diff options
| author | Manos Pitsidianakis <manos.pitsidianakis@linaro.org> | 2024-10-24 17:02:59 +0300 |
|---|---|---|
| committer | Paolo Bonzini <pbonzini@redhat.com> | 2024-11-05 14:18:15 +0100 |
| commit | ca5aa28e244ee3dfe0dd6c76c7c33ce78f25beed (patch) | |
| tree | 4f3580e0dd1c34967712c1102272249373ba020a /rust/hw/char/pl011/src/lib.rs | |
| parent | b278b60d517688b5f136be9d5f2f499eaf804002 (diff) | |
| download | focaccia-qemu-ca5aa28e244ee3dfe0dd6c76c7c33ce78f25beed.tar.gz focaccia-qemu-ca5aa28e244ee3dfe0dd6c76c7c33ce78f25beed.zip | |
Revert "rust: add PL011 device model"
Patch was applied with invalid authorship by accident, which confuses git tooling that look at git blame for contributors etc. Patch will be re-applied with correct authorship right after this commit. This reverts commit d0f0cd5b1f7e9780753344548e17ad4df9fcf5d8. Signed-off-by: Manos Pitsidianakis <manos.pitsidianakis@linaro.org> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com> Link: https://lore.kernel.org/r/20241024-rust-round-2-v1-1-051e7a25b978@linaro.org
Diffstat (limited to 'rust/hw/char/pl011/src/lib.rs')
| -rw-r--r-- | rust/hw/char/pl011/src/lib.rs | 586 |
1 files changed, 0 insertions, 586 deletions
diff --git a/rust/hw/char/pl011/src/lib.rs b/rust/hw/char/pl011/src/lib.rs deleted file mode 100644 index 2939ee50c9..0000000000 --- a/rust/hw/char/pl011/src/lib.rs +++ /dev/null @@ -1,586 +0,0 @@ -// Copyright 2024, Linaro Limited -// Author(s): Manos Pitsidianakis <manos.pitsidianakis@linaro.org> -// SPDX-License-Identifier: GPL-2.0-or-later -// -// PL011 QEMU Device Model -// -// This library implements a device model for the PrimeCell® UART (PL011) -// device in QEMU. -// -#![doc = include_str!("../README.md")] -//! # Library crate -//! -//! See [`PL011State`](crate::device::PL011State) for the device model type and -//! the [`registers`] module for register types. - -#![deny( - rustdoc::broken_intra_doc_links, - rustdoc::redundant_explicit_links, - clippy::correctness, - clippy::suspicious, - clippy::complexity, - clippy::perf, - clippy::cargo, - clippy::nursery, - clippy::style, - // restriction group - clippy::dbg_macro, - clippy::as_underscore, - clippy::assertions_on_result_states, - // pedantic group - clippy::doc_markdown, - clippy::borrow_as_ptr, - clippy::cast_lossless, - clippy::option_if_let_else, - clippy::missing_const_for_fn, - clippy::cognitive_complexity, - clippy::missing_safety_doc, - )] - -extern crate bilge; -extern crate bilge_impl; -extern crate qemu_api; - -pub mod device; -pub mod device_class; -pub mod memory_ops; - -pub const TYPE_PL011: &::core::ffi::CStr = c"pl011"; - -/// Offset of each register from the base memory address of the device. -/// -/// # Source -/// ARM DDI 0183G, Table 3-1 p.3-3 -#[doc(alias = "offset")] -#[allow(non_camel_case_types)] -#[repr(u64)] -#[derive(Debug)] -pub enum RegisterOffset { - /// Data Register - /// - /// A write to this register initiates the actual data transmission - #[doc(alias = "UARTDR")] - DR = 0x000, - /// Receive Status Register or Error Clear Register - #[doc(alias = "UARTRSR")] - #[doc(alias = "UARTECR")] - RSR = 0x004, - /// Flag Register - /// - /// A read of this register shows if transmission is complete - #[doc(alias = "UARTFR")] - FR = 0x018, - /// Fractional Baud Rate Register - /// - /// responsible for baud rate speed - #[doc(alias = "UARTFBRD")] - FBRD = 0x028, - /// `IrDA` Low-Power Counter Register - #[doc(alias = "UARTILPR")] - ILPR = 0x020, - /// Integer Baud Rate Register - /// - /// Responsible for baud rate speed - #[doc(alias = "UARTIBRD")] - IBRD = 0x024, - /// line control register (data frame format) - #[doc(alias = "UARTLCR_H")] - LCR_H = 0x02C, - /// Toggle UART, transmission or reception - #[doc(alias = "UARTCR")] - CR = 0x030, - /// Interrupt FIFO Level Select Register - #[doc(alias = "UARTIFLS")] - FLS = 0x034, - /// Interrupt Mask Set/Clear Register - #[doc(alias = "UARTIMSC")] - IMSC = 0x038, - /// Raw Interrupt Status Register - #[doc(alias = "UARTRIS")] - RIS = 0x03C, - /// Masked Interrupt Status Register - #[doc(alias = "UARTMIS")] - MIS = 0x040, - /// Interrupt Clear Register - #[doc(alias = "UARTICR")] - ICR = 0x044, - /// DMA control Register - #[doc(alias = "UARTDMACR")] - DMACR = 0x048, - ///// Reserved, offsets `0x04C` to `0x07C`. - //Reserved = 0x04C, -} - -impl core::convert::TryFrom<u64> for RegisterOffset { - type Error = u64; - - fn try_from(value: u64) -> Result<Self, Self::Error> { - macro_rules! case { - ($($discriminant:ident),*$(,)*) => { - /* check that matching on all macro arguments compiles, which means we are not - * missing any enum value; if the type definition ever changes this will stop - * compiling. - */ - const fn _assert_exhaustive(val: RegisterOffset) { - match val { - $(RegisterOffset::$discriminant => (),)* - } - } - - match value { - $(x if x == Self::$discriminant as u64 => Ok(Self::$discriminant),)* - _ => Err(value), - } - } - } - case! { DR, RSR, FR, FBRD, ILPR, IBRD, LCR_H, CR, FLS, IMSC, RIS, MIS, ICR, DMACR } - } -} - -pub mod registers { - //! Device registers exposed as typed structs which are backed by arbitrary - //! integer bitmaps. [`Data`], [`Control`], [`LineControl`], etc. - //! - //! All PL011 registers are essentially 32-bit wide, but are typed here as - //! bitmaps with only the necessary width. That is, if a struct bitmap - //! in this module is for example 16 bits long, it should be conceived - //! as a 32-bit register where the unmentioned higher bits are always - //! unused thus treated as zero when read or written. - use bilge::prelude::*; - - // TODO: FIFO Mode has different semantics - /// Data Register, `UARTDR` - /// - /// The `UARTDR` register is the data register. - /// - /// For words to be transmitted: - /// - /// - if the FIFOs are enabled, data written to this location is pushed onto - /// the transmit - /// FIFO - /// - if the FIFOs are not enabled, data is stored in the transmitter - /// holding register (the - /// bottom word of the transmit FIFO). - /// - /// The write operation initiates transmission from the UART. The data is - /// prefixed with a start bit, appended with the appropriate parity bit - /// (if parity is enabled), and a stop bit. The resultant word is then - /// transmitted. - /// - /// For received words: - /// - /// - if the FIFOs are enabled, the data byte and the 4-bit status (break, - /// frame, parity, - /// and overrun) is pushed onto the 12-bit wide receive FIFO - /// - if the FIFOs are not enabled, the data byte and status are stored in - /// the receiving - /// holding register (the bottom word of the receive FIFO). - /// - /// The received data byte is read by performing reads from the `UARTDR` - /// register along with the corresponding status information. The status - /// information can also be read by a read of the `UARTRSR/UARTECR` - /// register. - /// - /// # Note - /// - /// You must disable the UART before any of the control registers are - /// reprogrammed. When the UART is disabled in the middle of - /// transmission or reception, it completes the current character before - /// stopping. - /// - /// # Source - /// ARM DDI 0183G 3.3.1 Data Register, UARTDR - #[bitsize(16)] - #[derive(Clone, Copy, DebugBits, FromBits)] - #[doc(alias = "UARTDR")] - pub struct Data { - _reserved: u4, - pub data: u8, - pub framing_error: bool, - pub parity_error: bool, - pub break_error: bool, - pub overrun_error: bool, - } - - // TODO: FIFO Mode has different semantics - /// Receive Status Register / Error Clear Register, `UARTRSR/UARTECR` - /// - /// The UARTRSR/UARTECR register is the receive status register/error clear - /// register. Receive status can also be read from the `UARTRSR` - /// register. If the status is read from this register, then the status - /// information for break, framing and parity corresponds to the - /// data character read from the [Data register](Data), `UARTDR` prior to - /// reading the UARTRSR register. The status information for overrun is - /// set immediately when an overrun condition occurs. - /// - /// - /// # Note - /// The received data character must be read first from the [Data - /// Register](Data), `UARTDR` before reading the error status associated - /// with that data character from the `UARTRSR` register. This read - /// sequence cannot be reversed, because the `UARTRSR` register is - /// updated only when a read occurs from the `UARTDR` register. However, - /// the status information can also be obtained by reading the `UARTDR` - /// register - /// - /// # Source - /// ARM DDI 0183G 3.3.2 Receive Status Register/Error Clear Register, - /// UARTRSR/UARTECR - #[bitsize(8)] - #[derive(Clone, Copy, DebugBits, FromBits)] - pub struct ReceiveStatusErrorClear { - pub framing_error: bool, - pub parity_error: bool, - pub break_error: bool, - pub overrun_error: bool, - _reserved_unpredictable: u4, - } - - impl ReceiveStatusErrorClear { - pub fn reset(&mut self) { - // All the bits are cleared to 0 on reset. - *self = 0.into(); - } - } - - impl Default for ReceiveStatusErrorClear { - fn default() -> Self { - 0.into() - } - } - - #[bitsize(16)] - #[derive(Clone, Copy, DebugBits, FromBits)] - /// Flag Register, `UARTFR` - #[doc(alias = "UARTFR")] - pub struct Flags { - /// CTS Clear to send. This bit is the complement of the UART clear to - /// send, `nUARTCTS`, modem status input. That is, the bit is 1 - /// when `nUARTCTS` is LOW. - pub clear_to_send: bool, - /// DSR Data set ready. This bit is the complement of the UART data set - /// ready, `nUARTDSR`, modem status input. That is, the bit is 1 when - /// `nUARTDSR` is LOW. - pub data_set_ready: bool, - /// DCD Data carrier detect. This bit is the complement of the UART data - /// carrier detect, `nUARTDCD`, modem status input. That is, the bit is - /// 1 when `nUARTDCD` is LOW. - pub data_carrier_detect: bool, - /// BUSY UART busy. If this bit is set to 1, the UART is busy - /// transmitting data. This bit remains set until the complete - /// byte, including all the stop bits, has been sent from the - /// shift register. This bit is set as soon as the transmit FIFO - /// becomes non-empty, regardless of whether the UART is enabled - /// or not. - pub busy: bool, - /// RXFE Receive FIFO empty. The meaning of this bit depends on the - /// state of the FEN bit in the UARTLCR_H register. If the FIFO - /// is disabled, this bit is set when the receive holding - /// register is empty. If the FIFO is enabled, the RXFE bit is - /// set when the receive FIFO is empty. - pub receive_fifo_empty: bool, - /// TXFF Transmit FIFO full. The meaning of this bit depends on the - /// state of the FEN bit in the UARTLCR_H register. If the FIFO - /// is disabled, this bit is set when the transmit holding - /// register is full. If the FIFO is enabled, the TXFF bit is - /// set when the transmit FIFO is full. - pub transmit_fifo_full: bool, - /// RXFF Receive FIFO full. The meaning of this bit depends on the state - /// of the FEN bit in the UARTLCR_H register. If the FIFO is - /// disabled, this bit is set when the receive holding register - /// is full. If the FIFO is enabled, the RXFF bit is set when - /// the receive FIFO is full. - pub receive_fifo_full: bool, - /// Transmit FIFO empty. The meaning of this bit depends on the state of - /// the FEN bit in the [Line Control register](LineControl), - /// `UARTLCR_H`. If the FIFO is disabled, this bit is set when the - /// transmit holding register is empty. If the FIFO is enabled, - /// the TXFE bit is set when the transmit FIFO is empty. This - /// bit does not indicate if there is data in the transmit shift - /// register. - pub transmit_fifo_empty: bool, - /// `RI`, is `true` when `nUARTRI` is `LOW`. - pub ring_indicator: bool, - _reserved_zero_no_modify: u7, - } - - impl Flags { - pub fn reset(&mut self) { - // After reset TXFF, RXFF, and BUSY are 0, and TXFE and RXFE are 1 - self.set_receive_fifo_full(false); - self.set_transmit_fifo_full(false); - self.set_busy(false); - self.set_receive_fifo_empty(true); - self.set_transmit_fifo_empty(true); - } - } - - impl Default for Flags { - fn default() -> Self { - let mut ret: Self = 0.into(); - ret.reset(); - ret - } - } - - #[bitsize(16)] - #[derive(Clone, Copy, DebugBits, FromBits)] - /// Line Control Register, `UARTLCR_H` - #[doc(alias = "UARTLCR_H")] - pub struct LineControl { - /// 15:8 - Reserved, do not modify, read as zero. - _reserved_zero_no_modify: u8, - /// 7 SPS Stick parity select. - /// 0 = stick parity is disabled - /// 1 = either: - /// • if the EPS bit is 0 then the parity bit is transmitted and checked - /// as a 1 • if the EPS bit is 1 then the parity bit is - /// transmitted and checked as a 0. This bit has no effect when - /// the PEN bit disables parity checking and generation. See Table 3-11 - /// on page 3-14 for the parity truth table. - pub sticky_parity: bool, - /// WLEN Word length. These bits indicate the number of data bits - /// transmitted or received in a frame as follows: b11 = 8 bits - /// b10 = 7 bits - /// b01 = 6 bits - /// b00 = 5 bits. - pub word_length: WordLength, - /// FEN Enable FIFOs: - /// 0 = FIFOs are disabled (character mode) that is, the FIFOs become - /// 1-byte-deep holding registers 1 = transmit and receive FIFO - /// buffers are enabled (FIFO mode). - pub fifos_enabled: Mode, - /// 3 STP2 Two stop bits select. If this bit is set to 1, two stop bits - /// are transmitted at the end of the frame. The receive - /// logic does not check for two stop bits being received. - pub two_stops_bits: bool, - /// EPS Even parity select. Controls the type of parity the UART uses - /// during transmission and reception: - /// - 0 = odd parity. The UART generates or checks for an odd number of - /// 1s in the data and parity bits. - /// - 1 = even parity. The UART generates or checks for an even number - /// of 1s in the data and parity bits. - /// This bit has no effect when the `PEN` bit disables parity checking - /// and generation. See Table 3-11 on page 3-14 for the parity - /// truth table. - pub parity: Parity, - /// 1 PEN Parity enable: - /// - /// - 0 = parity is disabled and no parity bit added to the data frame - /// - 1 = parity checking and generation is enabled. - /// - /// See Table 3-11 on page 3-14 for the parity truth table. - pub parity_enabled: bool, - /// BRK Send break. - /// - /// If this bit is set to `1`, a low-level is continually output on the - /// `UARTTXD` output, after completing transmission of the - /// current character. For the proper execution of the break command, - /// the software must set this bit for at least two complete - /// frames. For normal use, this bit must be cleared to `0`. - pub send_break: bool, - } - - impl LineControl { - pub fn reset(&mut self) { - // All the bits are cleared to 0 when reset. - *self = 0.into(); - } - } - - impl Default for LineControl { - fn default() -> Self { - 0.into() - } - } - - #[bitsize(1)] - #[derive(Clone, Copy, Debug, Eq, FromBits, PartialEq)] - /// `EPS` "Even parity select", field of [Line Control - /// register](LineControl). - pub enum Parity { - /// - 0 = odd parity. The UART generates or checks for an odd number of - /// 1s in the data and parity bits. - Odd = 0, - /// - 1 = even parity. The UART generates or checks for an even number - /// of 1s in the data and parity bits. - Even = 1, - } - - #[bitsize(1)] - #[derive(Clone, Copy, Debug, Eq, FromBits, PartialEq)] - /// `FEN` "Enable FIFOs" or Device mode, field of [Line Control - /// register](LineControl). - pub enum Mode { - /// 0 = FIFOs are disabled (character mode) that is, the FIFOs become - /// 1-byte-deep holding registers - Character = 0, - /// 1 = transmit and receive FIFO buffers are enabled (FIFO mode). - FIFO = 1, - } - - impl From<Mode> for bool { - fn from(val: Mode) -> Self { - matches!(val, Mode::FIFO) - } - } - - #[bitsize(2)] - #[derive(Clone, Copy, Debug, Eq, FromBits, PartialEq)] - /// `WLEN` Word length, field of [Line Control register](LineControl). - /// - /// These bits indicate the number of data bits transmitted or received in a - /// frame as follows: - pub enum WordLength { - /// b11 = 8 bits - _8Bits = 0b11, - /// b10 = 7 bits - _7Bits = 0b10, - /// b01 = 6 bits - _6Bits = 0b01, - /// b00 = 5 bits. - _5Bits = 0b00, - } - - /// Control Register, `UARTCR` - /// - /// The `UARTCR` register is the control register. All the bits are cleared - /// to `0` on reset except for bits `9` and `8` that are set to `1`. - /// - /// # Source - /// ARM DDI 0183G, 3.3.8 Control Register, `UARTCR`, Table 3-12 - #[bitsize(16)] - #[doc(alias = "UARTCR")] - #[derive(Clone, Copy, DebugBits, FromBits)] - pub struct Control { - /// `UARTEN` UART enable: 0 = UART is disabled. If the UART is disabled - /// in the middle of transmission or reception, it completes the current - /// character before stopping. 1 = the UART is enabled. Data - /// transmission and reception occurs for either UART signals or SIR - /// signals depending on the setting of the SIREN bit. - pub enable_uart: bool, - /// `SIREN` `SIR` enable: 0 = IrDA SIR ENDEC is disabled. `nSIROUT` - /// remains LOW (no light pulse generated), and signal transitions on - /// SIRIN have no effect. 1 = IrDA SIR ENDEC is enabled. Data is - /// transmitted and received on nSIROUT and SIRIN. UARTTXD remains HIGH, - /// in the marking state. Signal transitions on UARTRXD or modem status - /// inputs have no effect. This bit has no effect if the UARTEN bit - /// disables the UART. - pub enable_sir: bool, - /// `SIRLP` SIR low-power IrDA mode. This bit selects the IrDA encoding - /// mode. If this bit is cleared to 0, low-level bits are transmitted as - /// an active high pulse with a width of 3/ 16th of the bit period. If - /// this bit is set to 1, low-level bits are transmitted with a pulse - /// width that is 3 times the period of the IrLPBaud16 input signal, - /// regardless of the selected bit rate. Setting this bit uses less - /// power, but might reduce transmission distances. - pub sir_lowpower_irda_mode: u1, - /// Reserved, do not modify, read as zero. - _reserved_zero_no_modify: u4, - /// `LBE` Loopback enable. If this bit is set to 1 and the SIREN bit is - /// set to 1 and the SIRTEST bit in the Test Control register, UARTTCR - /// on page 4-5 is set to 1, then the nSIROUT path is inverted, and fed - /// through to the SIRIN path. The SIRTEST bit in the test register must - /// be set to 1 to override the normal half-duplex SIR operation. This - /// must be the requirement for accessing the test registers during - /// normal operation, and SIRTEST must be cleared to 0 when loopback - /// testing is finished. This feature reduces the amount of external - /// coupling required during system test. If this bit is set to 1, and - /// the SIRTEST bit is set to 0, the UARTTXD path is fed through to the - /// UARTRXD path. In either SIR mode or UART mode, when this bit is set, - /// the modem outputs are also fed through to the modem inputs. This bit - /// is cleared to 0 on reset, to disable loopback. - pub enable_loopback: bool, - /// `TXE` Transmit enable. If this bit is set to 1, the transmit section - /// of the UART is enabled. Data transmission occurs for either UART - /// signals, or SIR signals depending on the setting of the SIREN bit. - /// When the UART is disabled in the middle of transmission, it - /// completes the current character before stopping. - pub enable_transmit: bool, - /// `RXE` Receive enable. If this bit is set to 1, the receive section - /// of the UART is enabled. Data reception occurs for either UART - /// signals or SIR signals depending on the setting of the SIREN bit. - /// When the UART is disabled in the middle of reception, it completes - /// the current character before stopping. - pub enable_receive: bool, - /// `DTR` Data transmit ready. This bit is the complement of the UART - /// data transmit ready, `nUARTDTR`, modem status output. That is, when - /// the bit is programmed to a 1 then `nUARTDTR` is LOW. - pub data_transmit_ready: bool, - /// `RTS` Request to send. This bit is the complement of the UART - /// request to send, `nUARTRTS`, modem status output. That is, when the - /// bit is programmed to a 1 then `nUARTRTS` is LOW. - pub request_to_send: bool, - /// `Out1` This bit is the complement of the UART Out1 (`nUARTOut1`) - /// modem status output. That is, when the bit is programmed to a 1 the - /// output is 0. For DTE this can be used as Data Carrier Detect (DCD). - pub out_1: bool, - /// `Out2` This bit is the complement of the UART Out2 (`nUARTOut2`) - /// modem status output. That is, when the bit is programmed to a 1, the - /// output is 0. For DTE this can be used as Ring Indicator (RI). - pub out_2: bool, - /// `RTSEn` RTS hardware flow control enable. If this bit is set to 1, - /// RTS hardware flow control is enabled. Data is only requested when - /// there is space in the receive FIFO for it to be received. - pub rts_hardware_flow_control_enable: bool, - /// `CTSEn` CTS hardware flow control enable. If this bit is set to 1, - /// CTS hardware flow control is enabled. Data is only transmitted when - /// the `nUARTCTS` signal is asserted. - pub cts_hardware_flow_control_enable: bool, - } - - impl Control { - pub fn reset(&mut self) { - *self = 0.into(); - self.set_enable_receive(true); - self.set_enable_transmit(true); - } - } - - impl Default for Control { - fn default() -> Self { - let mut ret: Self = 0.into(); - ret.reset(); - ret - } - } - - /// Interrupt status bits in UARTRIS, UARTMIS, UARTIMSC - pub const INT_OE: u32 = 1 << 10; - pub const INT_BE: u32 = 1 << 9; - pub const INT_PE: u32 = 1 << 8; - pub const INT_FE: u32 = 1 << 7; - pub const INT_RT: u32 = 1 << 6; - pub const INT_TX: u32 = 1 << 5; - pub const INT_RX: u32 = 1 << 4; - pub const INT_DSR: u32 = 1 << 3; - pub const INT_DCD: u32 = 1 << 2; - pub const INT_CTS: u32 = 1 << 1; - pub const INT_RI: u32 = 1 << 0; - pub const INT_E: u32 = INT_OE | INT_BE | INT_PE | INT_FE; - pub const INT_MS: u32 = INT_RI | INT_DSR | INT_DCD | INT_CTS; - - #[repr(u32)] - pub enum Interrupt { - OE = 1 << 10, - BE = 1 << 9, - PE = 1 << 8, - FE = 1 << 7, - RT = 1 << 6, - TX = 1 << 5, - RX = 1 << 4, - DSR = 1 << 3, - DCD = 1 << 2, - CTS = 1 << 1, - RI = 1 << 0, - } - - impl Interrupt { - pub const E: u32 = INT_OE | INT_BE | INT_PE | INT_FE; - pub const MS: u32 = INT_RI | INT_DSR | INT_DCD | INT_CTS; - } -} - -// TODO: You must disable the UART before any of the control registers are -// reprogrammed. When the UART is disabled in the middle of transmission or -// reception, it completes the current character before stopping |