()
                int1, int2 = int(int1), int(int2)
                result = ExprInt((int2 << (size_a * 8)) | int1, (size_a + size_b) * 8)
                parts[index:index+2] = [(0, size_a + size_b, result)]
                continue
            if data_a.is_mem() and data_b.is_mem():
                # Read consecutive bytes of a memory variable
                ptr_base_a, ptr_offset_a = get_expr_base_offset(data_a.ptr)
                ptr_base_b, ptr_offset_b = get_expr_base_offset(data_b.ptr)
                if ptr_base_a != ptr_base_b:
                    index += 1
                    continue
                if (ptr_offset_a + off_a + size_a) & self._mask == (ptr_offset_b + off_b) & self._mask:
                    assert size_a <= data_a.size // 8 - off_a
                    assert size_b <= data_b.size // 8 - off_b
                    # Successive comparable symbolic pointers
                    # [(0, 8, @8[ptr]), (0, 8, @8[ptr+1])] => (0, 16, @16[ptr])
                    ptr = self.offset_to_ptr(ptr_base_a, (ptr_offset_a + off_a) & self._mask)

                    data = ExprMem(ptr, (size_a + size_b) * 8)
                    parts[index:index+2] = [(0, size_a + size_b, data)]

                    continue

            index += 1

        # Slice data
        read_mem = []
        for off, bytesize, data in parts:
            if data.size // 8 != bytesize:
                data = data[off * 8: (off + bytesize) * 8]
            read_mem.append(data)

        return read_mem

    def write(self, offset, expr):
        """
        Write @expr at @offset
        @offset: integer (in bytes)
        @expr: Expr instance value
        """
        assert expr.size % 8 == 0
        assert offset <= self._mask
        for index in range(expr.size // 8):
            # Wrap write:
            # @32[EAX+0xFFFFFFFF] is ok and will write at 0xFFFFFFFF, 0, 1, 2
            request_offset = (offset + index) & self._mask
            # XXX TODO: only little endian here
            self._offset_to_expr[request_offset] = (index, expr)

            tmp = self.expr_simp(expr[index * 8: (index + 1) * 8])
            # Special case: Simplify slice of pointer (simplification is ok
            # here, as we won't store the simplified expression)
            if tmp.is_slice() and tmp.arg.is_mem() and tmp.start % 8 == 0:
                new_ptr = self.expr_simp(
                    tmp.arg.ptr + ExprInt(tmp.start // 8, tmp.arg.ptr.size)
                )
                tmp = ExprMem(new_ptr, tmp.stop - tmp.start)
            # Test if write to original value
            if tmp.is_mem():
                src_ptr, src_off = get_expr_base_offset(tmp.ptr)
                if src_ptr == self.base and src_off == request_offset:
                    del self._offset_to_expr[request_offset]


    def _get_variable_parts(self, index, known_offsets, forward=True):
        """
        Find consecutive memory parts representing the same variable. The part
        starts at offset known_offsets[@index] and search is in offset direction
        determined by @forward
        Return the number of consecutive parts of the same variable.

        @index: index of the memory offset in known_offsets
        @known_offsets: sorted offsets
        @forward: Search in offset growing direction if True, else in reverse
        order
        """

        offset = known_offsets[index]
        value_byte_index, value = self._offset_to_expr[offset]
        assert value.size % 8 == 0

        if forward:
            start, end, step = value_byte_index + 1, value.size // 8, 1
        else:
            start, end, step = value_byte_index - 1, -1, -1

        partnum = 1
        for value_offset in range(start, end, step):
            offset += step
            # Check if next part is in known_offsets
            next_index = index + step * partnum
            if not 0 <= next_index < len(known_offsets):
                break

            offset_next = known_offsets[next_index]
            if offset_next != offset:
                break

            # Check if next part is a part of the searched value
            byte_index, value_next = self._offset_to_expr[offset_next]
            if byte_index != value_offset:
                break
            if value != value_next:
                break
            partnum += 1

        return partnum


    def _build_value_at_offset(self, value, offset, start, length):
        """
        Return a couple. The first element is the memory Expression representing
        the value at @offset, the second is its value.  The value is truncated
        at byte @start with @length

        @value: Expression to truncate
        @offset: offset in bytes of the variable (integer)
        @start: value's byte offset (integer)
        @length: length in bytes (integer)
        """

        ptr = self.offset_to_ptr(self.base, offset)
        size = length * 8
        if start == 0 and size == value.size:
            result = value
        else:
            result = self.expr_simp(value[start * 8: start * 8 + size])

        return ExprMem(ptr, size), result


    def memory(self):
        """
        Iterate on stored memory/values

        The goal here is to group entities.

        Consider the following state:
        EAX + 0x10 = (0, EDX)
        EAX + 0x11 = (1, EDX)
        EAX + 0x12 = (2, EDX)
        EAX + 0x13 = (3, EDX)

        The function should return:
        @32[EAX + 0x10] = EDX
        """

        if not self._offset_to_expr:
            return
        known_offsets = sorted(self._offset_to_expr)
        index = 0
        # Test if the first element is the continuation of the last byte. If
        # yes, merge and output it first.
        min_int = 0
        max_int = (1 << self.base.size) - 1
        limit_index = len(known_offsets)

        first_element = None
        # Special case where a variable spreads on max_int/min_int
        if known_offsets[0] == min_int and known_offsets[-1] == max_int:
            min_offset, max_offset = known_offsets[0], known_offsets[-1]
            min_byte_index, min_value = self._offset_to_expr[min_offset]
            max_byte_index, max_value = self._offset_to_expr[max_offset]
            if min_value == max_value and max_byte_index + 1 == min_byte_index:
                # Look for current variable start
                partnum_before = self._get_variable_parts(len(known_offsets) - 1, known_offsets, False)
                # Look for current variable end
                partnum_after = self._get_variable_parts(0, known_offsets)

                partnum = partnum_before + partnum_after
                offset = known_offsets[-partnum_before]
                index_value, value = self._offset_to_expr[offset]

                mem, result = self._build_value_at_offset(value, offset, index_value, partnum)
                first_element = mem, result
                index = partnum_after
                limit_index = len(known_offsets) - partnum_before

        # Special cases are done, walk and merge variables
        while index < limit_index:
            offset = known_offsets[index]
            index_value, value = self._offset_to_expr[offset]
            partnum = self._get_variable_parts(index, known_offsets)
            mem, result = self._build_value_at_offset(value, offset, index_value, partnum)
            yield mem, result
            index += partnum

        if first_element is not None:
            yield first_element

    def dump(self):
        """Display MemArray content"""
        for mem, value in self.memory():
            print("%s = %s" % (mem, value))


class MemSparse(object):
    """Link a symbolic memory pointer to its MemArray.

    For each symbolic memory object, this object will extract the memory pointer
    *ptr*. It then splits *ptr* into a symbolic and an integer part. For
    example, the memory @[ESP+4] will give ESP+4 for *ptr*. *ptr* is then split
    into its base ESP and its offset 4. Each symbolic base address uses a
    different MemArray.

    Example:
    - @32[EAX+EBX]
    - @8[EAX+EBX+0x100]
    Will be stored in the same MemArray with a EAX+EBX base

    """

    def __init__(self, addrsize, expr_simp=expr_simp_explicit):
        """
        @addrsize: size (in bits) of the addresses manipulated by the MemSparse
        @expr_simp: an ExpressionSimplifier instance
        """
        self.addrsize = addrsize
        self.expr_simp = expr_simp
        self.base_to_memarray = {}

    def __contains__(self, expr):
        """
        Return True if the whole @expr is present
        For partial check, use 'contains_partial'
        """
        if not expr.is_mem():
            return False
        ptr = expr.ptr
        base, offset = get_expr_base_offset(ptr)
        memarray = self.base_to_memarray.get(base, None)
        if memarray is None:
            return False
        for i in range(expr.size // 8):
            if offset + i not in memarray:
                return False
        return True

    def contains_partial(self, expr):
        """
        Return True if a part of @expr is present in memory
        """
        if not expr.is_mem():
            return False
        ptr = expr.ptr
        base, offset = get_expr_base_offset(ptr)
        memarray = self.base_to_memarray.get(base, None)
        if memarray is None:
            return False
        for i in range(expr.size // 8):
            if offset + i in memarray:
                return True
        return False

    def clear(self):
        """Reset the current object content"""
        self.base_to_memarray.clear()

    def copy(self):
        """Copy the current object instance"""
        base_to_memarray = {}
        for base, memarray in viewitems(self.base_to_memarray):
            base_to_memarray[base] = memarray.copy()
        obj = MemSparse(self.addrsize, self.expr_simp)
        obj.base_to_memarray = base_to_memarray
        return obj

    def __delitem__(self, expr):
        """
        Delete a value @expr *fully* present in memory
        For partial delete, use delete_partial
        """
        ptr = expr.ptr
        base, offset = get_expr_base_offset(ptr)
        memarray = self.base_to_memarray.get(base, None)
        if memarray is None:
            raise KeyError
        # Check if whole entity is in the MemArray before deleting it
        for i in range(expr.size // 8):
            if (offset + i) & memarray.mask not in memarray:
                raise KeyError
        for i in range(expr.size // 8):
            del memarray[(offset + i) & memarray.mask]

    def delete_partial(self, expr):
        """
        Delete @expr from memory. Skip parts of @expr which are not present in
        memory.
        """
        ptr = expr.ptr
        base, offset = get_expr_base_offset(ptr)
        memarray = self.base_to_memarray.get(base, None)
        if memarray is None:
            raise KeyError
        # Check if whole entity is in the MemArray before deleting it
        for i in range(expr.size // 8):
            real_offset = (offset + i) & memarray.mask
            if real_offset in memarray:
                del memarray[real_offset]

    def read(self, ptr, size):
        """
        Return the value associated with the Expr at address @ptr
        @ptr: Expr representing the memory address
        @size: memory size (in bits), byte aligned
        """
        assert size % 8 == 0
        base, offset = get_expr_base_offset(ptr)
        memarray = self.base_to_memarray.get(base, None)
        if memarray is not None:
            mems = memarray.read(offset, size)
            ret = mems[0] if len(mems) == 1 else ExprCompose(*mems)
        else:
            ret = ExprMem(ptr, size)
        return ret

    def write(self, ptr, expr):
        """
        Update the corresponding Expr @expr at address @ptr
        @ptr: Expr representing the memory address
        @expr: Expr instance
        """
        assert ptr.size == self.addrsize
        base, offset = get_expr_base_offset(ptr)
        memarray = self.base_to_memarray.get(base, None)
        if memarray is None:
            memarray = MemArray(base, self.expr_simp)
            self.base_to_memarray[base] = memarray
        memarray.write(offset, expr)

    def iteritems(self):
        """Iterate on stored memory variables and their values."""
        for _, memarray in viewitems(self.base_to_memarray):
            for mem, value in memarray.memory():
                yield mem, value

    def items(self):
        """Return stored memory variables and their values."""
        return list(self.iteritems())

    def dump(self):
        """Display MemSparse content"""
        for mem, value in viewitems(self):
            print("%s = %s" % (mem, value))

    def __repr__(self):
        out = []
        for _, memarray in sorted(viewitems(self.base_to_memarray)):
            out.append(repr(memarray))
        return '\n'.join(out)


class SymbolMngr(object):
    """Symbolic store manager (IDs and MEMs)"""

    def __init__(self, init=None, addrsize=None, expr_simp=expr_simp_explicit):
        assert addrsize is not None
        if init is None:
            init = {}
        self.addrsize = addrsize
        self.expr_simp = expr_simp
        self.symbols_id = {}
        self.symbols_mem = MemSparse(addrsize, expr_simp)
        self.mask = (1 << addrsize) - 1
        for expr, value in viewitems(init):
            self.write(expr, value)

    def __contains__(self, expr):
        if expr.is_id():
            return self.symbols_id.__contains__(expr)
        if expr.is_mem():
            return self.symbols_mem.__contains__(expr)
        return False

    def __getitem__(self, expr):
        return self.read(expr)

    def __setitem__(self, expr, value):
        self.write(expr, value)

    def __delitem__(self, expr):
        if expr.is_id():
            del self.symbols_id[expr]
        elif expr.is_mem():
            del self.symbols_mem[expr]
        else:
            raise TypeError("Bad source expr")

    def copy(self):
        """Copy object instance"""
        obj = SymbolMngr(self, addrsize=self.addrsize, expr_simp=self.expr_simp)
        return obj

    def clear(self):
        """Forget every variables values"""
        self.symbols_id.clear()
        self.symbols_mem.clear()

    def read(self, src):
        """
        Return the value corresponding to Expr @src
        @src: ExprId or ExprMem instance
        """
        if src.is_id():
            return self.symbols_id.get(src, src)
        elif src.is_mem():
            # Only byte aligned accesses are supported for now
            assert src.size % 8 == 0
            return self.symbols_mem.read(src.ptr, src.size)
        else:
            raise TypeError("Bad source expr")

    def write(self, dst, src):
        """
        Update @dst with @src expression
        @dst: ExprId or ExprMem instance
        @src: Expression instance
        """
        assert dst.size == src.size
        if dst.is_id():
            if dst == src:
                if dst in self.symbols_id:
                    del self.symbols_id[dst]
            else:
                self.symbols_id[dst] = src
        elif dst.is_mem():
            # Only byte aligned accesses are supported for now
            assert dst.size % 8 == 0
            self.symbols_mem.write(dst.ptr, src)
        else:
            raise TypeError("Bad destination expr")

    def dump(self, ids=True, mems=True):
        """Display memory content"""
        if ids:
            for variable, value in self.ids():
                print('%s = %s' % (variable, value))
        if mems:
            for mem, value in self.memory():
                print('%s = %s' % (mem, value))

    def __repr__(self):
        out = []
        for variable, value in viewitems(self):
            out.append('%s = %s' % (variable, value))
        return "\n".join(out)

    def iteritems(self):
        """ExprId/ExprMem iteritems of the current state"""
        for variable, value in self.ids():
            yield variable, value
        for variable, value in self.memory():
            yield variable, value

    def items(self):
        """Return variables/values of the current state"""
        return list(self.iteritems())

    def __iter__(self):
        for expr, _ in self.iteritems():
            yield expr

    def ids(self):
        """Iterate on variables and their values."""
        for expr, value in viewitems(self.symbols_id):
            yield expr, value

    def memory(self):
        """Iterate on memory variables and their values."""
        for mem, value in viewitems(self.symbols_mem):
            yield mem, value

    def keys(self):
        """Variables of the current state"""
        return list(self)


def merge_ptr_read(known, ptrs):
    """
    Merge common memory parts in a multiple byte memory.
    @ptrs: memory bytes list
    @known: ptrs' associated boolean for present/unpresent memory part in the
    store
    """
    assert known
    out = []
    known.append(None)
    ptrs.append(None)
    last, value, size = known[0], ptrs[0], 8
    for index, part in enumerate(known[1:], 1):
        if part == last:
            size += 8
        else:
            out.append((last, value, size))
            last, value, size = part, ptrs[index], 8
    return out


class SymbolicExecutionEngine(object):
    """
    Symbolic execution engine
    Allow IR code emulation in symbolic domain


    Examples:
        from miasm.ir.symbexec import SymbolicExecutionEngine
        from miasm.ir.ir import AssignBlock

        lifter = Lifter_X86_32()

        init_state = {
            lifter.arch.regs.EAX: lifter.arch.regs.EBX,
            ExprMem(id_x+ExprInt(0x10, 32), 32): id_a,
        }

        sb_exec = SymbolicExecutionEngine(lifter, init_state)

        >>> sb_exec.dump()
        EAX                = a
        @32[x + 0x10]      = a
        >>> sb_exec.dump(mems=False)
        EAX                = a

        >>> print sb_exec.eval_expr(lifter.arch.regs.EAX + lifter.arch.regs.ECX)
        EBX + ECX

    Inspecting state:
        - dump
        - modified
    State manipulation:
        - '.state' (rw)

    Evaluation (read only):
        - eval_expr
        - eval_assignblk
    Evaluation with state update:
        - eval_updt_expr
        - eval_updt_assignblk
        - eval_updt_irblock

    Start a symbolic execution based on provisioned '.lifter' blocks:
        - run_block_at
        - run_at
    """

    StateEngine = SymbolicState

    def __init__(self, lifter, state=None,
                 sb_expr_simp=expr_simp_explicit):

        self.expr_to_visitor = {
            ExprInt: self.eval_exprint,
            ExprId: self.eval_exprid,
            ExprLoc: self.eval_exprloc,
            ExprMem: self.eval_exprmem,
            ExprSlice: self.eval_exprslice,
            ExprCond: self.eval_exprcond,
            ExprOp: self.eval_exprop,
            ExprCompose: self.eval_exprcompose,
        }

        if state is None:
            state = {}

        self.symbols = SymbolMngr(addrsize=lifter.addrsize, expr_simp=sb_expr_simp)

        for dst, src in viewitems(state):
            self.symbols.write(dst, src)

        self.lifter = lifter
        self.expr_simp = sb_expr_simp

    @property
    def ir_arch(self):
        warnings.warn('DEPRECATION WARNING: use ".lifter" instead of ".ir_arch"')
        return self.lifter

    def get_state(self):
        """Return the current state of the SymbolicEngine"""
        state = self.StateEngine(dict(self.symbols))
        return state

    def set_state(self, state):
        """Restaure the @state of the engine
        @state: StateEngine instance
        """
        self.symbols = SymbolMngr(addrsize=self.lifter.addrsize, expr_simp=self.expr_simp)
        for dst, src in viewitems(dict(state)):
            self.symbols[dst] = src

    state = property(get_state, set_state)

    def eval_expr_visitor(self, expr, cache=None):
        """
        [DEV]: Override to change the behavior of an Expr evaluation.
        This function recursively applies 'eval_expr*' to @expr.
        This function uses @cache to speedup re-evaluation of expression.
        """
        if cache is None:
            cache = {}

        ret = cache.get(expr, None)
        if ret is not None:
            return ret

        new_expr = self.expr_simp(expr)
        ret = cache.get(new_expr, None)
        if ret is not None:
            return ret

        func = self.expr_to_visitor.get(new_expr.__class__, None)
        if func is None:
            raise TypeError("Unknown expr type")

        ret = func(new_expr, cache=cache)
        ret = self.expr_simp(ret)
        assert ret is not None

        cache[expr] = ret
        cache[new_expr] = ret
        return ret

    def eval_exprint(self, expr, **kwargs):
        """[DEV]: Evaluate an ExprInt using the current state"""
        return expr

    def eval_exprid(self, expr, **kwargs):
        """[DEV]: Evaluate an ExprId using the current state"""
        ret = self.symbols.read(expr)
        return ret

    def eval_exprloc(self, expr, **kwargs):
        """[DEV]: Evaluate an ExprLoc using the current state"""
        offset = self.lifter.loc_db.get_location_offset(expr.loc_key)
        if offset is not None:
            ret = ExprInt(offset, expr.size)
        else:
            ret = expr
        return ret

    def eval_exprmem(self, expr, **kwargs):
        """[DEV]: Evaluate an ExprMem using the current state
        This function first evaluate the memory pointer value.
        Override 'mem_read' to modify the effective memory accesses
        """
        ptr = self.eval_expr_visitor(expr.ptr, **kwargs)
        mem = ExprMem(ptr, expr.size)
        ret = self.mem_read(mem)
        return ret

    def eval_exprcond(self, expr, **kwargs):
        """[DEV]: Evaluate an ExprCond using the current state"""
        cond = self.eval_expr_visitor(expr.cond, **kwargs)
        src1 = self.eval_expr_visitor(expr.src1, **kwargs)
        src2 = self.eval_expr_visitor(expr.src2, **kwargs)
        ret = ExprCond(cond, src1, src2)
        return ret

    def eval_exprslice(self, expr, **kwargs):
        """[DEV]: Evaluate an ExprSlice using the current state"""
        arg = self.eval_expr_visitor(expr.arg, **kwargs)
        ret = ExprSlice(arg, expr.start, expr.stop)
        return ret

    def eval_exprop(self, expr, **kwargs):
        """[DEV]: Evaluate an ExprOp using the current state"""
        args = []
        for oarg in expr.args:
            arg = self.eval_expr_visitor(oarg, **kwargs)
            args.append(arg)
        ret = ExprOp(expr.op, *args)
        return ret

    def eval_exprcompose(self, expr, **kwargs):
        """[DEV]: Evaluate an ExprCompose using the current state"""
        args = []
        for arg in expr.args:
            args.append(self.eval_expr_visitor(arg, **kwargs))
        ret = ExprCompose(*args)
        return ret

    def eval_expr(self, expr, eval_cache=None):
        """
        Evaluate @expr
        @expr: Expression instance to evaluate
        @cache: None or dictionary linking variables to their values
        """
        if eval_cache is None:
            eval_cache = {}
        ret = self.eval_expr_visitor(expr, cache=eval_cache)
        assert ret is not None
        return ret

    def modified(self, init_state=None, ids=True, mems=True):
        """
        Return the modified variables.
        @init_state: a base dictionary linking variables to their initial values
        to diff. Can be None.
        @ids: track ids only
        @mems: track mems only
        """
        if init_state is None:
            init_state = {}
        if ids:
            for variable, value in viewitems(self.symbols.symbols_id):
                if variable in init_state and init_state[variable] == value:
                    continue
                yield variable, value
        if mems:
            for mem, value in self.symbols.memory():
                if mem in init_state and init_state[mem] == value:
                    continue
                yield mem, value

    def dump(self, ids=True, mems=True):
        """
        Display modififed variables
        @ids: display modified ids
        @mems: display modified memory
        """

        for variable, value in self.modified(None, ids, mems):
            print("%-18s" % variable, "=", "%s" % value)

    def eval_assignblk(self, assignblk):
        """
        Evaluate AssignBlock using the current state

        Returns a dictionary containing modified keys associated to their values

        @assignblk: AssignBlock instance
        """
        pool_out = {}
        eval_cache = {}
        for dst, src in viewitems(assignblk):
            src = self.eval_expr(src, eval_cache)
            if dst.is_mem():
                ptr = self.eval_expr(dst.ptr, eval_cache)
                # Test if mem lookup is known
                tmp = ExprMem(ptr, dst.size)
                pool_out[tmp] = src
            elif dst.is_id():
                pool_out[dst] = src
            else:
                raise ValueError("Unknown destination type", str(dst))

        return pool_out

    def apply_change(self, dst, src):
        """
        Apply @dst = @src on the current state WITHOUT evaluating both side
        @dst: Expr, destination
        @src: Expr, source
        """
        if dst.is_mem():
            self.mem_write(dst, src)
        else:
            self.symbols.write(dst, src)

    def eval_updt_assignblk(self, assignblk):
        """
        Apply an AssignBlock on the current state
        @assignblk: AssignBlock instance
        """
        mem_dst = []
        dst_src = self.eval_assignblk(assignblk)
        for dst, src in viewitems(dst_src):
            self.apply_change(dst, src)
            if dst.is_mem():
                mem_dst.append(dst)
        return mem_dst

    def eval_updt_irblock(self, irb, step=False):
        """
        Symbolic execution of the @irb on the current state
        @irb: irbloc instance
        @step: display intermediate steps
        """
        for assignblk in irb:
            if step:
                print('Instr', assignblk.instr)
                print('Assignblk:')
                print(assignblk)
                print('_' * 80)
            self.eval_updt_assignblk(assignblk)
            if step:
                self.dump(mems=False)
                self.dump(ids=False)
                print('_' * 80)
        dst = self.eval_expr(self.lifter.IRDst)

        return dst

    def run_block_at(self, ircfg, addr, step=False):
        """
        Symbolic execution of the block at @addr
        @addr: address to execute (int or ExprInt or label)
        @step: display intermediate steps
        """
        irblock = ircfg.get_block(addr)
        if irblock is not None:
            addr = self.eval_updt_irblock(irblock, step=step)
        return addr

    def run_at(self, ircfg, addr, lbl_stop=None, step=False):
        """
        Symbolic execution starting at @addr
        @addr: address to execute (int or ExprInt or label)
        @lbl_stop: LocKey to stop execution on
        @step: display intermediate steps
        """
        while True:
            irblock = ircfg.get_block(addr)
            if irblock is None:
                break
            if irblock.loc_key == lbl_stop:
                break
            addr = self.eval_updt_irblock(irblock, step=step)
        return addr

    def del_mem_above_stack(self, stack_ptr):
        """
        Remove all stored memory values with following properties:
        * pointer based on initial stack value
        * pointer below current stack pointer
        """
        stack_ptr = self.eval_expr(stack_ptr)
        base, stk_offset = get_expr_base_offset(stack_ptr)
        memarray = self.symbols.symbols_mem.base_to_memarray.get(base, None)
        if memarray:
            to_del = set()
            for offset in memarray:
                if ((offset - stk_offset) & int(stack_ptr.mask)) >> (stack_ptr.size - 1) != 0:
                    to_del.add(offset)

            for offset in to_del:
                del memarray[offset]

    def eval_updt_expr(self, expr):
        """
        Evaluate @expr and apply side effect if needed (ie. if expr is an
        assignment). Return the evaluated value
        """

        # Update value if needed
        if expr.is_assign():
            ret = self.eval_expr(expr.src)
            self.eval_updt_assignblk(AssignBlock([expr]))
        else:
            ret = self.eval_expr(expr)

        return ret

    def mem_read(self, expr):
        """
        [DEV]: Override to modify the effective memory reads

        Read symbolic value at ExprMem @expr
        @expr: ExprMem
        """
        return self.symbols.read(expr)

    def mem_write(self, dst, src):
        """
        [DEV]: Override to modify the effective memory writes

        Write symbolic value @src at ExprMem @dst
        @dst: destination ExprMem
        @src: source Expression
        """
        self.symbols.write(dst, src)