summary refs log tree commit diff stats
diff options
context:
space:
mode:
-rw-r--r--accel/kvm/kvm-all.c2
-rw-r--r--hw/arm/virt.c9
-rw-r--r--hw/intc/arm_gicv3_its_kvm.c1
-rw-r--r--hw/misc/imx7_snvs.c93
-rw-r--r--hw/misc/trace-events4
-rw-r--r--include/hw/misc/imx7_snvs.h7
-rw-r--r--target/arm/cpu.c2
-rw-r--r--target/arm/cpu64.c2
-rw-r--r--target/arm/debug_helper.c23
-rw-r--r--target/arm/helper.c117
-rw-r--r--target/arm/kvm.c1409
-rw-r--r--target/arm/kvm64.c1290
-rw-r--r--target/arm/kvm_arm.h231
-rw-r--r--target/arm/meson.build2
-rw-r--r--target/arm/tcg/op_helper.c55
-rw-r--r--target/arm/tcg/translate-a64.c1
16 files changed, 1592 insertions, 1656 deletions
diff --git a/accel/kvm/kvm-all.c b/accel/kvm/kvm-all.c
index e39a810a4e..f138e7fefe 100644
--- a/accel/kvm/kvm-all.c
+++ b/accel/kvm/kvm-all.c
@@ -98,7 +98,7 @@ bool kvm_allowed;
 bool kvm_readonly_mem_allowed;
 bool kvm_vm_attributes_allowed;
 bool kvm_msi_use_devid;
-bool kvm_has_guest_debug;
+static bool kvm_has_guest_debug;
 static int kvm_sstep_flags;
 static bool kvm_immediate_exit;
 static hwaddr kvm_max_slot_size = ~0;
diff --git a/hw/arm/virt.c b/hw/arm/virt.c
index be2856c018..040ca2d794 100644
--- a/hw/arm/virt.c
+++ b/hw/arm/virt.c
@@ -1998,13 +1998,14 @@ static void virt_cpu_post_init(VirtMachineState *vms, MemoryRegion *sysmem)
             if (pmu) {
                 assert(arm_feature(&ARM_CPU(cpu)->env, ARM_FEATURE_PMU));
                 if (kvm_irqchip_in_kernel()) {
-                    kvm_arm_pmu_set_irq(cpu, VIRTUAL_PMU_IRQ);
+                    kvm_arm_pmu_set_irq(ARM_CPU(cpu), VIRTUAL_PMU_IRQ);
                 }
-                kvm_arm_pmu_init(cpu);
+                kvm_arm_pmu_init(ARM_CPU(cpu));
             }
             if (steal_time) {
-                kvm_arm_pvtime_init(cpu, pvtime_reg_base +
-                                         cpu->cpu_index * PVTIME_SIZE_PER_CPU);
+                kvm_arm_pvtime_init(ARM_CPU(cpu), pvtime_reg_base
+                                                  + cpu->cpu_index
+                                                    * PVTIME_SIZE_PER_CPU);
             }
         }
     } else {
diff --git a/hw/intc/arm_gicv3_its_kvm.c b/hw/intc/arm_gicv3_its_kvm.c
index f7df602cff..3befc960db 100644
--- a/hw/intc/arm_gicv3_its_kvm.c
+++ b/hw/intc/arm_gicv3_its_kvm.c
@@ -21,6 +21,7 @@
 #include "qemu/osdep.h"
 #include "qapi/error.h"
 #include "qemu/module.h"
+#include "qemu/error-report.h"
 #include "hw/intc/arm_gicv3_its_common.h"
 #include "hw/qdev-properties.h"
 #include "sysemu/runstate.h"
diff --git a/hw/misc/imx7_snvs.c b/hw/misc/imx7_snvs.c
index a245f96cd4..8e7f43187f 100644
--- a/hw/misc/imx7_snvs.c
+++ b/hw/misc/imx7_snvs.c
@@ -13,28 +13,100 @@
  */
 
 #include "qemu/osdep.h"
+#include "qemu/bitops.h"
+#include "qemu/timer.h"
+#include "migration/vmstate.h"
 #include "hw/misc/imx7_snvs.h"
+#include "qemu/cutils.h"
 #include "qemu/module.h"
+#include "sysemu/sysemu.h"
+#include "sysemu/rtc.h"
 #include "sysemu/runstate.h"
 #include "trace.h"
 
+#define RTC_FREQ    32768ULL
+
+static const VMStateDescription vmstate_imx7_snvs = {
+    .name = TYPE_IMX7_SNVS,
+    .version_id = 1,
+    .minimum_version_id = 1,
+    .fields = (VMStateField[]) {
+        VMSTATE_UINT64(tick_offset, IMX7SNVSState),
+        VMSTATE_UINT64(lpcr, IMX7SNVSState),
+        VMSTATE_END_OF_LIST()
+    }
+};
+
+static uint64_t imx7_snvs_get_count(IMX7SNVSState *s)
+{
+    uint64_t ticks = muldiv64(qemu_clock_get_ns(rtc_clock), RTC_FREQ,
+                              NANOSECONDS_PER_SECOND);
+    return s->tick_offset + ticks;
+}
+
 static uint64_t imx7_snvs_read(void *opaque, hwaddr offset, unsigned size)
 {
-    trace_imx7_snvs_read(offset, 0);
+    IMX7SNVSState *s = IMX7_SNVS(opaque);
+    uint64_t ret = 0;
+
+    switch (offset) {
+    case SNVS_LPSRTCMR:
+        ret = extract64(imx7_snvs_get_count(s), 32, 15);
+        break;
+    case SNVS_LPSRTCLR:
+        ret = extract64(imx7_snvs_get_count(s), 0, 32);
+        break;
+    case SNVS_LPCR:
+        ret = s->lpcr;
+        break;
+    }
 
-    return 0;
+    trace_imx7_snvs_read(offset, ret, size);
+
+    return ret;
+}
+
+static void imx7_snvs_reset(DeviceState *dev)
+{
+    IMX7SNVSState *s = IMX7_SNVS(dev);
+
+    s->lpcr = 0;
 }
 
 static void imx7_snvs_write(void *opaque, hwaddr offset,
                             uint64_t v, unsigned size)
 {
-    const uint32_t value = v;
-    const uint32_t mask  = SNVS_LPCR_TOP | SNVS_LPCR_DP_EN;
+    trace_imx7_snvs_write(offset, v, size);
+
+    IMX7SNVSState *s = IMX7_SNVS(opaque);
 
-    trace_imx7_snvs_write(offset, value);
+    uint64_t new_value = 0, snvs_count = 0;
 
-    if (offset == SNVS_LPCR && ((value & mask) == mask)) {
-        qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
+    if (offset == SNVS_LPSRTCMR || offset == SNVS_LPSRTCLR) {
+        snvs_count = imx7_snvs_get_count(s);
+    }
+
+    switch (offset) {
+    case SNVS_LPSRTCMR:
+        new_value = deposit64(snvs_count, 32, 32, v);
+        break;
+    case SNVS_LPSRTCLR:
+        new_value = deposit64(snvs_count, 0, 32, v);
+        break;
+    case SNVS_LPCR: {
+        s->lpcr = v;
+
+        const uint32_t mask  = SNVS_LPCR_TOP | SNVS_LPCR_DP_EN;
+
+        if ((v & mask) == mask) {
+            qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
+        }
+        break;
+    }
+    }
+
+    if (offset == SNVS_LPSRTCMR || offset == SNVS_LPSRTCLR) {
+        s->tick_offset += new_value - snvs_count;
     }
 }
 
@@ -59,17 +131,24 @@ static void imx7_snvs_init(Object *obj)
 {
     SysBusDevice *sd = SYS_BUS_DEVICE(obj);
     IMX7SNVSState *s = IMX7_SNVS(obj);
+    struct tm tm;
 
     memory_region_init_io(&s->mmio, obj, &imx7_snvs_ops, s,
                           TYPE_IMX7_SNVS, 0x1000);
 
     sysbus_init_mmio(sd, &s->mmio);
+
+    qemu_get_timedate(&tm, 0);
+    s->tick_offset = mktimegm(&tm) -
+        qemu_clock_get_ns(rtc_clock) / NANOSECONDS_PER_SECOND;
 }
 
 static void imx7_snvs_class_init(ObjectClass *klass, void *data)
 {
     DeviceClass *dc = DEVICE_CLASS(klass);
 
+    dc->reset = imx7_snvs_reset;
+    dc->vmsd = &vmstate_imx7_snvs;
     dc->desc  = "i.MX7 Secure Non-Volatile Storage Module";
 }
 
diff --git a/hw/misc/trace-events b/hw/misc/trace-events
index 05ff692441..85725506bf 100644
--- a/hw/misc/trace-events
+++ b/hw/misc/trace-events
@@ -116,8 +116,8 @@ imx7_gpr_read(uint64_t offset) "addr 0x%08" PRIx64
 imx7_gpr_write(uint64_t offset, uint64_t value) "addr 0x%08" PRIx64 "value 0x%08" PRIx64
 
 # imx7_snvs.c
-imx7_snvs_read(uint64_t offset, uint32_t value) "addr 0x%08" PRIx64 "value 0x%08" PRIx32
-imx7_snvs_write(uint64_t offset, uint32_t value) "addr 0x%08" PRIx64 "value 0x%08" PRIx32
+imx7_snvs_read(uint64_t offset, uint64_t value, unsigned size) "i.MX SNVS read: offset 0x%08" PRIx64 " value 0x%08" PRIx64 " size %u"
+imx7_snvs_write(uint64_t offset, uint64_t value, unsigned size) "i.MX SNVS write: offset 0x%08" PRIx64 " value 0x%08" PRIx64 " size %u"
 
 # mos6522.c
 mos6522_set_counter(int index, unsigned int val) "T%d.counter=%d"
diff --git a/include/hw/misc/imx7_snvs.h b/include/hw/misc/imx7_snvs.h
index 14a1d6fe6b..1272076086 100644
--- a/include/hw/misc/imx7_snvs.h
+++ b/include/hw/misc/imx7_snvs.h
@@ -20,7 +20,9 @@
 enum IMX7SNVSRegisters {
     SNVS_LPCR = 0x38,
     SNVS_LPCR_TOP   = BIT(6),
-    SNVS_LPCR_DP_EN = BIT(5)
+    SNVS_LPCR_DP_EN = BIT(5),
+    SNVS_LPSRTCMR = 0x050, /* Secure Real Time Counter MSB Register */
+    SNVS_LPSRTCLR = 0x054, /* Secure Real Time Counter LSB Register */
 };
 
 #define TYPE_IMX7_SNVS "imx7.snvs"
@@ -31,6 +33,9 @@ struct IMX7SNVSState {
     SysBusDevice parent_obj;
 
     MemoryRegion mmio;
+
+    uint64_t tick_offset;
+    uint64_t lpcr;
 };
 
 #endif /* IMX7_SNVS_H */
diff --git a/target/arm/cpu.c b/target/arm/cpu.c
index efb22a87f9..650e09b29c 100644
--- a/target/arm/cpu.c
+++ b/target/arm/cpu.c
@@ -1686,7 +1686,7 @@ void arm_cpu_post_init(Object *obj)
     }
 
     if (kvm_enabled()) {
-        kvm_arm_add_vcpu_properties(obj);
+        kvm_arm_add_vcpu_properties(cpu);
     }
 
 #ifndef CONFIG_USER_ONLY
diff --git a/target/arm/cpu64.c b/target/arm/cpu64.c
index 1e9c6c85ae..8e30a7993e 100644
--- a/target/arm/cpu64.c
+++ b/target/arm/cpu64.c
@@ -66,7 +66,7 @@ void arm_cpu_sve_finalize(ARMCPU *cpu, Error **errp)
      */
     if (kvm_enabled()) {
         if (kvm_arm_sve_supported()) {
-            cpu->sve_vq.supported = kvm_arm_sve_get_vls(CPU(cpu));
+            cpu->sve_vq.supported = kvm_arm_sve_get_vls(cpu);
             vq_supported = cpu->sve_vq.supported;
         } else {
             assert(!cpu_isar_feature(aa64_sve, cpu));
diff --git a/target/arm/debug_helper.c b/target/arm/debug_helper.c
index cbfba532f5..83d2619080 100644
--- a/target/arm/debug_helper.c
+++ b/target/arm/debug_helper.c
@@ -1027,14 +1027,6 @@ static const ARMCPRegInfo debug_cp_reginfo[] = {
       .access = PL1_RW, .accessfn = access_tda,
       .type = ARM_CP_NOP },
     /*
-     * Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
-     * to save and restore a 32-bit guest's DBGVCR)
-     */
-    { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
-      .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
-      .access = PL2_RW, .accessfn = access_tda,
-      .type = ARM_CP_NOP | ARM_CP_EL3_NO_EL2_KEEP },
-    /*
      * Dummy MDCCINT_EL1, since we don't implement the Debug Communications
      * Channel but Linux may try to access this register. The 32-bit
      * alias is DBGDCCINT.
@@ -1062,6 +1054,18 @@ static const ARMCPRegInfo debug_cp_reginfo[] = {
       .fieldoffset = offsetof(CPUARMState, cp15.dbgclaim) },
 };
 
+/* These are present only when EL1 supports AArch32 */
+static const ARMCPRegInfo debug_aa32_el1_reginfo[] = {
+    /*
+     * Dummy DBGVCR32_EL2 (which is only for a 64-bit hypervisor
+     * to save and restore a 32-bit guest's DBGVCR)
+     */
+    { .name = "DBGVCR32_EL2", .state = ARM_CP_STATE_AA64,
+      .opc0 = 2, .opc1 = 4, .crn = 0, .crm = 7, .opc2 = 0,
+      .access = PL2_RW, .accessfn = access_tda,
+      .type = ARM_CP_NOP | ARM_CP_EL3_NO_EL2_KEEP },
+};
+
 static const ARMCPRegInfo debug_lpae_cp_reginfo[] = {
     /* 64 bit access versions of the (dummy) debug registers */
     { .name = "DBGDRAR", .cp = 14, .crm = 1, .opc1 = 0,
@@ -1207,6 +1211,9 @@ void define_debug_regs(ARMCPU *cpu)
     assert(ctx_cmps <= brps);
 
     define_arm_cp_regs(cpu, debug_cp_reginfo);
+    if (cpu_isar_feature(aa64_aa32_el1, cpu)) {
+        define_arm_cp_regs(cpu, debug_aa32_el1_reginfo);
+    }
 
     if (arm_feature(&cpu->env, ARM_FEATURE_LPAE)) {
         define_arm_cp_regs(cpu, debug_lpae_cp_reginfo);
diff --git a/target/arm/helper.c b/target/arm/helper.c
index 2746d3fdac..fc546df5c7 100644
--- a/target/arm/helper.c
+++ b/target/arm/helper.c
@@ -1475,6 +1475,22 @@ static void pmcr_write(CPUARMState *env, const ARMCPRegInfo *ri,
     pmu_op_finish(env);
 }
 
+static uint64_t pmcr_read(CPUARMState *env, const ARMCPRegInfo *ri)
+{
+    uint64_t pmcr = env->cp15.c9_pmcr;
+
+    /*
+     * If EL2 is implemented and enabled for the current security state, reads
+     * of PMCR.N from EL1 or EL0 return the value of MDCR_EL2.HPMN or HDCR.HPMN.
+     */
+    if (arm_current_el(env) <= 1 && arm_is_el2_enabled(env)) {
+        pmcr &= ~PMCRN_MASK;
+        pmcr |= (env->cp15.mdcr_el2 & MDCR_HPMN) << PMCRN_SHIFT;
+    }
+
+    return pmcr;
+}
+
 static void pmswinc_write(CPUARMState *env, const ARMCPRegInfo *ri,
                           uint64_t value)
 {
@@ -5698,20 +5714,6 @@ static const ARMCPRegInfo v8_cp_reginfo[] = {
       .opc0 = 3, .opc1 = 0, .crn = 4, .crm = 2, .opc2 = 0,
       .type = ARM_CP_NO_RAW,
       .access = PL1_RW, .readfn = spsel_read, .writefn = spsel_write },
-    { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
-      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
-      .access = PL2_RW,
-      .type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP,
-      .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) },
-    { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
-      .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
-      .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
-      .writefn = dacr_write, .raw_writefn = raw_write,
-      .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
-    { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
-      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
-      .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
-      .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
     { .name = "SPSR_IRQ", .state = ARM_CP_STATE_AA64,
       .type = ARM_CP_ALIAS,
       .opc0 = 3, .opc1 = 4, .crn = 4, .crm = 3, .opc2 = 0,
@@ -5746,6 +5748,24 @@ static const ARMCPRegInfo v8_cp_reginfo[] = {
       .fieldoffset = offsetoflow32(CPUARMState, cp15.mdcr_el3) },
 };
 
+/* These are present only when EL1 supports AArch32 */
+static const ARMCPRegInfo v8_aa32_el1_reginfo[] = {
+    { .name = "FPEXC32_EL2", .state = ARM_CP_STATE_AA64,
+      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 3, .opc2 = 0,
+      .access = PL2_RW,
+      .type = ARM_CP_ALIAS | ARM_CP_FPU | ARM_CP_EL3_NO_EL2_KEEP,
+      .fieldoffset = offsetof(CPUARMState, vfp.xregs[ARM_VFP_FPEXC]) },
+    { .name = "DACR32_EL2", .state = ARM_CP_STATE_AA64,
+      .opc0 = 3, .opc1 = 4, .crn = 3, .crm = 0, .opc2 = 0,
+      .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
+      .writefn = dacr_write, .raw_writefn = raw_write,
+      .fieldoffset = offsetof(CPUARMState, cp15.dacr32_el2) },
+    { .name = "IFSR32_EL2", .state = ARM_CP_STATE_AA64,
+      .opc0 = 3, .opc1 = 4, .crn = 5, .crm = 0, .opc2 = 1,
+      .access = PL2_RW, .resetvalue = 0, .type = ARM_CP_EL3_NO_EL2_KEEP,
+      .fieldoffset = offsetof(CPUARMState, cp15.ifsr32_el2) },
+};
+
 static void do_hcr_write(CPUARMState *env, uint64_t value, uint64_t valid_mask)
 {
     ARMCPU *cpu = env_archcpu(env);
@@ -7154,8 +7174,9 @@ static void define_pmu_regs(ARMCPU *cpu)
         .fgt = FGT_PMCR_EL0,
         .type = ARM_CP_IO | ARM_CP_ALIAS,
         .fieldoffset = offsetoflow32(CPUARMState, cp15.c9_pmcr),
-        .accessfn = pmreg_access, .writefn = pmcr_write,
-        .raw_writefn = raw_write,
+        .accessfn = pmreg_access,
+        .readfn = pmcr_read, .raw_readfn = raw_read,
+        .writefn = pmcr_write, .raw_writefn = raw_write,
     };
     ARMCPRegInfo pmcr64 = {
         .name = "PMCR_EL0", .state = ARM_CP_STATE_AA64,
@@ -7165,6 +7186,7 @@ static void define_pmu_regs(ARMCPU *cpu)
         .type = ARM_CP_IO,
         .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
         .resetvalue = cpu->isar.reset_pmcr_el0,
+        .readfn = pmcr_read, .raw_readfn = raw_read,
         .writefn = pmcr_write, .raw_writefn = raw_write,
     };
 
@@ -7645,6 +7667,7 @@ static const ARMCPRegInfo rndr_reginfo[] = {
 static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque,
                           uint64_t value)
 {
+#ifdef CONFIG_TCG
     ARMCPU *cpu = env_archcpu(env);
     /* CTR_EL0 System register -> DminLine, bits [19:16] */
     uint64_t dline_size = 4 << ((cpu->ctr >> 16) & 0xF);
@@ -7669,6 +7692,10 @@ static void dccvap_writefn(CPUARMState *env, const ARMCPRegInfo *opaque,
         }
 #endif /*CONFIG_USER_ONLY*/
     }
+#else
+    /* Handled by hardware accelerator. */
+    g_assert_not_reached();
+#endif /* CONFIG_TCG */
 }
 
 static const ARMCPRegInfo dcpop_reg[] = {
@@ -8716,6 +8743,9 @@ void register_cp_regs_for_features(ARMCPU *cpu)
         }
         define_arm_cp_regs(cpu, v8_idregs);
         define_arm_cp_regs(cpu, v8_cp_reginfo);
+        if (cpu_isar_feature(aa64_aa32_el1, cpu)) {
+            define_arm_cp_regs(cpu, v8_aa32_el1_reginfo);
+        }
 
         for (i = 4; i < 16; i++) {
             /*
@@ -10135,61 +10165,6 @@ void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
     }
 }
 
-/* Sign/zero extend */
-uint32_t HELPER(sxtb16)(uint32_t x)
-{
-    uint32_t res;
-    res = (uint16_t)(int8_t)x;
-    res |= (uint32_t)(int8_t)(x >> 16) << 16;
-    return res;
-}
-
-static void handle_possible_div0_trap(CPUARMState *env, uintptr_t ra)
-{
-    /*
-     * Take a division-by-zero exception if necessary; otherwise return
-     * to get the usual non-trapping division behaviour (result of 0)
-     */
-    if (arm_feature(env, ARM_FEATURE_M)
-        && (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_DIV_0_TRP_MASK)) {
-        raise_exception_ra(env, EXCP_DIVBYZERO, 0, 1, ra);
-    }
-}
-
-uint32_t HELPER(uxtb16)(uint32_t x)
-{
-    uint32_t res;
-    res = (uint16_t)(uint8_t)x;
-    res |= (uint32_t)(uint8_t)(x >> 16) << 16;
-    return res;
-}
-
-int32_t HELPER(sdiv)(CPUARMState *env, int32_t num, int32_t den)
-{
-    if (den == 0) {
-        handle_possible_div0_trap(env, GETPC());
-        return 0;
-    }
-    if (num == INT_MIN && den == -1) {
-        return INT_MIN;
-    }
-    return num / den;
-}
-
-uint32_t HELPER(udiv)(CPUARMState *env, uint32_t num, uint32_t den)
-{
-    if (den == 0) {
-        handle_possible_div0_trap(env, GETPC());
-        return 0;
-    }
-    return num / den;
-}
-
-uint32_t HELPER(rbit)(uint32_t x)
-{
-    return revbit32(x);
-}
-
 #ifdef CONFIG_USER_ONLY
 
 static void switch_mode(CPUARMState *env, int mode)
diff --git a/target/arm/kvm.c b/target/arm/kvm.c
index 7903e2ddde..c5a3183843 100644
--- a/target/arm/kvm.c
+++ b/target/arm/kvm.c
@@ -2,6 +2,8 @@
  * ARM implementation of KVM hooks
  *
  * Copyright Christoffer Dall 2009-2010
+ * Copyright Mian-M. Hamayun 2013, Virtual Open Systems
+ * Copyright Alex Bennée 2014, Linaro
  *
  * This work is licensed under the terms of the GNU GPL, version 2 or later.
  * See the COPYING file in the top-level directory.
@@ -19,6 +21,7 @@
 #include "qom/object.h"
 #include "qapi/error.h"
 #include "sysemu/sysemu.h"
+#include "sysemu/runstate.h"
 #include "sysemu/kvm.h"
 #include "sysemu/kvm_int.h"
 #include "kvm_arm.h"
@@ -28,10 +31,13 @@
 #include "hw/pci/pci.h"
 #include "exec/memattrs.h"
 #include "exec/address-spaces.h"
+#include "exec/gdbstub.h"
 #include "hw/boards.h"
 #include "hw/irq.h"
 #include "qapi/visitor.h"
 #include "qemu/log.h"
+#include "hw/acpi/acpi.h"
+#include "hw/acpi/ghes.h"
 
 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
     KVM_CAP_LAST_INFO
@@ -41,28 +47,54 @@ static bool cap_has_mp_state;
 static bool cap_has_inject_serror_esr;
 static bool cap_has_inject_ext_dabt;
 
+/**
+ * ARMHostCPUFeatures: information about the host CPU (identified
+ * by asking the host kernel)
+ */
+typedef struct ARMHostCPUFeatures {
+    ARMISARegisters isar;
+    uint64_t features;
+    uint32_t target;
+    const char *dtb_compatible;
+} ARMHostCPUFeatures;
+
 static ARMHostCPUFeatures arm_host_cpu_features;
 
-int kvm_arm_vcpu_init(CPUState *cs)
+/**
+ * kvm_arm_vcpu_init:
+ * @cpu: ARMCPU
+ *
+ * Initialize (or reinitialize) the VCPU by invoking the
+ * KVM_ARM_VCPU_INIT ioctl with the CPU type and feature
+ * bitmask specified in the CPUState.
+ *
+ * Returns: 0 if success else < 0 error code
+ */
+static int kvm_arm_vcpu_init(ARMCPU *cpu)
 {
-    ARMCPU *cpu = ARM_CPU(cs);
     struct kvm_vcpu_init init;
 
     init.target = cpu->kvm_target;
     memcpy(init.features, cpu->kvm_init_features, sizeof(init.features));
 
-    return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init);
-}
-
-int kvm_arm_vcpu_finalize(CPUState *cs, int feature)
-{
-    return kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_FINALIZE, &feature);
+    return kvm_vcpu_ioctl(CPU(cpu), KVM_ARM_VCPU_INIT, &init);
 }
 
-void kvm_arm_init_serror_injection(CPUState *cs)
+/**
+ * kvm_arm_vcpu_finalize:
+ * @cpu: ARMCPU
+ * @feature: feature to finalize
+ *
+ * Finalizes the configuration of the specified VCPU feature by
+ * invoking the KVM_ARM_VCPU_FINALIZE ioctl. Features requiring
+ * this are documented in the "KVM_ARM_VCPU_FINALIZE" section of
+ * KVM's API documentation.
+ *
+ * Returns: 0 if success else < 0 error code
+ */
+static int kvm_arm_vcpu_finalize(ARMCPU *cpu, int feature)
 {
-    cap_has_inject_serror_esr = kvm_check_extension(cs->kvm_state,
-                                    KVM_CAP_ARM_INJECT_SERROR_ESR);
+    return kvm_vcpu_ioctl(CPU(cpu), KVM_ARM_VCPU_FINALIZE, &feature);
 }
 
 bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try,
@@ -167,6 +199,260 @@ void kvm_arm_destroy_scratch_host_vcpu(int *fdarray)
     }
 }
 
+static int read_sys_reg32(int fd, uint32_t *pret, uint64_t id)
+{
+    uint64_t ret;
+    struct kvm_one_reg idreg = { .id = id, .addr = (uintptr_t)&ret };
+    int err;
+
+    assert((id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64);
+    err = ioctl(fd, KVM_GET_ONE_REG, &idreg);
+    if (err < 0) {
+        return -1;
+    }
+    *pret = ret;
+    return 0;
+}
+
+static int read_sys_reg64(int fd, uint64_t *pret, uint64_t id)
+{
+    struct kvm_one_reg idreg = { .id = id, .addr = (uintptr_t)pret };
+
+    assert((id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64);
+    return ioctl(fd, KVM_GET_ONE_REG, &idreg);
+}
+
+static bool kvm_arm_pauth_supported(void)
+{
+    return (kvm_check_extension(kvm_state, KVM_CAP_ARM_PTRAUTH_ADDRESS) &&
+            kvm_check_extension(kvm_state, KVM_CAP_ARM_PTRAUTH_GENERIC));
+}
+
+static bool kvm_arm_get_host_cpu_features(ARMHostCPUFeatures *ahcf)
+{
+    /* Identify the feature bits corresponding to the host CPU, and
+     * fill out the ARMHostCPUClass fields accordingly. To do this
+     * we have to create a scratch VM, create a single CPU inside it,
+     * and then query that CPU for the relevant ID registers.
+     */
+    int fdarray[3];
+    bool sve_supported;
+    bool pmu_supported = false;
+    uint64_t features = 0;
+    int err;
+
+    /* Old kernels may not know about the PREFERRED_TARGET ioctl: however
+     * we know these will only support creating one kind of guest CPU,
+     * which is its preferred CPU type. Fortunately these old kernels
+     * support only a very limited number of CPUs.
+     */
+    static const uint32_t cpus_to_try[] = {
+        KVM_ARM_TARGET_AEM_V8,
+        KVM_ARM_TARGET_FOUNDATION_V8,
+        KVM_ARM_TARGET_CORTEX_A57,
+        QEMU_KVM_ARM_TARGET_NONE
+    };
+    /*
+     * target = -1 informs kvm_arm_create_scratch_host_vcpu()
+     * to use the preferred target
+     */
+    struct kvm_vcpu_init init = { .target = -1, };
+
+    /*
+     * Ask for SVE if supported, so that we can query ID_AA64ZFR0,
+     * which is otherwise RAZ.
+     */
+    sve_supported = kvm_arm_sve_supported();
+    if (sve_supported) {
+        init.features[0] |= 1 << KVM_ARM_VCPU_SVE;
+    }
+
+    /*
+     * Ask for Pointer Authentication if supported, so that we get
+     * the unsanitized field values for AA64ISAR1_EL1.
+     */
+    if (kvm_arm_pauth_supported()) {
+        init.features[0] |= (1 << KVM_ARM_VCPU_PTRAUTH_ADDRESS |
+                             1 << KVM_ARM_VCPU_PTRAUTH_GENERIC);
+    }
+
+    if (kvm_arm_pmu_supported()) {
+        init.features[0] |= 1 << KVM_ARM_VCPU_PMU_V3;
+        pmu_supported = true;
+    }
+
+    if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try, fdarray, &init)) {
+        return false;
+    }
+
+    ahcf->target = init.target;
+    ahcf->dtb_compatible = "arm,arm-v8";
+
+    err = read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64pfr0,
+                         ARM64_SYS_REG(3, 0, 0, 4, 0));
+    if (unlikely(err < 0)) {
+        /*
+         * Before v4.15, the kernel only exposed a limited number of system
+         * registers, not including any of the interesting AArch64 ID regs.
+         * For the most part we could leave these fields as zero with minimal
+         * effect, since this does not affect the values seen by the guest.
+         *
+         * However, it could cause problems down the line for QEMU,
+         * so provide a minimal v8.0 default.
+         *
+         * ??? Could read MIDR and use knowledge from cpu64.c.
+         * ??? Could map a page of memory into our temp guest and
+         *     run the tiniest of hand-crafted kernels to extract
+         *     the values seen by the guest.
+         * ??? Either of these sounds like too much effort just
+         *     to work around running a modern host kernel.
+         */
+        ahcf->isar.id_aa64pfr0 = 0x00000011; /* EL1&0, AArch64 only */
+        err = 0;
+    } else {
+        err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64pfr1,
+                              ARM64_SYS_REG(3, 0, 0, 4, 1));
+        err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64smfr0,
+                              ARM64_SYS_REG(3, 0, 0, 4, 5));
+        err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64dfr0,
+                              ARM64_SYS_REG(3, 0, 0, 5, 0));
+        err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64dfr1,
+                              ARM64_SYS_REG(3, 0, 0, 5, 1));
+        err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar0,
+                              ARM64_SYS_REG(3, 0, 0, 6, 0));
+        err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar1,
+                              ARM64_SYS_REG(3, 0, 0, 6, 1));
+        err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar2,
+                              ARM64_SYS_REG(3, 0, 0, 6, 2));
+        err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr0,
+                              ARM64_SYS_REG(3, 0, 0, 7, 0));
+        err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr1,
+                              ARM64_SYS_REG(3, 0, 0, 7, 1));
+        err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr2,
+                              ARM64_SYS_REG(3, 0, 0, 7, 2));
+
+        /*
+         * Note that if AArch32 support is not present in the host,
+         * the AArch32 sysregs are present to be read, but will
+         * return UNKNOWN values.  This is neither better nor worse
+         * than skipping the reads and leaving 0, as we must avoid
+         * considering the values in every case.
+         */
+        err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_pfr0,
+                              ARM64_SYS_REG(3, 0, 0, 1, 0));
+        err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_pfr1,
+                              ARM64_SYS_REG(3, 0, 0, 1, 1));
+        err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_dfr0,
+                              ARM64_SYS_REG(3, 0, 0, 1, 2));
+        err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr0,
+                              ARM64_SYS_REG(3, 0, 0, 1, 4));
+        err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr1,
+                              ARM64_SYS_REG(3, 0, 0, 1, 5));
+        err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr2,
+                              ARM64_SYS_REG(3, 0, 0, 1, 6));
+        err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr3,
+                              ARM64_SYS_REG(3, 0, 0, 1, 7));
+        err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar0,
+                              ARM64_SYS_REG(3, 0, 0, 2, 0));
+        err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar1,
+                              ARM64_SYS_REG(3, 0, 0, 2, 1));
+        err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar2,
+                              ARM64_SYS_REG(3, 0, 0, 2, 2));
+        err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar3,
+                              ARM64_SYS_REG(3, 0, 0, 2, 3));
+        err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar4,
+                              ARM64_SYS_REG(3, 0, 0, 2, 4));
+        err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar5,
+                              ARM64_SYS_REG(3, 0, 0, 2, 5));
+        err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr4,
+                              ARM64_SYS_REG(3, 0, 0, 2, 6));
+        err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar6,
+                              ARM64_SYS_REG(3, 0, 0, 2, 7));
+
+        err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr0,
+                              ARM64_SYS_REG(3, 0, 0, 3, 0));
+        err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr1,
+                              ARM64_SYS_REG(3, 0, 0, 3, 1));
+        err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr2,
+                              ARM64_SYS_REG(3, 0, 0, 3, 2));
+        err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_pfr2,
+                              ARM64_SYS_REG(3, 0, 0, 3, 4));
+        err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_dfr1,
+                              ARM64_SYS_REG(3, 0, 0, 3, 5));
+        err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr5,
+                              ARM64_SYS_REG(3, 0, 0, 3, 6));
+
+        /*
+         * DBGDIDR is a bit complicated because the kernel doesn't
+         * provide an accessor for it in 64-bit mode, which is what this
+         * scratch VM is in, and there's no architected "64-bit sysreg
+         * which reads the same as the 32-bit register" the way there is
+         * for other ID registers. Instead we synthesize a value from the
+         * AArch64 ID_AA64DFR0, the same way the kernel code in
+         * arch/arm64/kvm/sys_regs.c:trap_dbgidr() does.
+         * We only do this if the CPU supports AArch32 at EL1.
+         */
+        if (FIELD_EX32(ahcf->isar.id_aa64pfr0, ID_AA64PFR0, EL1) >= 2) {
+            int wrps = FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, WRPS);
+            int brps = FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, BRPS);
+            int ctx_cmps =
+                FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS);
+            int version = 6; /* ARMv8 debug architecture */
+            bool has_el3 =
+                !!FIELD_EX32(ahcf->isar.id_aa64pfr0, ID_AA64PFR0, EL3);
+            uint32_t dbgdidr = 0;
+
+            dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, WRPS, wrps);
+            dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, BRPS, brps);
+            dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, CTX_CMPS, ctx_cmps);
+            dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, VERSION, version);
+            dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, NSUHD_IMP, has_el3);
+            dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, SE_IMP, has_el3);
+            dbgdidr |= (1 << 15); /* RES1 bit */
+            ahcf->isar.dbgdidr = dbgdidr;
+        }
+
+        if (pmu_supported) {
+            /* PMCR_EL0 is only accessible if the vCPU has feature PMU_V3 */
+            err |= read_sys_reg64(fdarray[2], &ahcf->isar.reset_pmcr_el0,
+                                  ARM64_SYS_REG(3, 3, 9, 12, 0));
+        }
+
+        if (sve_supported) {
+            /*
+             * There is a range of kernels between kernel commit 73433762fcae
+             * and f81cb2c3ad41 which have a bug where the kernel doesn't
+             * expose SYS_ID_AA64ZFR0_EL1 via the ONE_REG API unless the VM has
+             * enabled SVE support, which resulted in an error rather than RAZ.
+             * So only read the register if we set KVM_ARM_VCPU_SVE above.
+             */
+            err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64zfr0,
+                                  ARM64_SYS_REG(3, 0, 0, 4, 4));
+        }
+    }
+
+    kvm_arm_destroy_scratch_host_vcpu(fdarray);
+
+    if (err < 0) {
+        return false;
+    }
+
+    /*
+     * We can assume any KVM supporting CPU is at least a v8
+     * with VFPv4+Neon; this in turn implies most of the other
+     * feature bits.
+     */
+    features |= 1ULL << ARM_FEATURE_V8;
+    features |= 1ULL << ARM_FEATURE_NEON;
+    features |= 1ULL << ARM_FEATURE_AARCH64;
+    features |= 1ULL << ARM_FEATURE_PMU;
+    features |= 1ULL << ARM_FEATURE_GENERIC_TIMER;
+
+    ahcf->features = features;
+
+    return true;
+}
+
 void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu)
 {
     CPUARMState *env = &cpu->env;
@@ -210,10 +496,10 @@ static void kvm_steal_time_set(Object *obj, bool value, Error **errp)
 }
 
 /* KVM VCPU properties should be prefixed with "kvm-". */
-void kvm_arm_add_vcpu_properties(Object *obj)
+void kvm_arm_add_vcpu_properties(ARMCPU *cpu)
 {
-    ARMCPU *cpu = ARM_CPU(obj);
     CPUARMState *env = &cpu->env;
+    Object *obj = OBJECT(cpu);
 
     if (arm_feature(env, ARM_FEATURE_GENERIC_TIMER)) {
         cpu->kvm_adjvtime = true;
@@ -271,6 +557,10 @@ int kvm_arch_init(MachineState *ms, KVMState *s)
 
     cap_has_mp_state = kvm_check_extension(s, KVM_CAP_MP_STATE);
 
+    /* Check whether user space can specify guest syndrome value */
+    cap_has_inject_serror_esr =
+        kvm_check_extension(s, KVM_CAP_ARM_INJECT_SERROR_ESR);
+
     if (ms->smp.cpus > 256 &&
         !kvm_check_extension(s, KVM_CAP_ARM_IRQ_LINE_LAYOUT_2)) {
         error_report("Using more than 256 vcpus requires a host kernel "
@@ -308,7 +598,13 @@ int kvm_arch_init(MachineState *ms, KVMState *s)
         }
     }
 
-    kvm_arm_init_debug(s);
+    max_hw_wps = kvm_check_extension(s, KVM_CAP_GUEST_DEBUG_HW_WPS);
+    hw_watchpoints = g_array_sized_new(true, true,
+                                       sizeof(HWWatchpoint), max_hw_wps);
+
+    max_hw_bps = kvm_check_extension(s, KVM_CAP_GUEST_DEBUG_HW_BPS);
+    hw_breakpoints = g_array_sized_new(true, true,
+                                       sizeof(HWBreakpoint), max_hw_bps);
 
     return ret;
 }
@@ -469,11 +765,36 @@ static uint64_t *kvm_arm_get_cpreg_ptr(ARMCPU *cpu, uint64_t regidx)
     return &cpu->cpreg_values[res - cpu->cpreg_indexes];
 }
 
-/* Initialize the ARMCPU cpreg list according to the kernel's
+/**
+ * kvm_arm_reg_syncs_via_cpreg_list:
+ * @regidx: KVM register index
+ *
+ * Return true if this KVM register should be synchronized via the
+ * cpreg list of arbitrary system registers, false if it is synchronized
+ * by hand using code in kvm_arch_get/put_registers().
+ */
+static bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx)
+{
+    switch (regidx & KVM_REG_ARM_COPROC_MASK) {
+    case KVM_REG_ARM_CORE:
+    case KVM_REG_ARM64_SVE:
+        return false;
+    default:
+        return true;
+    }
+}
+
+/**
+ * kvm_arm_init_cpreg_list:
+ * @cpu: ARMCPU
+ *
+ * Initialize the ARMCPU cpreg list according to the kernel's
  * definition of what CPU registers it knows about (and throw away
  * the previous TCG-created cpreg list).
+ *
+ * Returns: 0 if success, else < 0 error code
  */
-int kvm_arm_init_cpreg_list(ARMCPU *cpu)
+static int kvm_arm_init_cpreg_list(ARMCPU *cpu)
 {
     struct kvm_reg_list rl;
     struct kvm_reg_list *rlp;
@@ -546,6 +867,28 @@ out:
     return ret;
 }
 
+/**
+ * kvm_arm_cpreg_level:
+ * @regidx: KVM register index
+ *
+ * Return the level of this coprocessor/system register.  Return value is
+ * either KVM_PUT_RUNTIME_STATE, KVM_PUT_RESET_STATE, or KVM_PUT_FULL_STATE.
+ */
+static int kvm_arm_cpreg_level(uint64_t regidx)
+{
+    /*
+     * All system registers are assumed to be level KVM_PUT_RUNTIME_STATE.
+     * If a register should be written less often, you must add it here
+     * with a state of either KVM_PUT_RESET_STATE or KVM_PUT_FULL_STATE.
+     */
+    switch (regidx) {
+    case KVM_REG_ARM_TIMER_CNT:
+    case KVM_REG_ARM_PTIMER_CNT:
+        return KVM_PUT_FULL_STATE;
+    }
+    return KVM_PUT_RUNTIME_STATE;
+}
+
 bool write_kvmstate_to_list(ARMCPU *cpu)
 {
     CPUState *cs = CPU(cpu);
@@ -638,7 +981,7 @@ void kvm_arm_reset_vcpu(ARMCPU *cpu)
     /* Re-init VCPU so that all registers are set to
      * their respective reset values.
      */
-    ret = kvm_arm_vcpu_init(CPU(cpu));
+    ret = kvm_arm_vcpu_init(cpu);
     if (ret < 0) {
         fprintf(stderr, "kvm_arm_vcpu_init failed: %s\n", strerror(-ret));
         abort();
@@ -660,54 +1003,50 @@ void kvm_arm_reset_vcpu(ARMCPU *cpu)
 /*
  * Update KVM's MP_STATE based on what QEMU thinks it is
  */
-int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu)
+static int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu)
 {
     if (cap_has_mp_state) {
         struct kvm_mp_state mp_state = {
             .mp_state = (cpu->power_state == PSCI_OFF) ?
             KVM_MP_STATE_STOPPED : KVM_MP_STATE_RUNNABLE
         };
-        int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
-        if (ret) {
-            fprintf(stderr, "%s: failed to set MP_STATE %d/%s\n",
-                    __func__, ret, strerror(-ret));
-            return -1;
-        }
+        return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
     }
-
     return 0;
 }
 
 /*
  * Sync the KVM MP_STATE into QEMU
  */
-int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu)
+static int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu)
 {
     if (cap_has_mp_state) {
         struct kvm_mp_state mp_state;
         int ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state);
         if (ret) {
-            fprintf(stderr, "%s: failed to get MP_STATE %d/%s\n",
-                    __func__, ret, strerror(-ret));
-            abort();
+            return ret;
         }
         cpu->power_state = (mp_state.mp_state == KVM_MP_STATE_STOPPED) ?
             PSCI_OFF : PSCI_ON;
     }
-
     return 0;
 }
 
-void kvm_arm_get_virtual_time(CPUState *cs)
+/**
+ * kvm_arm_get_virtual_time:
+ * @cpu: ARMCPU
+ *
+ * Gets the VCPU's virtual counter and stores it in the KVM CPU state.
+ */
+static void kvm_arm_get_virtual_time(ARMCPU *cpu)
 {
-    ARMCPU *cpu = ARM_CPU(cs);
     int ret;
 
     if (cpu->kvm_vtime_dirty) {
         return;
     }
 
-    ret = kvm_get_one_reg(cs, KVM_REG_ARM_TIMER_CNT, &cpu->kvm_vtime);
+    ret = kvm_get_one_reg(CPU(cpu), KVM_REG_ARM_TIMER_CNT, &cpu->kvm_vtime);
     if (ret) {
         error_report("Failed to get KVM_REG_ARM_TIMER_CNT");
         abort();
@@ -716,16 +1055,21 @@ void kvm_arm_get_virtual_time(CPUState *cs)
     cpu->kvm_vtime_dirty = true;
 }
 
-void kvm_arm_put_virtual_time(CPUState *cs)
+/**
+ * kvm_arm_put_virtual_time:
+ * @cpu: ARMCPU
+ *
+ * Sets the VCPU's virtual counter to the value stored in the KVM CPU state.
+ */
+static void kvm_arm_put_virtual_time(ARMCPU *cpu)
 {
-    ARMCPU *cpu = ARM_CPU(cs);
     int ret;
 
     if (!cpu->kvm_vtime_dirty) {
         return;
     }
 
-    ret = kvm_set_one_reg(cs, KVM_REG_ARM_TIMER_CNT, &cpu->kvm_vtime);
+    ret = kvm_set_one_reg(CPU(cpu), KVM_REG_ARM_TIMER_CNT, &cpu->kvm_vtime);
     if (ret) {
         error_report("Failed to set KVM_REG_ARM_TIMER_CNT");
         abort();
@@ -734,7 +1078,15 @@ void kvm_arm_put_virtual_time(CPUState *cs)
     cpu->kvm_vtime_dirty = false;
 }
 
-int kvm_put_vcpu_events(ARMCPU *cpu)
+/**
+ * kvm_put_vcpu_events:
+ * @cpu: ARMCPU
+ *
+ * Put VCPU related state to kvm.
+ *
+ * Returns: 0 if success else < 0 error code
+ */
+static int kvm_put_vcpu_events(ARMCPU *cpu)
 {
     CPUARMState *env = &cpu->env;
     struct kvm_vcpu_events events;
@@ -763,7 +1115,15 @@ int kvm_put_vcpu_events(ARMCPU *cpu)
     return ret;
 }
 
-int kvm_get_vcpu_events(ARMCPU *cpu)
+/**
+ * kvm_get_vcpu_events:
+ * @cpu: ARMCPU
+ *
+ * Get VCPU related state from kvm.
+ *
+ * Returns: 0 if success else < 0 error code
+ */
+static int kvm_get_vcpu_events(ARMCPU *cpu)
 {
     CPUARMState *env = &cpu->env;
     struct kvm_vcpu_events events;
@@ -787,6 +1147,63 @@ int kvm_get_vcpu_events(ARMCPU *cpu)
     return 0;
 }
 
+#define ARM64_REG_ESR_EL1 ARM64_SYS_REG(3, 0, 5, 2, 0)
+#define ARM64_REG_TCR_EL1 ARM64_SYS_REG(3, 0, 2, 0, 2)
+
+/*
+ * ESR_EL1
+ * ISS encoding
+ * AARCH64: DFSC,   bits [5:0]
+ * AARCH32:
+ *      TTBCR.EAE == 0
+ *          FS[4]   - DFSR[10]
+ *          FS[3:0] - DFSR[3:0]
+ *      TTBCR.EAE == 1
+ *          FS, bits [5:0]
+ */
+#define ESR_DFSC(aarch64, lpae, v)        \
+    ((aarch64 || (lpae)) ? ((v) & 0x3F)   \
+               : (((v) >> 6) | ((v) & 0x1F)))
+
+#define ESR_DFSC_EXTABT(aarch64, lpae) \
+    ((aarch64) ? 0x10 : (lpae) ? 0x10 : 0x8)
+
+/**
+ * kvm_arm_verify_ext_dabt_pending:
+ * @cpu: ARMCPU
+ *
+ * Verify the fault status code wrt the Ext DABT injection
+ *
+ * Returns: true if the fault status code is as expected, false otherwise
+ */
+static bool kvm_arm_verify_ext_dabt_pending(ARMCPU *cpu)
+{
+    CPUState *cs = CPU(cpu);
+    uint64_t dfsr_val;
+
+    if (!kvm_get_one_reg(cs, ARM64_REG_ESR_EL1, &dfsr_val)) {
+        CPUARMState *env = &cpu->env;
+        int aarch64_mode = arm_feature(env, ARM_FEATURE_AARCH64);
+        int lpae = 0;
+
+        if (!aarch64_mode) {
+            uint64_t ttbcr;
+
+            if (!kvm_get_one_reg(cs, ARM64_REG_TCR_EL1, &ttbcr)) {
+                lpae = arm_feature(env, ARM_FEATURE_LPAE)
+                        && (ttbcr & TTBCR_EAE);
+            }
+        }
+        /*
+         * The verification here is based on the DFSC bits
+         * of the ESR_EL1 reg only
+         */
+         return (ESR_DFSC(aarch64_mode, lpae, dfsr_val) ==
+                ESR_DFSC_EXTABT(aarch64_mode, lpae));
+    }
+    return false;
+}
+
 void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
 {
     ARMCPU *cpu = ARM_CPU(cs);
@@ -801,7 +1218,7 @@ void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
          * an IMPLEMENTATION DEFINED exception (for 32-bit EL1)
          */
         if (!arm_feature(env, ARM_FEATURE_AARCH64) &&
-            unlikely(!kvm_arm_verify_ext_dabt_pending(cs))) {
+            unlikely(!kvm_arm_verify_ext_dabt_pending(cpu))) {
 
             error_report("Data abort exception with no valid ISS generated by "
                    "guest memory access. KVM unable to emulate faulting "
@@ -868,35 +1285,33 @@ MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run)
     return MEMTXATTRS_UNSPECIFIED;
 }
 
-void kvm_arm_vm_state_change(void *opaque, bool running, RunState state)
+static void kvm_arm_vm_state_change(void *opaque, bool running, RunState state)
 {
-    CPUState *cs = opaque;
-    ARMCPU *cpu = ARM_CPU(cs);
+    ARMCPU *cpu = opaque;
 
     if (running) {
         if (cpu->kvm_adjvtime) {
-            kvm_arm_put_virtual_time(cs);
+            kvm_arm_put_virtual_time(cpu);
         }
     } else {
         if (cpu->kvm_adjvtime) {
-            kvm_arm_get_virtual_time(cs);
+            kvm_arm_get_virtual_time(cpu);
         }
     }
 }
 
 /**
  * kvm_arm_handle_dabt_nisv:
- * @cs: CPUState
+ * @cpu: ARMCPU
  * @esr_iss: ISS encoding (limited) for the exception from Data Abort
  *           ISV bit set to '0b0' -> no valid instruction syndrome
  * @fault_ipa: faulting address for the synchronous data abort
  *
  * Returns: 0 if the exception has been handled, < 0 otherwise
  */
-static int kvm_arm_handle_dabt_nisv(CPUState *cs, uint64_t esr_iss,
+static int kvm_arm_handle_dabt_nisv(ARMCPU *cpu, uint64_t esr_iss,
                                     uint64_t fault_ipa)
 {
-    ARMCPU *cpu = ARM_CPU(cs);
     CPUARMState *env = &cpu->env;
     /*
      * Request KVM to inject the external data abort into the guest
@@ -912,7 +1327,7 @@ static int kvm_arm_handle_dabt_nisv(CPUState *cs, uint64_t esr_iss,
          */
         events.exception.ext_dabt_pending = 1;
         /* KVM_CAP_ARM_INJECT_EXT_DABT implies KVM_CAP_VCPU_EVENTS */
-        if (!kvm_vcpu_ioctl(cs, KVM_SET_VCPU_EVENTS, &events)) {
+        if (!kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events)) {
             env->ext_dabt_raised = 1;
             return 0;
         }
@@ -925,19 +1340,97 @@ static int kvm_arm_handle_dabt_nisv(CPUState *cs, uint64_t esr_iss,
     return -1;
 }
 
+/**
+ * kvm_arm_handle_debug:
+ * @cpu: ARMCPU
+ * @debug_exit: debug part of the KVM exit structure
+ *
+ * Returns: TRUE if the debug exception was handled.
+ *
+ * See v8 ARM ARM D7.2.27 ESR_ELx, Exception Syndrome Register
+ *
+ * To minimise translating between kernel and user-space the kernel
+ * ABI just provides user-space with the full exception syndrome
+ * register value to be decoded in QEMU.
+ */
+static bool kvm_arm_handle_debug(ARMCPU *cpu,
+                                 struct kvm_debug_exit_arch *debug_exit)
+{
+    int hsr_ec = syn_get_ec(debug_exit->hsr);
+    CPUState *cs = CPU(cpu);
+    CPUARMState *env = &cpu->env;
+
+    /* Ensure PC is synchronised */
+    kvm_cpu_synchronize_state(cs);
+
+    switch (hsr_ec) {
+    case EC_SOFTWARESTEP:
+        if (cs->singlestep_enabled) {
+            return true;
+        } else {
+            /*
+             * The kernel should have suppressed the guest's ability to
+             * single step at this point so something has gone wrong.
+             */
+            error_report("%s: guest single-step while debugging unsupported"
+                         " (%"PRIx64", %"PRIx32")",
+                         __func__, env->pc, debug_exit->hsr);
+            return false;
+        }
+        break;
+    case EC_AA64_BKPT:
+        if (kvm_find_sw_breakpoint(cs, env->pc)) {
+            return true;
+        }
+        break;
+    case EC_BREAKPOINT:
+        if (find_hw_breakpoint(cs, env->pc)) {
+            return true;
+        }
+        break;
+    case EC_WATCHPOINT:
+    {
+        CPUWatchpoint *wp = find_hw_watchpoint(cs, debug_exit->far);
+        if (wp) {
+            cs->watchpoint_hit = wp;
+            return true;
+        }
+        break;
+    }
+    default:
+        error_report("%s: unhandled debug exit (%"PRIx32", %"PRIx64")",
+                     __func__, debug_exit->hsr, env->pc);
+    }
+
+    /* If we are not handling the debug exception it must belong to
+     * the guest. Let's re-use the existing TCG interrupt code to set
+     * everything up properly.
+     */
+    cs->exception_index = EXCP_BKPT;
+    env->exception.syndrome = debug_exit->hsr;
+    env->exception.vaddress = debug_exit->far;
+    env->exception.target_el = 1;
+    qemu_mutex_lock_iothread();
+    arm_cpu_do_interrupt(cs);
+    qemu_mutex_unlock_iothread();
+
+    return false;
+}
+
 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
 {
+    ARMCPU *cpu = ARM_CPU(cs);
     int ret = 0;
 
     switch (run->exit_reason) {
     case KVM_EXIT_DEBUG:
-        if (kvm_arm_handle_debug(cs, &run->debug.arch)) {
+        if (kvm_arm_handle_debug(cpu, &run->debug.arch)) {
             ret = EXCP_DEBUG;
         } /* otherwise return to guest */
         break;
     case KVM_EXIT_ARM_NISV:
         /* External DABT with no valid iss to decode */
-        ret = kvm_arm_handle_dabt_nisv(cs, run->arm_nisv.esr_iss,
+        ret = kvm_arm_handle_dabt_nisv(cpu, run->arm_nisv.esr_iss,
                                        run->arm_nisv.fault_ipa);
         break;
     default:
@@ -958,12 +1451,47 @@ int kvm_arch_process_async_events(CPUState *cs)
     return 0;
 }
 
+/**
+ * kvm_arm_hw_debug_active:
+ * @cpu: ARMCPU
+ *
+ * Return: TRUE if any hardware breakpoints in use.
+ */
+static bool kvm_arm_hw_debug_active(ARMCPU *cpu)
+{
+    return ((cur_hw_wps > 0) || (cur_hw_bps > 0));
+}
+
+/**
+ * kvm_arm_copy_hw_debug_data:
+ * @ptr: kvm_guest_debug_arch structure
+ *
+ * Copy the architecture specific debug registers into the
+ * kvm_guest_debug ioctl structure.
+ */
+static void kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch *ptr)
+{
+    int i;
+    memset(ptr, 0, sizeof(struct kvm_guest_debug_arch));
+
+    for (i = 0; i < max_hw_wps; i++) {
+        HWWatchpoint *wp = get_hw_wp(i);
+        ptr->dbg_wcr[i] = wp->wcr;
+        ptr->dbg_wvr[i] = wp->wvr;
+    }
+    for (i = 0; i < max_hw_bps; i++) {
+        HWBreakpoint *bp = get_hw_bp(i);
+        ptr->dbg_bcr[i] = bp->bcr;
+        ptr->dbg_bvr[i] = bp->bvr;
+    }
+}
+
 void kvm_arch_update_guest_debug(CPUState *cs, struct kvm_guest_debug *dbg)
 {
     if (kvm_sw_breakpoints_active(cs)) {
         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
     }
-    if (kvm_arm_hw_debug_active(cs)) {
+    if (kvm_arm_hw_debug_active(ARM_CPU(cs))) {
         dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW;
         kvm_arm_copy_hw_debug_data(&dbg->arch);
     }
@@ -1117,3 +1645,782 @@ void kvm_arch_accel_class_init(ObjectClass *oc)
     object_class_property_set_description(oc, "eager-split-size",
         "Eager Page Split chunk size for hugepages. (default: 0, disabled)");
 }
+
+int kvm_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type)
+{
+    switch (type) {
+    case GDB_BREAKPOINT_HW:
+        return insert_hw_breakpoint(addr);
+        break;
+    case GDB_WATCHPOINT_READ:
+    case GDB_WATCHPOINT_WRITE:
+    case GDB_WATCHPOINT_ACCESS:
+        return insert_hw_watchpoint(addr, len, type);
+    default:
+        return -ENOSYS;
+    }
+}
+
+int kvm_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type)
+{
+    switch (type) {
+    case GDB_BREAKPOINT_HW:
+        return delete_hw_breakpoint(addr);
+    case GDB_WATCHPOINT_READ:
+    case GDB_WATCHPOINT_WRITE:
+    case GDB_WATCHPOINT_ACCESS:
+        return delete_hw_watchpoint(addr, len, type);
+    default:
+        return -ENOSYS;
+    }
+}
+
+void kvm_arch_remove_all_hw_breakpoints(void)
+{
+    if (cur_hw_wps > 0) {
+        g_array_remove_range(hw_watchpoints, 0, cur_hw_wps);
+    }
+    if (cur_hw_bps > 0) {
+        g_array_remove_range(hw_breakpoints, 0, cur_hw_bps);
+    }
+}
+
+static bool kvm_arm_set_device_attr(ARMCPU *cpu, struct kvm_device_attr *attr,
+                                    const char *name)
+{
+    int err;
+
+    err = kvm_vcpu_ioctl(CPU(cpu), KVM_HAS_DEVICE_ATTR, attr);
+    if (err != 0) {
+        error_report("%s: KVM_HAS_DEVICE_ATTR: %s", name, strerror(-err));
+        return false;
+    }
+
+    err = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEVICE_ATTR, attr);
+    if (err != 0) {
+        error_report("%s: KVM_SET_DEVICE_ATTR: %s", name, strerror(-err));
+        return false;
+    }
+
+    return true;
+}
+
+void kvm_arm_pmu_init(ARMCPU *cpu)
+{
+    struct kvm_device_attr attr = {
+        .group = KVM_ARM_VCPU_PMU_V3_CTRL,
+        .attr = KVM_ARM_VCPU_PMU_V3_INIT,
+    };
+
+    if (!cpu->has_pmu) {
+        return;
+    }
+    if (!kvm_arm_set_device_attr(cpu, &attr, "PMU")) {
+        error_report("failed to init PMU");
+        abort();
+    }
+}
+
+void kvm_arm_pmu_set_irq(ARMCPU *cpu, int irq)
+{
+    struct kvm_device_attr attr = {
+        .group = KVM_ARM_VCPU_PMU_V3_CTRL,
+        .addr = (intptr_t)&irq,
+        .attr = KVM_ARM_VCPU_PMU_V3_IRQ,
+    };
+
+    if (!cpu->has_pmu) {
+        return;
+    }
+    if (!kvm_arm_set_device_attr(cpu, &attr, "PMU")) {
+        error_report("failed to set irq for PMU");
+        abort();
+    }
+}
+
+void kvm_arm_pvtime_init(ARMCPU *cpu, uint64_t ipa)
+{
+    struct kvm_device_attr attr = {
+        .group = KVM_ARM_VCPU_PVTIME_CTRL,
+        .attr = KVM_ARM_VCPU_PVTIME_IPA,
+        .addr = (uint64_t)&ipa,
+    };
+
+    if (cpu->kvm_steal_time == ON_OFF_AUTO_OFF) {
+        return;
+    }
+    if (!kvm_arm_set_device_attr(cpu, &attr, "PVTIME IPA")) {
+        error_report("failed to init PVTIME IPA");
+        abort();
+    }
+}
+
+void kvm_arm_steal_time_finalize(ARMCPU *cpu, Error **errp)
+{
+    bool has_steal_time = kvm_check_extension(kvm_state, KVM_CAP_STEAL_TIME);
+
+    if (cpu->kvm_steal_time == ON_OFF_AUTO_AUTO) {
+        if (!has_steal_time || !arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
+            cpu->kvm_steal_time = ON_OFF_AUTO_OFF;
+        } else {
+            cpu->kvm_steal_time = ON_OFF_AUTO_ON;
+        }
+    } else if (cpu->kvm_steal_time == ON_OFF_AUTO_ON) {
+        if (!has_steal_time) {
+            error_setg(errp, "'kvm-steal-time' cannot be enabled "
+                             "on this host");
+            return;
+        } else if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
+            /*
+             * DEN0057A chapter 2 says "This specification only covers
+             * systems in which the Execution state of the hypervisor
+             * as well as EL1 of virtual machines is AArch64.". And,
+             * to ensure that, the smc/hvc calls are only specified as
+             * smc64/hvc64.
+             */
+            error_setg(errp, "'kvm-steal-time' cannot be enabled "
+                             "for AArch32 guests");
+            return;
+        }
+    }
+}
+
+bool kvm_arm_aarch32_supported(void)
+{
+    return kvm_check_extension(kvm_state, KVM_CAP_ARM_EL1_32BIT);
+}
+
+bool kvm_arm_sve_supported(void)
+{
+    return kvm_check_extension(kvm_state, KVM_CAP_ARM_SVE);
+}
+
+QEMU_BUILD_BUG_ON(KVM_ARM64_SVE_VQ_MIN != 1);
+
+uint32_t kvm_arm_sve_get_vls(ARMCPU *cpu)
+{
+    /* Only call this function if kvm_arm_sve_supported() returns true. */
+    static uint64_t vls[KVM_ARM64_SVE_VLS_WORDS];
+    static bool probed;
+    uint32_t vq = 0;
+    int i;
+
+    /*
+     * KVM ensures all host CPUs support the same set of vector lengths.
+     * So we only need to create the scratch VCPUs once and then cache
+     * the results.
+     */
+    if (!probed) {
+        struct kvm_vcpu_init init = {
+            .target = -1,
+            .features[0] = (1 << KVM_ARM_VCPU_SVE),
+        };
+        struct kvm_one_reg reg = {
+            .id = KVM_REG_ARM64_SVE_VLS,
+            .addr = (uint64_t)&vls[0],
+        };
+        int fdarray[3], ret;
+
+        probed = true;
+
+        if (!kvm_arm_create_scratch_host_vcpu(NULL, fdarray, &init)) {
+            error_report("failed to create scratch VCPU with SVE enabled");
+            abort();
+        }
+        ret = ioctl(fdarray[2], KVM_GET_ONE_REG, &reg);
+        kvm_arm_destroy_scratch_host_vcpu(fdarray);
+        if (ret) {
+            error_report("failed to get KVM_REG_ARM64_SVE_VLS: %s",
+                         strerror(errno));
+            abort();
+        }
+
+        for (i = KVM_ARM64_SVE_VLS_WORDS - 1; i >= 0; --i) {
+            if (vls[i]) {
+                vq = 64 - clz64(vls[i]) + i * 64;
+                break;
+            }
+        }
+        if (vq > ARM_MAX_VQ) {
+            warn_report("KVM supports vector lengths larger than "
+                        "QEMU can enable");
+            vls[0] &= MAKE_64BIT_MASK(0, ARM_MAX_VQ);
+        }
+    }
+
+    return vls[0];
+}
+
+static int kvm_arm_sve_set_vls(ARMCPU *cpu)
+{
+    uint64_t vls[KVM_ARM64_SVE_VLS_WORDS] = { cpu->sve_vq.map };
+
+    assert(cpu->sve_max_vq <= KVM_ARM64_SVE_VQ_MAX);
+
+    return kvm_set_one_reg(CPU(cpu), KVM_REG_ARM64_SVE_VLS, &vls[0]);
+}
+
+#define ARM_CPU_ID_MPIDR       3, 0, 0, 0, 5
+
+int kvm_arch_init_vcpu(CPUState *cs)
+{
+    int ret;
+    uint64_t mpidr;
+    ARMCPU *cpu = ARM_CPU(cs);
+    CPUARMState *env = &cpu->env;
+    uint64_t psciver;
+
+    if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE ||
+        !object_dynamic_cast(OBJECT(cpu), TYPE_AARCH64_CPU)) {
+        error_report("KVM is not supported for this guest CPU type");
+        return -EINVAL;
+    }
+
+    qemu_add_vm_change_state_handler(kvm_arm_vm_state_change, cpu);
+
+    /* Determine init features for this CPU */
+    memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features));
+    if (cs->start_powered_off) {
+        cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF;
+    }
+    if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) {
+        cpu->psci_version = QEMU_PSCI_VERSION_0_2;
+        cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2;
+    }
+    if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
+        cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_EL1_32BIT;
+    }
+    if (!kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PMU_V3)) {
+        cpu->has_pmu = false;
+    }
+    if (cpu->has_pmu) {
+        cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PMU_V3;
+    } else {
+        env->features &= ~(1ULL << ARM_FEATURE_PMU);
+    }
+    if (cpu_isar_feature(aa64_sve, cpu)) {
+        assert(kvm_arm_sve_supported());
+        cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_SVE;
+    }
+    if (cpu_isar_feature(aa64_pauth, cpu)) {
+        cpu->kvm_init_features[0] |= (1 << KVM_ARM_VCPU_PTRAUTH_ADDRESS |
+                                      1 << KVM_ARM_VCPU_PTRAUTH_GENERIC);
+    }
+
+    /* Do KVM_ARM_VCPU_INIT ioctl */
+    ret = kvm_arm_vcpu_init(cpu);
+    if (ret) {
+        return ret;
+    }
+
+    if (cpu_isar_feature(aa64_sve, cpu)) {
+        ret = kvm_arm_sve_set_vls(cpu);
+        if (ret) {
+            return ret;
+        }
+        ret = kvm_arm_vcpu_finalize(cpu, KVM_ARM_VCPU_SVE);
+        if (ret) {
+            return ret;
+        }
+    }
+
+    /*
+     * KVM reports the exact PSCI version it is implementing via a
+     * special sysreg. If it is present, use its contents to determine
+     * what to report to the guest in the dtb (it is the PSCI version,
+     * in the same 15-bits major 16-bits minor format that PSCI_VERSION
+     * returns).
+     */
+    if (!kvm_get_one_reg(cs, KVM_REG_ARM_PSCI_VERSION, &psciver)) {
+        cpu->psci_version = psciver;
+    }
+
+    /*
+     * When KVM is in use, PSCI is emulated in-kernel and not by qemu.
+     * Currently KVM has its own idea about MPIDR assignment, so we
+     * override our defaults with what we get from KVM.
+     */
+    ret = kvm_get_one_reg(cs, ARM64_SYS_REG(ARM_CPU_ID_MPIDR), &mpidr);
+    if (ret) {
+        return ret;
+    }
+    cpu->mp_affinity = mpidr & ARM64_AFFINITY_MASK;
+
+    return kvm_arm_init_cpreg_list(cpu);
+}
+
+int kvm_arch_destroy_vcpu(CPUState *cs)
+{
+    return 0;
+}
+
+/* Callers must hold the iothread mutex lock */
+static void kvm_inject_arm_sea(CPUState *c)
+{
+    ARMCPU *cpu = ARM_CPU(c);
+    CPUARMState *env = &cpu->env;
+    uint32_t esr;
+    bool same_el;
+
+    c->exception_index = EXCP_DATA_ABORT;
+    env->exception.target_el = 1;
+
+    /*
+     * Set the DFSC to synchronous external abort and set FnV to not valid,
+     * this will tell guest the FAR_ELx is UNKNOWN for this abort.
+     */
+    same_el = arm_current_el(env) == env->exception.target_el;
+    esr = syn_data_abort_no_iss(same_el, 1, 0, 0, 0, 0, 0x10);
+
+    env->exception.syndrome = esr;
+
+    arm_cpu_do_interrupt(c);
+}
+
+#define AARCH64_CORE_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | \
+                 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
+
+#define AARCH64_SIMD_CORE_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U128 | \
+                 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
+
+#define AARCH64_SIMD_CTRL_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U32 | \
+                 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
+
+static int kvm_arch_put_fpsimd(CPUState *cs)
+{
+    CPUARMState *env = &ARM_CPU(cs)->env;
+    int i, ret;
+
+    for (i = 0; i < 32; i++) {
+        uint64_t *q = aa64_vfp_qreg(env, i);
+#if HOST_BIG_ENDIAN
+        uint64_t fp_val[2] = { q[1], q[0] };
+        ret = kvm_set_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]),
+                                                        fp_val);
+#else
+        ret = kvm_set_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]), q);
+#endif
+        if (ret) {
+            return ret;
+        }
+    }
+
+    return 0;
+}
+
+/*
+ * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
+ * and PREGS and the FFR have a slice size of 256 bits. However we simply hard
+ * code the slice index to zero for now as it's unlikely we'll need more than
+ * one slice for quite some time.
+ */
+static int kvm_arch_put_sve(CPUState *cs)
+{
+    ARMCPU *cpu = ARM_CPU(cs);
+    CPUARMState *env = &cpu->env;
+    uint64_t tmp[ARM_MAX_VQ * 2];
+    uint64_t *r;
+    int n, ret;
+
+    for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
+        r = sve_bswap64(tmp, &env->vfp.zregs[n].d[0], cpu->sve_max_vq * 2);
+        ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_ZREG(n, 0), r);
+        if (ret) {
+            return ret;
+        }
+    }
+
+    for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
+        r = sve_bswap64(tmp, r = &env->vfp.pregs[n].p[0],
+                        DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
+        ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_PREG(n, 0), r);
+        if (ret) {
+            return ret;
+        }
+    }
+
+    r = sve_bswap64(tmp, &env->vfp.pregs[FFR_PRED_NUM].p[0],
+                    DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
+    ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_FFR(0), r);
+    if (ret) {
+        return ret;
+    }
+
+    return 0;
+}
+
+int kvm_arch_put_registers(CPUState *cs, int level)
+{
+    uint64_t val;
+    uint32_t fpr;
+    int i, ret;
+    unsigned int el;
+
+    ARMCPU *cpu = ARM_CPU(cs);
+    CPUARMState *env = &cpu->env;
+
+    /* If we are in AArch32 mode then we need to copy the AArch32 regs to the
+     * AArch64 registers before pushing them out to 64-bit KVM.
+     */
+    if (!is_a64(env)) {
+        aarch64_sync_32_to_64(env);
+    }
+
+    for (i = 0; i < 31; i++) {
+        ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.regs[i]),
+                              &env->xregs[i]);
+        if (ret) {
+            return ret;
+        }
+    }
+
+    /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
+     * QEMU side we keep the current SP in xregs[31] as well.
+     */
+    aarch64_save_sp(env, 1);
+
+    ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.sp), &env->sp_el[0]);
+    if (ret) {
+        return ret;
+    }
+
+    ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(sp_el1), &env->sp_el[1]);
+    if (ret) {
+        return ret;
+    }
+
+    /* Note that KVM thinks pstate is 64 bit but we use a uint32_t */
+    if (is_a64(env)) {
+        val = pstate_read(env);
+    } else {
+        val = cpsr_read(env);
+    }
+    ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.pstate), &val);
+    if (ret) {
+        return ret;
+    }
+
+    ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.pc), &env->pc);
+    if (ret) {
+        return ret;
+    }
+
+    ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(elr_el1), &env->elr_el[1]);
+    if (ret) {
+        return ret;
+    }
+
+    /* Saved Program State Registers
+     *
+     * Before we restore from the banked_spsr[] array we need to
+     * ensure that any modifications to env->spsr are correctly
+     * reflected in the banks.
+     */
+    el = arm_current_el(env);
+    if (el > 0 && !is_a64(env)) {
+        i = bank_number(env->uncached_cpsr & CPSR_M);
+        env->banked_spsr[i] = env->spsr;
+    }
+
+    /* KVM 0-4 map to QEMU banks 1-5 */
+    for (i = 0; i < KVM_NR_SPSR; i++) {
+        ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(spsr[i]),
+                              &env->banked_spsr[i + 1]);
+        if (ret) {
+            return ret;
+        }
+    }
+
+    if (cpu_isar_feature(aa64_sve, cpu)) {
+        ret = kvm_arch_put_sve(cs);
+    } else {
+        ret = kvm_arch_put_fpsimd(cs);
+    }
+    if (ret) {
+        return ret;
+    }
+
+    fpr = vfp_get_fpsr(env);
+    ret = kvm_set_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpsr), &fpr);
+    if (ret) {
+        return ret;
+    }
+
+    fpr = vfp_get_fpcr(env);
+    ret = kvm_set_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpcr), &fpr);
+    if (ret) {
+        return ret;
+    }
+
+    write_cpustate_to_list(cpu, true);
+
+    if (!write_list_to_kvmstate(cpu, level)) {
+        return -EINVAL;
+    }
+
+   /*
+    * Setting VCPU events should be triggered after syncing the registers
+    * to avoid overwriting potential changes made by KVM upon calling
+    * KVM_SET_VCPU_EVENTS ioctl
+    */
+    ret = kvm_put_vcpu_events(cpu);
+    if (ret) {
+        return ret;
+    }
+
+    return kvm_arm_sync_mpstate_to_kvm(cpu);
+}
+
+static int kvm_arch_get_fpsimd(CPUState *cs)
+{
+    CPUARMState *env = &ARM_CPU(cs)->env;
+    int i, ret;
+
+    for (i = 0; i < 32; i++) {
+        uint64_t *q = aa64_vfp_qreg(env, i);
+        ret = kvm_get_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]), q);
+        if (ret) {
+            return ret;
+        } else {
+#if HOST_BIG_ENDIAN
+            uint64_t t;
+            t = q[0], q[0] = q[1], q[1] = t;
+#endif
+        }
+    }
+
+    return 0;
+}
+
+/*
+ * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
+ * and PREGS and the FFR have a slice size of 256 bits. However we simply hard
+ * code the slice index to zero for now as it's unlikely we'll need more than
+ * one slice for quite some time.
+ */
+static int kvm_arch_get_sve(CPUState *cs)
+{
+    ARMCPU *cpu = ARM_CPU(cs);
+    CPUARMState *env = &cpu->env;
+    uint64_t *r;
+    int n, ret;
+
+    for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
+        r = &env->vfp.zregs[n].d[0];
+        ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_ZREG(n, 0), r);
+        if (ret) {
+            return ret;
+        }
+        sve_bswap64(r, r, cpu->sve_max_vq * 2);
+    }
+
+    for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
+        r = &env->vfp.pregs[n].p[0];
+        ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_PREG(n, 0), r);
+        if (ret) {
+            return ret;
+        }
+        sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
+    }
+
+    r = &env->vfp.pregs[FFR_PRED_NUM].p[0];
+    ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_FFR(0), r);
+    if (ret) {
+        return ret;
+    }
+    sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
+
+    return 0;
+}
+
+int kvm_arch_get_registers(CPUState *cs)
+{
+    uint64_t val;
+    unsigned int el;
+    uint32_t fpr;
+    int i, ret;
+
+    ARMCPU *cpu = ARM_CPU(cs);
+    CPUARMState *env = &cpu->env;
+
+    for (i = 0; i < 31; i++) {
+        ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.regs[i]),
+                              &env->xregs[i]);
+        if (ret) {
+            return ret;
+        }
+    }
+
+    ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.sp), &env->sp_el[0]);
+    if (ret) {
+        return ret;
+    }
+
+    ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(sp_el1), &env->sp_el[1]);
+    if (ret) {
+        return ret;
+    }
+
+    ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.pstate), &val);
+    if (ret) {
+        return ret;
+    }
+
+    env->aarch64 = ((val & PSTATE_nRW) == 0);
+    if (is_a64(env)) {
+        pstate_write(env, val);
+    } else {
+        cpsr_write(env, val, 0xffffffff, CPSRWriteRaw);
+    }
+
+    /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
+     * QEMU side we keep the current SP in xregs[31] as well.
+     */
+    aarch64_restore_sp(env, 1);
+
+    ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.pc), &env->pc);
+    if (ret) {
+        return ret;
+    }
+
+    /* If we are in AArch32 mode then we need to sync the AArch32 regs with the
+     * incoming AArch64 regs received from 64-bit KVM.
+     * We must perform this after all of the registers have been acquired from
+     * the kernel.
+     */
+    if (!is_a64(env)) {
+        aarch64_sync_64_to_32(env);
+    }
+
+    ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(elr_el1), &env->elr_el[1]);
+    if (ret) {
+        return ret;
+    }
+
+    /* Fetch the SPSR registers
+     *
+     * KVM SPSRs 0-4 map to QEMU banks 1-5
+     */
+    for (i = 0; i < KVM_NR_SPSR; i++) {
+        ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(spsr[i]),
+                              &env->banked_spsr[i + 1]);
+        if (ret) {
+            return ret;
+        }
+    }
+
+    el = arm_current_el(env);
+    if (el > 0 && !is_a64(env)) {
+        i = bank_number(env->uncached_cpsr & CPSR_M);
+        env->spsr = env->banked_spsr[i];
+    }
+
+    if (cpu_isar_feature(aa64_sve, cpu)) {
+        ret = kvm_arch_get_sve(cs);
+    } else {
+        ret = kvm_arch_get_fpsimd(cs);
+    }
+    if (ret) {
+        return ret;
+    }
+
+    ret = kvm_get_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpsr), &fpr);
+    if (ret) {
+        return ret;
+    }
+    vfp_set_fpsr(env, fpr);
+
+    ret = kvm_get_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpcr), &fpr);
+    if (ret) {
+        return ret;
+    }
+    vfp_set_fpcr(env, fpr);
+
+    ret = kvm_get_vcpu_events(cpu);
+    if (ret) {
+        return ret;
+    }
+
+    if (!write_kvmstate_to_list(cpu)) {
+        return -EINVAL;
+    }
+    /* Note that it's OK to have registers which aren't in CPUState,
+     * so we can ignore a failure return here.
+     */
+    write_list_to_cpustate(cpu);
+
+    ret = kvm_arm_sync_mpstate_to_qemu(cpu);
+
+    /* TODO: other registers */
+    return ret;
+}
+
+void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
+{
+    ram_addr_t ram_addr;
+    hwaddr paddr;
+
+    assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
+
+    if (acpi_ghes_present() && addr) {
+        ram_addr = qemu_ram_addr_from_host(addr);
+        if (ram_addr != RAM_ADDR_INVALID &&
+            kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
+            kvm_hwpoison_page_add(ram_addr);
+            /*
+             * If this is a BUS_MCEERR_AR, we know we have been called
+             * synchronously from the vCPU thread, so we can easily
+             * synchronize the state and inject an error.
+             *
+             * TODO: we currently don't tell the guest at all about
+             * BUS_MCEERR_AO. In that case we might either be being
+             * called synchronously from the vCPU thread, or a bit
+             * later from the main thread, so doing the injection of
+             * the error would be more complicated.
+             */
+            if (code == BUS_MCEERR_AR) {
+                kvm_cpu_synchronize_state(c);
+                if (!acpi_ghes_record_errors(ACPI_HEST_SRC_ID_SEA, paddr)) {
+                    kvm_inject_arm_sea(c);
+                } else {
+                    error_report("failed to record the error");
+                    abort();
+                }
+            }
+            return;
+        }
+        if (code == BUS_MCEERR_AO) {
+            error_report("Hardware memory error at addr %p for memory used by "
+                "QEMU itself instead of guest system!", addr);
+        }
+    }
+
+    if (code == BUS_MCEERR_AR) {
+        error_report("Hardware memory error!");
+        exit(1);
+    }
+}
+
+/* C6.6.29 BRK instruction */
+static const uint32_t brk_insn = 0xd4200000;
+
+int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
+{
+    if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0) ||
+        cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk_insn, 4, 1)) {
+        return -EINVAL;
+    }
+    return 0;
+}
+
+int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
+{
+    static uint32_t brk;
+
+    if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk, 4, 0) ||
+        brk != brk_insn ||
+        cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 1)) {
+        return -EINVAL;
+    }
+    return 0;
+}
diff --git a/target/arm/kvm64.c b/target/arm/kvm64.c
deleted file mode 100644
index 3c175c93a7..0000000000
--- a/target/arm/kvm64.c
+++ /dev/null
@@ -1,1290 +0,0 @@
-/*
- * ARM implementation of KVM hooks, 64 bit specific code
- *
- * Copyright Mian-M. Hamayun 2013, Virtual Open Systems
- * Copyright Alex Bennée 2014, Linaro
- *
- * This work is licensed under the terms of the GNU GPL, version 2 or later.
- * See the COPYING file in the top-level directory.
- *
- */
-
-#include "qemu/osdep.h"
-#include <sys/ioctl.h>
-#include <sys/ptrace.h>
-
-#include <linux/elf.h>
-#include <linux/kvm.h>
-
-#include "qapi/error.h"
-#include "cpu.h"
-#include "qemu/timer.h"
-#include "qemu/error-report.h"
-#include "qemu/host-utils.h"
-#include "qemu/main-loop.h"
-#include "exec/gdbstub.h"
-#include "sysemu/runstate.h"
-#include "sysemu/kvm.h"
-#include "sysemu/kvm_int.h"
-#include "kvm_arm.h"
-#include "internals.h"
-#include "cpu-features.h"
-#include "hw/acpi/acpi.h"
-#include "hw/acpi/ghes.h"
-
-static bool have_guest_debug;
-
-void kvm_arm_init_debug(KVMState *s)
-{
-    have_guest_debug = kvm_check_extension(s,
-                                           KVM_CAP_SET_GUEST_DEBUG);
-
-    max_hw_wps = kvm_check_extension(s, KVM_CAP_GUEST_DEBUG_HW_WPS);
-    hw_watchpoints = g_array_sized_new(true, true,
-                                       sizeof(HWWatchpoint), max_hw_wps);
-
-    max_hw_bps = kvm_check_extension(s, KVM_CAP_GUEST_DEBUG_HW_BPS);
-    hw_breakpoints = g_array_sized_new(true, true,
-                                       sizeof(HWBreakpoint), max_hw_bps);
-    return;
-}
-
-int kvm_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type)
-{
-    switch (type) {
-    case GDB_BREAKPOINT_HW:
-        return insert_hw_breakpoint(addr);
-        break;
-    case GDB_WATCHPOINT_READ:
-    case GDB_WATCHPOINT_WRITE:
-    case GDB_WATCHPOINT_ACCESS:
-        return insert_hw_watchpoint(addr, len, type);
-    default:
-        return -ENOSYS;
-    }
-}
-
-int kvm_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type)
-{
-    switch (type) {
-    case GDB_BREAKPOINT_HW:
-        return delete_hw_breakpoint(addr);
-    case GDB_WATCHPOINT_READ:
-    case GDB_WATCHPOINT_WRITE:
-    case GDB_WATCHPOINT_ACCESS:
-        return delete_hw_watchpoint(addr, len, type);
-    default:
-        return -ENOSYS;
-    }
-}
-
-
-void kvm_arch_remove_all_hw_breakpoints(void)
-{
-    if (cur_hw_wps > 0) {
-        g_array_remove_range(hw_watchpoints, 0, cur_hw_wps);
-    }
-    if (cur_hw_bps > 0) {
-        g_array_remove_range(hw_breakpoints, 0, cur_hw_bps);
-    }
-}
-
-void kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch *ptr)
-{
-    int i;
-    memset(ptr, 0, sizeof(struct kvm_guest_debug_arch));
-
-    for (i = 0; i < max_hw_wps; i++) {
-        HWWatchpoint *wp = get_hw_wp(i);
-        ptr->dbg_wcr[i] = wp->wcr;
-        ptr->dbg_wvr[i] = wp->wvr;
-    }
-    for (i = 0; i < max_hw_bps; i++) {
-        HWBreakpoint *bp = get_hw_bp(i);
-        ptr->dbg_bcr[i] = bp->bcr;
-        ptr->dbg_bvr[i] = bp->bvr;
-    }
-}
-
-bool kvm_arm_hw_debug_active(CPUState *cs)
-{
-    return ((cur_hw_wps > 0) || (cur_hw_bps > 0));
-}
-
-static bool kvm_arm_set_device_attr(CPUState *cs, struct kvm_device_attr *attr,
-                                    const char *name)
-{
-    int err;
-
-    err = kvm_vcpu_ioctl(cs, KVM_HAS_DEVICE_ATTR, attr);
-    if (err != 0) {
-        error_report("%s: KVM_HAS_DEVICE_ATTR: %s", name, strerror(-err));
-        return false;
-    }
-
-    err = kvm_vcpu_ioctl(cs, KVM_SET_DEVICE_ATTR, attr);
-    if (err != 0) {
-        error_report("%s: KVM_SET_DEVICE_ATTR: %s", name, strerror(-err));
-        return false;
-    }
-
-    return true;
-}
-
-void kvm_arm_pmu_init(CPUState *cs)
-{
-    struct kvm_device_attr attr = {
-        .group = KVM_ARM_VCPU_PMU_V3_CTRL,
-        .attr = KVM_ARM_VCPU_PMU_V3_INIT,
-    };
-
-    if (!ARM_CPU(cs)->has_pmu) {
-        return;
-    }
-    if (!kvm_arm_set_device_attr(cs, &attr, "PMU")) {
-        error_report("failed to init PMU");
-        abort();
-    }
-}
-
-void kvm_arm_pmu_set_irq(CPUState *cs, int irq)
-{
-    struct kvm_device_attr attr = {
-        .group = KVM_ARM_VCPU_PMU_V3_CTRL,
-        .addr = (intptr_t)&irq,
-        .attr = KVM_ARM_VCPU_PMU_V3_IRQ,
-    };
-
-    if (!ARM_CPU(cs)->has_pmu) {
-        return;
-    }
-    if (!kvm_arm_set_device_attr(cs, &attr, "PMU")) {
-        error_report("failed to set irq for PMU");
-        abort();
-    }
-}
-
-void kvm_arm_pvtime_init(CPUState *cs, uint64_t ipa)
-{
-    struct kvm_device_attr attr = {
-        .group = KVM_ARM_VCPU_PVTIME_CTRL,
-        .attr = KVM_ARM_VCPU_PVTIME_IPA,
-        .addr = (uint64_t)&ipa,
-    };
-
-    if (ARM_CPU(cs)->kvm_steal_time == ON_OFF_AUTO_OFF) {
-        return;
-    }
-    if (!kvm_arm_set_device_attr(cs, &attr, "PVTIME IPA")) {
-        error_report("failed to init PVTIME IPA");
-        abort();
-    }
-}
-
-static int read_sys_reg32(int fd, uint32_t *pret, uint64_t id)
-{
-    uint64_t ret;
-    struct kvm_one_reg idreg = { .id = id, .addr = (uintptr_t)&ret };
-    int err;
-
-    assert((id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64);
-    err = ioctl(fd, KVM_GET_ONE_REG, &idreg);
-    if (err < 0) {
-        return -1;
-    }
-    *pret = ret;
-    return 0;
-}
-
-static int read_sys_reg64(int fd, uint64_t *pret, uint64_t id)
-{
-    struct kvm_one_reg idreg = { .id = id, .addr = (uintptr_t)pret };
-
-    assert((id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64);
-    return ioctl(fd, KVM_GET_ONE_REG, &idreg);
-}
-
-static bool kvm_arm_pauth_supported(void)
-{
-    return (kvm_check_extension(kvm_state, KVM_CAP_ARM_PTRAUTH_ADDRESS) &&
-            kvm_check_extension(kvm_state, KVM_CAP_ARM_PTRAUTH_GENERIC));
-}
-
-bool kvm_arm_get_host_cpu_features(ARMHostCPUFeatures *ahcf)
-{
-    /* Identify the feature bits corresponding to the host CPU, and
-     * fill out the ARMHostCPUClass fields accordingly. To do this
-     * we have to create a scratch VM, create a single CPU inside it,
-     * and then query that CPU for the relevant ID registers.
-     */
-    int fdarray[3];
-    bool sve_supported;
-    bool pmu_supported = false;
-    uint64_t features = 0;
-    int err;
-
-    /* Old kernels may not know about the PREFERRED_TARGET ioctl: however
-     * we know these will only support creating one kind of guest CPU,
-     * which is its preferred CPU type. Fortunately these old kernels
-     * support only a very limited number of CPUs.
-     */
-    static const uint32_t cpus_to_try[] = {
-        KVM_ARM_TARGET_AEM_V8,
-        KVM_ARM_TARGET_FOUNDATION_V8,
-        KVM_ARM_TARGET_CORTEX_A57,
-        QEMU_KVM_ARM_TARGET_NONE
-    };
-    /*
-     * target = -1 informs kvm_arm_create_scratch_host_vcpu()
-     * to use the preferred target
-     */
-    struct kvm_vcpu_init init = { .target = -1, };
-
-    /*
-     * Ask for SVE if supported, so that we can query ID_AA64ZFR0,
-     * which is otherwise RAZ.
-     */
-    sve_supported = kvm_arm_sve_supported();
-    if (sve_supported) {
-        init.features[0] |= 1 << KVM_ARM_VCPU_SVE;
-    }
-
-    /*
-     * Ask for Pointer Authentication if supported, so that we get
-     * the unsanitized field values for AA64ISAR1_EL1.
-     */
-    if (kvm_arm_pauth_supported()) {
-        init.features[0] |= (1 << KVM_ARM_VCPU_PTRAUTH_ADDRESS |
-                             1 << KVM_ARM_VCPU_PTRAUTH_GENERIC);
-    }
-
-    if (kvm_arm_pmu_supported()) {
-        init.features[0] |= 1 << KVM_ARM_VCPU_PMU_V3;
-        pmu_supported = true;
-    }
-
-    if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try, fdarray, &init)) {
-        return false;
-    }
-
-    ahcf->target = init.target;
-    ahcf->dtb_compatible = "arm,arm-v8";
-
-    err = read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64pfr0,
-                         ARM64_SYS_REG(3, 0, 0, 4, 0));
-    if (unlikely(err < 0)) {
-        /*
-         * Before v4.15, the kernel only exposed a limited number of system
-         * registers, not including any of the interesting AArch64 ID regs.
-         * For the most part we could leave these fields as zero with minimal
-         * effect, since this does not affect the values seen by the guest.
-         *
-         * However, it could cause problems down the line for QEMU,
-         * so provide a minimal v8.0 default.
-         *
-         * ??? Could read MIDR and use knowledge from cpu64.c.
-         * ??? Could map a page of memory into our temp guest and
-         *     run the tiniest of hand-crafted kernels to extract
-         *     the values seen by the guest.
-         * ??? Either of these sounds like too much effort just
-         *     to work around running a modern host kernel.
-         */
-        ahcf->isar.id_aa64pfr0 = 0x00000011; /* EL1&0, AArch64 only */
-        err = 0;
-    } else {
-        err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64pfr1,
-                              ARM64_SYS_REG(3, 0, 0, 4, 1));
-        err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64smfr0,
-                              ARM64_SYS_REG(3, 0, 0, 4, 5));
-        err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64dfr0,
-                              ARM64_SYS_REG(3, 0, 0, 5, 0));
-        err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64dfr1,
-                              ARM64_SYS_REG(3, 0, 0, 5, 1));
-        err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar0,
-                              ARM64_SYS_REG(3, 0, 0, 6, 0));
-        err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar1,
-                              ARM64_SYS_REG(3, 0, 0, 6, 1));
-        err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar2,
-                              ARM64_SYS_REG(3, 0, 0, 6, 2));
-        err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr0,
-                              ARM64_SYS_REG(3, 0, 0, 7, 0));
-        err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr1,
-                              ARM64_SYS_REG(3, 0, 0, 7, 1));
-        err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr2,
-                              ARM64_SYS_REG(3, 0, 0, 7, 2));
-
-        /*
-         * Note that if AArch32 support is not present in the host,
-         * the AArch32 sysregs are present to be read, but will
-         * return UNKNOWN values.  This is neither better nor worse
-         * than skipping the reads and leaving 0, as we must avoid
-         * considering the values in every case.
-         */
-        err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_pfr0,
-                              ARM64_SYS_REG(3, 0, 0, 1, 0));
-        err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_pfr1,
-                              ARM64_SYS_REG(3, 0, 0, 1, 1));
-        err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_dfr0,
-                              ARM64_SYS_REG(3, 0, 0, 1, 2));
-        err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr0,
-                              ARM64_SYS_REG(3, 0, 0, 1, 4));
-        err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr1,
-                              ARM64_SYS_REG(3, 0, 0, 1, 5));
-        err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr2,
-                              ARM64_SYS_REG(3, 0, 0, 1, 6));
-        err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr3,
-                              ARM64_SYS_REG(3, 0, 0, 1, 7));
-        err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar0,
-                              ARM64_SYS_REG(3, 0, 0, 2, 0));
-        err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar1,
-                              ARM64_SYS_REG(3, 0, 0, 2, 1));
-        err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar2,
-                              ARM64_SYS_REG(3, 0, 0, 2, 2));
-        err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar3,
-                              ARM64_SYS_REG(3, 0, 0, 2, 3));
-        err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar4,
-                              ARM64_SYS_REG(3, 0, 0, 2, 4));
-        err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar5,
-                              ARM64_SYS_REG(3, 0, 0, 2, 5));
-        err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr4,
-                              ARM64_SYS_REG(3, 0, 0, 2, 6));
-        err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar6,
-                              ARM64_SYS_REG(3, 0, 0, 2, 7));
-
-        err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr0,
-                              ARM64_SYS_REG(3, 0, 0, 3, 0));
-        err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr1,
-                              ARM64_SYS_REG(3, 0, 0, 3, 1));
-        err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr2,
-                              ARM64_SYS_REG(3, 0, 0, 3, 2));
-        err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_pfr2,
-                              ARM64_SYS_REG(3, 0, 0, 3, 4));
-        err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_dfr1,
-                              ARM64_SYS_REG(3, 0, 0, 3, 5));
-        err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr5,
-                              ARM64_SYS_REG(3, 0, 0, 3, 6));
-
-        /*
-         * DBGDIDR is a bit complicated because the kernel doesn't
-         * provide an accessor for it in 64-bit mode, which is what this
-         * scratch VM is in, and there's no architected "64-bit sysreg
-         * which reads the same as the 32-bit register" the way there is
-         * for other ID registers. Instead we synthesize a value from the
-         * AArch64 ID_AA64DFR0, the same way the kernel code in
-         * arch/arm64/kvm/sys_regs.c:trap_dbgidr() does.
-         * We only do this if the CPU supports AArch32 at EL1.
-         */
-        if (FIELD_EX32(ahcf->isar.id_aa64pfr0, ID_AA64PFR0, EL1) >= 2) {
-            int wrps = FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, WRPS);
-            int brps = FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, BRPS);
-            int ctx_cmps =
-                FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS);
-            int version = 6; /* ARMv8 debug architecture */
-            bool has_el3 =
-                !!FIELD_EX32(ahcf->isar.id_aa64pfr0, ID_AA64PFR0, EL3);
-            uint32_t dbgdidr = 0;
-
-            dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, WRPS, wrps);
-            dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, BRPS, brps);
-            dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, CTX_CMPS, ctx_cmps);
-            dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, VERSION, version);
-            dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, NSUHD_IMP, has_el3);
-            dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, SE_IMP, has_el3);
-            dbgdidr |= (1 << 15); /* RES1 bit */
-            ahcf->isar.dbgdidr = dbgdidr;
-        }
-
-        if (pmu_supported) {
-            /* PMCR_EL0 is only accessible if the vCPU has feature PMU_V3 */
-            err |= read_sys_reg64(fdarray[2], &ahcf->isar.reset_pmcr_el0,
-                                  ARM64_SYS_REG(3, 3, 9, 12, 0));
-        }
-
-        if (sve_supported) {
-            /*
-             * There is a range of kernels between kernel commit 73433762fcae
-             * and f81cb2c3ad41 which have a bug where the kernel doesn't
-             * expose SYS_ID_AA64ZFR0_EL1 via the ONE_REG API unless the VM has
-             * enabled SVE support, which resulted in an error rather than RAZ.
-             * So only read the register if we set KVM_ARM_VCPU_SVE above.
-             */
-            err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64zfr0,
-                                  ARM64_SYS_REG(3, 0, 0, 4, 4));
-        }
-    }
-
-    kvm_arm_destroy_scratch_host_vcpu(fdarray);
-
-    if (err < 0) {
-        return false;
-    }
-
-    /*
-     * We can assume any KVM supporting CPU is at least a v8
-     * with VFPv4+Neon; this in turn implies most of the other
-     * feature bits.
-     */
-    features |= 1ULL << ARM_FEATURE_V8;
-    features |= 1ULL << ARM_FEATURE_NEON;
-    features |= 1ULL << ARM_FEATURE_AARCH64;
-    features |= 1ULL << ARM_FEATURE_PMU;
-    features |= 1ULL << ARM_FEATURE_GENERIC_TIMER;
-
-    ahcf->features = features;
-
-    return true;
-}
-
-void kvm_arm_steal_time_finalize(ARMCPU *cpu, Error **errp)
-{
-    bool has_steal_time = kvm_arm_steal_time_supported();
-
-    if (cpu->kvm_steal_time == ON_OFF_AUTO_AUTO) {
-        if (!has_steal_time || !arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
-            cpu->kvm_steal_time = ON_OFF_AUTO_OFF;
-        } else {
-            cpu->kvm_steal_time = ON_OFF_AUTO_ON;
-        }
-    } else if (cpu->kvm_steal_time == ON_OFF_AUTO_ON) {
-        if (!has_steal_time) {
-            error_setg(errp, "'kvm-steal-time' cannot be enabled "
-                             "on this host");
-            return;
-        } else if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
-            /*
-             * DEN0057A chapter 2 says "This specification only covers
-             * systems in which the Execution state of the hypervisor
-             * as well as EL1 of virtual machines is AArch64.". And,
-             * to ensure that, the smc/hvc calls are only specified as
-             * smc64/hvc64.
-             */
-            error_setg(errp, "'kvm-steal-time' cannot be enabled "
-                             "for AArch32 guests");
-            return;
-        }
-    }
-}
-
-bool kvm_arm_aarch32_supported(void)
-{
-    return kvm_check_extension(kvm_state, KVM_CAP_ARM_EL1_32BIT);
-}
-
-bool kvm_arm_sve_supported(void)
-{
-    return kvm_check_extension(kvm_state, KVM_CAP_ARM_SVE);
-}
-
-bool kvm_arm_steal_time_supported(void)
-{
-    return kvm_check_extension(kvm_state, KVM_CAP_STEAL_TIME);
-}
-
-QEMU_BUILD_BUG_ON(KVM_ARM64_SVE_VQ_MIN != 1);
-
-uint32_t kvm_arm_sve_get_vls(CPUState *cs)
-{
-    /* Only call this function if kvm_arm_sve_supported() returns true. */
-    static uint64_t vls[KVM_ARM64_SVE_VLS_WORDS];
-    static bool probed;
-    uint32_t vq = 0;
-    int i;
-
-    /*
-     * KVM ensures all host CPUs support the same set of vector lengths.
-     * So we only need to create the scratch VCPUs once and then cache
-     * the results.
-     */
-    if (!probed) {
-        struct kvm_vcpu_init init = {
-            .target = -1,
-            .features[0] = (1 << KVM_ARM_VCPU_SVE),
-        };
-        struct kvm_one_reg reg = {
-            .id = KVM_REG_ARM64_SVE_VLS,
-            .addr = (uint64_t)&vls[0],
-        };
-        int fdarray[3], ret;
-
-        probed = true;
-
-        if (!kvm_arm_create_scratch_host_vcpu(NULL, fdarray, &init)) {
-            error_report("failed to create scratch VCPU with SVE enabled");
-            abort();
-        }
-        ret = ioctl(fdarray[2], KVM_GET_ONE_REG, &reg);
-        kvm_arm_destroy_scratch_host_vcpu(fdarray);
-        if (ret) {
-            error_report("failed to get KVM_REG_ARM64_SVE_VLS: %s",
-                         strerror(errno));
-            abort();
-        }
-
-        for (i = KVM_ARM64_SVE_VLS_WORDS - 1; i >= 0; --i) {
-            if (vls[i]) {
-                vq = 64 - clz64(vls[i]) + i * 64;
-                break;
-            }
-        }
-        if (vq > ARM_MAX_VQ) {
-            warn_report("KVM supports vector lengths larger than "
-                        "QEMU can enable");
-            vls[0] &= MAKE_64BIT_MASK(0, ARM_MAX_VQ);
-        }
-    }
-
-    return vls[0];
-}
-
-static int kvm_arm_sve_set_vls(CPUState *cs)
-{
-    ARMCPU *cpu = ARM_CPU(cs);
-    uint64_t vls[KVM_ARM64_SVE_VLS_WORDS] = { cpu->sve_vq.map };
-
-    assert(cpu->sve_max_vq <= KVM_ARM64_SVE_VQ_MAX);
-
-    return kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_VLS, &vls[0]);
-}
-
-#define ARM_CPU_ID_MPIDR       3, 0, 0, 0, 5
-
-int kvm_arch_init_vcpu(CPUState *cs)
-{
-    int ret;
-    uint64_t mpidr;
-    ARMCPU *cpu = ARM_CPU(cs);
-    CPUARMState *env = &cpu->env;
-    uint64_t psciver;
-
-    if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE ||
-        !object_dynamic_cast(OBJECT(cpu), TYPE_AARCH64_CPU)) {
-        error_report("KVM is not supported for this guest CPU type");
-        return -EINVAL;
-    }
-
-    qemu_add_vm_change_state_handler(kvm_arm_vm_state_change, cs);
-
-    /* Determine init features for this CPU */
-    memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features));
-    if (cs->start_powered_off) {
-        cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF;
-    }
-    if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) {
-        cpu->psci_version = QEMU_PSCI_VERSION_0_2;
-        cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2;
-    }
-    if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
-        cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_EL1_32BIT;
-    }
-    if (!kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PMU_V3)) {
-        cpu->has_pmu = false;
-    }
-    if (cpu->has_pmu) {
-        cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PMU_V3;
-    } else {
-        env->features &= ~(1ULL << ARM_FEATURE_PMU);
-    }
-    if (cpu_isar_feature(aa64_sve, cpu)) {
-        assert(kvm_arm_sve_supported());
-        cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_SVE;
-    }
-    if (cpu_isar_feature(aa64_pauth, cpu)) {
-        cpu->kvm_init_features[0] |= (1 << KVM_ARM_VCPU_PTRAUTH_ADDRESS |
-                                      1 << KVM_ARM_VCPU_PTRAUTH_GENERIC);
-    }
-
-    /* Do KVM_ARM_VCPU_INIT ioctl */
-    ret = kvm_arm_vcpu_init(cs);
-    if (ret) {
-        return ret;
-    }
-
-    if (cpu_isar_feature(aa64_sve, cpu)) {
-        ret = kvm_arm_sve_set_vls(cs);
-        if (ret) {
-            return ret;
-        }
-        ret = kvm_arm_vcpu_finalize(cs, KVM_ARM_VCPU_SVE);
-        if (ret) {
-            return ret;
-        }
-    }
-
-    /*
-     * KVM reports the exact PSCI version it is implementing via a
-     * special sysreg. If it is present, use its contents to determine
-     * what to report to the guest in the dtb (it is the PSCI version,
-     * in the same 15-bits major 16-bits minor format that PSCI_VERSION
-     * returns).
-     */
-    if (!kvm_get_one_reg(cs, KVM_REG_ARM_PSCI_VERSION, &psciver)) {
-        cpu->psci_version = psciver;
-    }
-
-    /*
-     * When KVM is in use, PSCI is emulated in-kernel and not by qemu.
-     * Currently KVM has its own idea about MPIDR assignment, so we
-     * override our defaults with what we get from KVM.
-     */
-    ret = kvm_get_one_reg(cs, ARM64_SYS_REG(ARM_CPU_ID_MPIDR), &mpidr);
-    if (ret) {
-        return ret;
-    }
-    cpu->mp_affinity = mpidr & ARM64_AFFINITY_MASK;
-
-    /* Check whether user space can specify guest syndrome value */
-    kvm_arm_init_serror_injection(cs);
-
-    return kvm_arm_init_cpreg_list(cpu);
-}
-
-int kvm_arch_destroy_vcpu(CPUState *cs)
-{
-    return 0;
-}
-
-bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx)
-{
-    /* Return true if the regidx is a register we should synchronize
-     * via the cpreg_tuples array (ie is not a core or sve reg that
-     * we sync by hand in kvm_arch_get/put_registers())
-     */
-    switch (regidx & KVM_REG_ARM_COPROC_MASK) {
-    case KVM_REG_ARM_CORE:
-    case KVM_REG_ARM64_SVE:
-        return false;
-    default:
-        return true;
-    }
-}
-
-typedef struct CPRegStateLevel {
-    uint64_t regidx;
-    int level;
-} CPRegStateLevel;
-
-/* All system registers not listed in the following table are assumed to be
- * of the level KVM_PUT_RUNTIME_STATE. If a register should be written less
- * often, you must add it to this table with a state of either
- * KVM_PUT_RESET_STATE or KVM_PUT_FULL_STATE.
- */
-static const CPRegStateLevel non_runtime_cpregs[] = {
-    { KVM_REG_ARM_TIMER_CNT, KVM_PUT_FULL_STATE },
-    { KVM_REG_ARM_PTIMER_CNT, KVM_PUT_FULL_STATE },
-};
-
-int kvm_arm_cpreg_level(uint64_t regidx)
-{
-    int i;
-
-    for (i = 0; i < ARRAY_SIZE(non_runtime_cpregs); i++) {
-        const CPRegStateLevel *l = &non_runtime_cpregs[i];
-        if (l->regidx == regidx) {
-            return l->level;
-        }
-    }
-
-    return KVM_PUT_RUNTIME_STATE;
-}
-
-/* Callers must hold the iothread mutex lock */
-static void kvm_inject_arm_sea(CPUState *c)
-{
-    ARMCPU *cpu = ARM_CPU(c);
-    CPUARMState *env = &cpu->env;
-    uint32_t esr;
-    bool same_el;
-
-    c->exception_index = EXCP_DATA_ABORT;
-    env->exception.target_el = 1;
-
-    /*
-     * Set the DFSC to synchronous external abort and set FnV to not valid,
-     * this will tell guest the FAR_ELx is UNKNOWN for this abort.
-     */
-    same_el = arm_current_el(env) == env->exception.target_el;
-    esr = syn_data_abort_no_iss(same_el, 1, 0, 0, 0, 0, 0x10);
-
-    env->exception.syndrome = esr;
-
-    arm_cpu_do_interrupt(c);
-}
-
-#define AARCH64_CORE_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | \
-                 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
-
-#define AARCH64_SIMD_CORE_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U128 | \
-                 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
-
-#define AARCH64_SIMD_CTRL_REG(x)   (KVM_REG_ARM64 | KVM_REG_SIZE_U32 | \
-                 KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x))
-
-static int kvm_arch_put_fpsimd(CPUState *cs)
-{
-    CPUARMState *env = &ARM_CPU(cs)->env;
-    int i, ret;
-
-    for (i = 0; i < 32; i++) {
-        uint64_t *q = aa64_vfp_qreg(env, i);
-#if HOST_BIG_ENDIAN
-        uint64_t fp_val[2] = { q[1], q[0] };
-        ret = kvm_set_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]),
-                                                        fp_val);
-#else
-        ret = kvm_set_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]), q);
-#endif
-        if (ret) {
-            return ret;
-        }
-    }
-
-    return 0;
-}
-
-/*
- * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
- * and PREGS and the FFR have a slice size of 256 bits. However we simply hard
- * code the slice index to zero for now as it's unlikely we'll need more than
- * one slice for quite some time.
- */
-static int kvm_arch_put_sve(CPUState *cs)
-{
-    ARMCPU *cpu = ARM_CPU(cs);
-    CPUARMState *env = &cpu->env;
-    uint64_t tmp[ARM_MAX_VQ * 2];
-    uint64_t *r;
-    int n, ret;
-
-    for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
-        r = sve_bswap64(tmp, &env->vfp.zregs[n].d[0], cpu->sve_max_vq * 2);
-        ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_ZREG(n, 0), r);
-        if (ret) {
-            return ret;
-        }
-    }
-
-    for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
-        r = sve_bswap64(tmp, r = &env->vfp.pregs[n].p[0],
-                        DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
-        ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_PREG(n, 0), r);
-        if (ret) {
-            return ret;
-        }
-    }
-
-    r = sve_bswap64(tmp, &env->vfp.pregs[FFR_PRED_NUM].p[0],
-                    DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
-    ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_FFR(0), r);
-    if (ret) {
-        return ret;
-    }
-
-    return 0;
-}
-
-int kvm_arch_put_registers(CPUState *cs, int level)
-{
-    uint64_t val;
-    uint32_t fpr;
-    int i, ret;
-    unsigned int el;
-
-    ARMCPU *cpu = ARM_CPU(cs);
-    CPUARMState *env = &cpu->env;
-
-    /* If we are in AArch32 mode then we need to copy the AArch32 regs to the
-     * AArch64 registers before pushing them out to 64-bit KVM.
-     */
-    if (!is_a64(env)) {
-        aarch64_sync_32_to_64(env);
-    }
-
-    for (i = 0; i < 31; i++) {
-        ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.regs[i]),
-                              &env->xregs[i]);
-        if (ret) {
-            return ret;
-        }
-    }
-
-    /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
-     * QEMU side we keep the current SP in xregs[31] as well.
-     */
-    aarch64_save_sp(env, 1);
-
-    ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.sp), &env->sp_el[0]);
-    if (ret) {
-        return ret;
-    }
-
-    ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(sp_el1), &env->sp_el[1]);
-    if (ret) {
-        return ret;
-    }
-
-    /* Note that KVM thinks pstate is 64 bit but we use a uint32_t */
-    if (is_a64(env)) {
-        val = pstate_read(env);
-    } else {
-        val = cpsr_read(env);
-    }
-    ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.pstate), &val);
-    if (ret) {
-        return ret;
-    }
-
-    ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.pc), &env->pc);
-    if (ret) {
-        return ret;
-    }
-
-    ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(elr_el1), &env->elr_el[1]);
-    if (ret) {
-        return ret;
-    }
-
-    /* Saved Program State Registers
-     *
-     * Before we restore from the banked_spsr[] array we need to
-     * ensure that any modifications to env->spsr are correctly
-     * reflected in the banks.
-     */
-    el = arm_current_el(env);
-    if (el > 0 && !is_a64(env)) {
-        i = bank_number(env->uncached_cpsr & CPSR_M);
-        env->banked_spsr[i] = env->spsr;
-    }
-
-    /* KVM 0-4 map to QEMU banks 1-5 */
-    for (i = 0; i < KVM_NR_SPSR; i++) {
-        ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(spsr[i]),
-                              &env->banked_spsr[i + 1]);
-        if (ret) {
-            return ret;
-        }
-    }
-
-    if (cpu_isar_feature(aa64_sve, cpu)) {
-        ret = kvm_arch_put_sve(cs);
-    } else {
-        ret = kvm_arch_put_fpsimd(cs);
-    }
-    if (ret) {
-        return ret;
-    }
-
-    fpr = vfp_get_fpsr(env);
-    ret = kvm_set_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpsr), &fpr);
-    if (ret) {
-        return ret;
-    }
-
-    fpr = vfp_get_fpcr(env);
-    ret = kvm_set_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpcr), &fpr);
-    if (ret) {
-        return ret;
-    }
-
-    write_cpustate_to_list(cpu, true);
-
-    if (!write_list_to_kvmstate(cpu, level)) {
-        return -EINVAL;
-    }
-
-   /*
-    * Setting VCPU events should be triggered after syncing the registers
-    * to avoid overwriting potential changes made by KVM upon calling
-    * KVM_SET_VCPU_EVENTS ioctl
-    */
-    ret = kvm_put_vcpu_events(cpu);
-    if (ret) {
-        return ret;
-    }
-
-    kvm_arm_sync_mpstate_to_kvm(cpu);
-
-    return ret;
-}
-
-static int kvm_arch_get_fpsimd(CPUState *cs)
-{
-    CPUARMState *env = &ARM_CPU(cs)->env;
-    int i, ret;
-
-    for (i = 0; i < 32; i++) {
-        uint64_t *q = aa64_vfp_qreg(env, i);
-        ret = kvm_get_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]), q);
-        if (ret) {
-            return ret;
-        } else {
-#if HOST_BIG_ENDIAN
-            uint64_t t;
-            t = q[0], q[0] = q[1], q[1] = t;
-#endif
-        }
-    }
-
-    return 0;
-}
-
-/*
- * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits
- * and PREGS and the FFR have a slice size of 256 bits. However we simply hard
- * code the slice index to zero for now as it's unlikely we'll need more than
- * one slice for quite some time.
- */
-static int kvm_arch_get_sve(CPUState *cs)
-{
-    ARMCPU *cpu = ARM_CPU(cs);
-    CPUARMState *env = &cpu->env;
-    uint64_t *r;
-    int n, ret;
-
-    for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) {
-        r = &env->vfp.zregs[n].d[0];
-        ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_ZREG(n, 0), r);
-        if (ret) {
-            return ret;
-        }
-        sve_bswap64(r, r, cpu->sve_max_vq * 2);
-    }
-
-    for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) {
-        r = &env->vfp.pregs[n].p[0];
-        ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_PREG(n, 0), r);
-        if (ret) {
-            return ret;
-        }
-        sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
-    }
-
-    r = &env->vfp.pregs[FFR_PRED_NUM].p[0];
-    ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_FFR(0), r);
-    if (ret) {
-        return ret;
-    }
-    sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8));
-
-    return 0;
-}
-
-int kvm_arch_get_registers(CPUState *cs)
-{
-    uint64_t val;
-    unsigned int el;
-    uint32_t fpr;
-    int i, ret;
-
-    ARMCPU *cpu = ARM_CPU(cs);
-    CPUARMState *env = &cpu->env;
-
-    for (i = 0; i < 31; i++) {
-        ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.regs[i]),
-                              &env->xregs[i]);
-        if (ret) {
-            return ret;
-        }
-    }
-
-    ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.sp), &env->sp_el[0]);
-    if (ret) {
-        return ret;
-    }
-
-    ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(sp_el1), &env->sp_el[1]);
-    if (ret) {
-        return ret;
-    }
-
-    ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.pstate), &val);
-    if (ret) {
-        return ret;
-    }
-
-    env->aarch64 = ((val & PSTATE_nRW) == 0);
-    if (is_a64(env)) {
-        pstate_write(env, val);
-    } else {
-        cpsr_write(env, val, 0xffffffff, CPSRWriteRaw);
-    }
-
-    /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the
-     * QEMU side we keep the current SP in xregs[31] as well.
-     */
-    aarch64_restore_sp(env, 1);
-
-    ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.pc), &env->pc);
-    if (ret) {
-        return ret;
-    }
-
-    /* If we are in AArch32 mode then we need to sync the AArch32 regs with the
-     * incoming AArch64 regs received from 64-bit KVM.
-     * We must perform this after all of the registers have been acquired from
-     * the kernel.
-     */
-    if (!is_a64(env)) {
-        aarch64_sync_64_to_32(env);
-    }
-
-    ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(elr_el1), &env->elr_el[1]);
-    if (ret) {
-        return ret;
-    }
-
-    /* Fetch the SPSR registers
-     *
-     * KVM SPSRs 0-4 map to QEMU banks 1-5
-     */
-    for (i = 0; i < KVM_NR_SPSR; i++) {
-        ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(spsr[i]),
-                              &env->banked_spsr[i + 1]);
-        if (ret) {
-            return ret;
-        }
-    }
-
-    el = arm_current_el(env);
-    if (el > 0 && !is_a64(env)) {
-        i = bank_number(env->uncached_cpsr & CPSR_M);
-        env->spsr = env->banked_spsr[i];
-    }
-
-    if (cpu_isar_feature(aa64_sve, cpu)) {
-        ret = kvm_arch_get_sve(cs);
-    } else {
-        ret = kvm_arch_get_fpsimd(cs);
-    }
-    if (ret) {
-        return ret;
-    }
-
-    ret = kvm_get_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpsr), &fpr);
-    if (ret) {
-        return ret;
-    }
-    vfp_set_fpsr(env, fpr);
-
-    ret = kvm_get_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpcr), &fpr);
-    if (ret) {
-        return ret;
-    }
-    vfp_set_fpcr(env, fpr);
-
-    ret = kvm_get_vcpu_events(cpu);
-    if (ret) {
-        return ret;
-    }
-
-    if (!write_kvmstate_to_list(cpu)) {
-        return -EINVAL;
-    }
-    /* Note that it's OK to have registers which aren't in CPUState,
-     * so we can ignore a failure return here.
-     */
-    write_list_to_cpustate(cpu);
-
-    kvm_arm_sync_mpstate_to_qemu(cpu);
-
-    /* TODO: other registers */
-    return ret;
-}
-
-void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
-{
-    ram_addr_t ram_addr;
-    hwaddr paddr;
-
-    assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO);
-
-    if (acpi_ghes_present() && addr) {
-        ram_addr = qemu_ram_addr_from_host(addr);
-        if (ram_addr != RAM_ADDR_INVALID &&
-            kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
-            kvm_hwpoison_page_add(ram_addr);
-            /*
-             * If this is a BUS_MCEERR_AR, we know we have been called
-             * synchronously from the vCPU thread, so we can easily
-             * synchronize the state and inject an error.
-             *
-             * TODO: we currently don't tell the guest at all about
-             * BUS_MCEERR_AO. In that case we might either be being
-             * called synchronously from the vCPU thread, or a bit
-             * later from the main thread, so doing the injection of
-             * the error would be more complicated.
-             */
-            if (code == BUS_MCEERR_AR) {
-                kvm_cpu_synchronize_state(c);
-                if (!acpi_ghes_record_errors(ACPI_HEST_SRC_ID_SEA, paddr)) {
-                    kvm_inject_arm_sea(c);
-                } else {
-                    error_report("failed to record the error");
-                    abort();
-                }
-            }
-            return;
-        }
-        if (code == BUS_MCEERR_AO) {
-            error_report("Hardware memory error at addr %p for memory used by "
-                "QEMU itself instead of guest system!", addr);
-        }
-    }
-
-    if (code == BUS_MCEERR_AR) {
-        error_report("Hardware memory error!");
-        exit(1);
-    }
-}
-
-/* C6.6.29 BRK instruction */
-static const uint32_t brk_insn = 0xd4200000;
-
-int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
-{
-    if (have_guest_debug) {
-        if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0) ||
-            cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk_insn, 4, 1)) {
-            return -EINVAL;
-        }
-        return 0;
-    } else {
-        error_report("guest debug not supported on this kernel");
-        return -EINVAL;
-    }
-}
-
-int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
-{
-    static uint32_t brk;
-
-    if (have_guest_debug) {
-        if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk, 4, 0) ||
-            brk != brk_insn ||
-            cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 1)) {
-            return -EINVAL;
-        }
-        return 0;
-    } else {
-        error_report("guest debug not supported on this kernel");
-        return -EINVAL;
-    }
-}
-
-/* See v8 ARM ARM D7.2.27 ESR_ELx, Exception Syndrome Register
- *
- * To minimise translating between kernel and user-space the kernel
- * ABI just provides user-space with the full exception syndrome
- * register value to be decoded in QEMU.
- */
-
-bool kvm_arm_handle_debug(CPUState *cs, struct kvm_debug_exit_arch *debug_exit)
-{
-    int hsr_ec = syn_get_ec(debug_exit->hsr);
-    ARMCPU *cpu = ARM_CPU(cs);
-    CPUARMState *env = &cpu->env;
-
-    /* Ensure PC is synchronised */
-    kvm_cpu_synchronize_state(cs);
-
-    switch (hsr_ec) {
-    case EC_SOFTWARESTEP:
-        if (cs->singlestep_enabled) {
-            return true;
-        } else {
-            /*
-             * The kernel should have suppressed the guest's ability to
-             * single step at this point so something has gone wrong.
-             */
-            error_report("%s: guest single-step while debugging unsupported"
-                         " (%"PRIx64", %"PRIx32")",
-                         __func__, env->pc, debug_exit->hsr);
-            return false;
-        }
-        break;
-    case EC_AA64_BKPT:
-        if (kvm_find_sw_breakpoint(cs, env->pc)) {
-            return true;
-        }
-        break;
-    case EC_BREAKPOINT:
-        if (find_hw_breakpoint(cs, env->pc)) {
-            return true;
-        }
-        break;
-    case EC_WATCHPOINT:
-    {
-        CPUWatchpoint *wp = find_hw_watchpoint(cs, debug_exit->far);
-        if (wp) {
-            cs->watchpoint_hit = wp;
-            return true;
-        }
-        break;
-    }
-    default:
-        error_report("%s: unhandled debug exit (%"PRIx32", %"PRIx64")",
-                     __func__, debug_exit->hsr, env->pc);
-    }
-
-    /* If we are not handling the debug exception it must belong to
-     * the guest. Let's re-use the existing TCG interrupt code to set
-     * everything up properly.
-     */
-    cs->exception_index = EXCP_BKPT;
-    env->exception.syndrome = debug_exit->hsr;
-    env->exception.vaddress = debug_exit->far;
-    env->exception.target_el = 1;
-    qemu_mutex_lock_iothread();
-    arm_cpu_do_interrupt(cs);
-    qemu_mutex_unlock_iothread();
-
-    return false;
-}
-
-#define ARM64_REG_ESR_EL1 ARM64_SYS_REG(3, 0, 5, 2, 0)
-#define ARM64_REG_TCR_EL1 ARM64_SYS_REG(3, 0, 2, 0, 2)
-
-/*
- * ESR_EL1
- * ISS encoding
- * AARCH64: DFSC,   bits [5:0]
- * AARCH32:
- *      TTBCR.EAE == 0
- *          FS[4]   - DFSR[10]
- *          FS[3:0] - DFSR[3:0]
- *      TTBCR.EAE == 1
- *          FS, bits [5:0]
- */
-#define ESR_DFSC(aarch64, lpae, v)        \
-    ((aarch64 || (lpae)) ? ((v) & 0x3F)   \
-               : (((v) >> 6) | ((v) & 0x1F)))
-
-#define ESR_DFSC_EXTABT(aarch64, lpae) \
-    ((aarch64) ? 0x10 : (lpae) ? 0x10 : 0x8)
-
-bool kvm_arm_verify_ext_dabt_pending(CPUState *cs)
-{
-    uint64_t dfsr_val;
-
-    if (!kvm_get_one_reg(cs, ARM64_REG_ESR_EL1, &dfsr_val)) {
-        ARMCPU *cpu = ARM_CPU(cs);
-        CPUARMState *env = &cpu->env;
-        int aarch64_mode = arm_feature(env, ARM_FEATURE_AARCH64);
-        int lpae = 0;
-
-        if (!aarch64_mode) {
-            uint64_t ttbcr;
-
-            if (!kvm_get_one_reg(cs, ARM64_REG_TCR_EL1, &ttbcr)) {
-                lpae = arm_feature(env, ARM_FEATURE_LPAE)
-                        && (ttbcr & TTBCR_EAE);
-            }
-        }
-        /*
-         * The verification here is based on the DFSC bits
-         * of the ESR_EL1 reg only
-         */
-         return (ESR_DFSC(aarch64_mode, lpae, dfsr_val) ==
-                ESR_DFSC_EXTABT(aarch64_mode, lpae));
-    }
-    return false;
-}
diff --git a/target/arm/kvm_arm.h b/target/arm/kvm_arm.h
index 051a0da41c..cfaa0d9bc7 100644
--- a/target/arm/kvm_arm.h
+++ b/target/arm/kvm_arm.h
@@ -12,47 +12,11 @@
 #define QEMU_KVM_ARM_H
 
 #include "sysemu/kvm.h"
-#include "exec/memory.h"
-#include "qemu/error-report.h"
 
 #define KVM_ARM_VGIC_V2   (1 << 0)
 #define KVM_ARM_VGIC_V3   (1 << 1)
 
 /**
- * kvm_arm_init_debug() - initialize guest debug capabilities
- * @s: KVMState
- *
- * Should be called only once before using guest debug capabilities.
- */
-void kvm_arm_init_debug(KVMState *s);
-
-/**
- * kvm_arm_vcpu_init:
- * @cs: CPUState
- *
- * Initialize (or reinitialize) the VCPU by invoking the
- * KVM_ARM_VCPU_INIT ioctl with the CPU type and feature
- * bitmask specified in the CPUState.
- *
- * Returns: 0 if success else < 0 error code
- */
-int kvm_arm_vcpu_init(CPUState *cs);
-
-/**
- * kvm_arm_vcpu_finalize:
- * @cs: CPUState
- * @feature: feature to finalize
- *
- * Finalizes the configuration of the specified VCPU feature by
- * invoking the KVM_ARM_VCPU_FINALIZE ioctl. Features requiring
- * this are documented in the "KVM_ARM_VCPU_FINALIZE" section of
- * KVM's API documentation.
- *
- * Returns: 0 if success else < 0 error code
- */
-int kvm_arm_vcpu_finalize(CPUState *cs, int feature);
-
-/**
  * kvm_arm_register_device:
  * @mr: memory region for this device
  * @devid: the KVM device ID
@@ -74,37 +38,6 @@ void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group,
                              uint64_t attr, int dev_fd, uint64_t addr_ormask);
 
 /**
- * kvm_arm_init_cpreg_list:
- * @cpu: ARMCPU
- *
- * Initialize the ARMCPU cpreg list according to the kernel's
- * definition of what CPU registers it knows about (and throw away
- * the previous TCG-created cpreg list).
- *
- * Returns: 0 if success, else < 0 error code
- */
-int kvm_arm_init_cpreg_list(ARMCPU *cpu);
-
-/**
- * kvm_arm_reg_syncs_via_cpreg_list:
- * @regidx: KVM register index
- *
- * Return true if this KVM register should be synchronized via the
- * cpreg list of arbitrary system registers, false if it is synchronized
- * by hand using code in kvm_arch_get/put_registers().
- */
-bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx);
-
-/**
- * kvm_arm_cpreg_level:
- * @regidx: KVM register index
- *
- * Return the level of this coprocessor/system register.  Return value is
- * either KVM_PUT_RUNTIME_STATE, KVM_PUT_RESET_STATE, or KVM_PUT_FULL_STATE.
- */
-int kvm_arm_cpreg_level(uint64_t regidx);
-
-/**
  * write_list_to_kvmstate:
  * @cpu: ARMCPU
  * @level: the state level to sync
@@ -163,34 +96,6 @@ void kvm_arm_cpu_post_load(ARMCPU *cpu);
  */
 void kvm_arm_reset_vcpu(ARMCPU *cpu);
 
-/**
- * kvm_arm_init_serror_injection:
- * @cs: CPUState
- *
- * Check whether KVM can set guest SError syndrome.
- */
-void kvm_arm_init_serror_injection(CPUState *cs);
-
-/**
- * kvm_get_vcpu_events:
- * @cpu: ARMCPU
- *
- * Get VCPU related state from kvm.
- *
- * Returns: 0 if success else < 0 error code
- */
-int kvm_get_vcpu_events(ARMCPU *cpu);
-
-/**
- * kvm_put_vcpu_events:
- * @cpu: ARMCPU
- *
- * Put VCPU related state to kvm.
- *
- * Returns: 0 if success else < 0 error code
- */
-int kvm_put_vcpu_events(ARMCPU *cpu);
-
 #ifdef CONFIG_KVM
 /**
  * kvm_arm_create_scratch_host_vcpu:
@@ -223,36 +128,14 @@ bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try,
 void kvm_arm_destroy_scratch_host_vcpu(int *fdarray);
 
 /**
- * ARMHostCPUFeatures: information about the host CPU (identified
- * by asking the host kernel)
- */
-typedef struct ARMHostCPUFeatures {
-    ARMISARegisters isar;
-    uint64_t features;
-    uint32_t target;
-    const char *dtb_compatible;
-} ARMHostCPUFeatures;
-
-/**
- * kvm_arm_get_host_cpu_features:
- * @ahcf: ARMHostCPUClass to fill in
- *
- * Probe the capabilities of the host kernel's preferred CPU and fill
- * in the ARMHostCPUClass struct accordingly.
- *
- * Returns true on success and false otherwise.
- */
-bool kvm_arm_get_host_cpu_features(ARMHostCPUFeatures *ahcf);
-
-/**
  * kvm_arm_sve_get_vls:
- * @cs: CPUState
+ * @cpu: ARMCPU
  *
  * Get all the SVE vector lengths supported by the KVM host, setting
  * the bits corresponding to their length in quadwords minus one
  * (vq - 1) up to ARM_MAX_VQ.  Return the resulting map.
  */
-uint32_t kvm_arm_sve_get_vls(CPUState *cs);
+uint32_t kvm_arm_sve_get_vls(ARMCPU *cpu);
 
 /**
  * kvm_arm_set_cpu_features_from_host:
@@ -265,12 +148,12 @@ void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu);
 
 /**
  * kvm_arm_add_vcpu_properties:
- * @obj: The CPU object to add the properties to
+ * @cpu: The CPU object to add the properties to
  *
  * Add all KVM specific CPU properties to the CPU object. These
  * are the CPU properties with "kvm-" prefixed names.
  */
-void kvm_arm_add_vcpu_properties(Object *obj);
+void kvm_arm_add_vcpu_properties(ARMCPU *cpu);
 
 /**
  * kvm_arm_steal_time_finalize:
@@ -283,14 +166,6 @@ void kvm_arm_add_vcpu_properties(Object *obj);
 void kvm_arm_steal_time_finalize(ARMCPU *cpu, Error **errp);
 
 /**
- * kvm_arm_steal_time_supported:
- *
- * Returns: true if KVM can enable steal time reporting
- * and false otherwise.
- */
-bool kvm_arm_steal_time_supported(void);
-
-/**
  * kvm_arm_aarch32_supported:
  *
  * Returns: true if KVM can enable AArch32 mode
@@ -323,57 +198,19 @@ bool kvm_arm_sve_supported(void);
  */
 int kvm_arm_get_max_vm_ipa_size(MachineState *ms, bool *fixed_ipa);
 
-/**
- * kvm_arm_sync_mpstate_to_kvm:
- * @cpu: ARMCPU
- *
- * If supported set the KVM MP_STATE based on QEMU's model.
- *
- * Returns 0 on success and -1 on failure.
- */
-int kvm_arm_sync_mpstate_to_kvm(ARMCPU *cpu);
-
-/**
- * kvm_arm_sync_mpstate_to_qemu:
- * @cpu: ARMCPU
- *
- * If supported get the MP_STATE from KVM and store in QEMU's model.
- *
- * Returns 0 on success and aborts on failure.
- */
-int kvm_arm_sync_mpstate_to_qemu(ARMCPU *cpu);
-
-/**
- * kvm_arm_get_virtual_time:
- * @cs: CPUState
- *
- * Gets the VCPU's virtual counter and stores it in the KVM CPU state.
- */
-void kvm_arm_get_virtual_time(CPUState *cs);
-
-/**
- * kvm_arm_put_virtual_time:
- * @cs: CPUState
- *
- * Sets the VCPU's virtual counter to the value stored in the KVM CPU state.
- */
-void kvm_arm_put_virtual_time(CPUState *cs);
-
-void kvm_arm_vm_state_change(void *opaque, bool running, RunState state);
-
 int kvm_arm_vgic_probe(void);
 
-void kvm_arm_pmu_set_irq(CPUState *cs, int irq);
-void kvm_arm_pmu_init(CPUState *cs);
+void kvm_arm_pmu_init(ARMCPU *cpu);
+void kvm_arm_pmu_set_irq(ARMCPU *cpu, int irq);
 
 /**
  * kvm_arm_pvtime_init:
- * @cs: CPUState
+ * @cpu: ARMCPU
  * @ipa: Per-vcpu guest physical base address of the pvtime structures
  *
  * Initializes PVTIME for the VCPU, setting the PVTIME IPA to @ipa.
  */
-void kvm_arm_pvtime_init(CPUState *cs, uint64_t ipa);
+void kvm_arm_pvtime_init(ARMCPU *cpu, uint64_t ipa);
 
 int kvm_arm_set_irq(int cpu, int irqtype, int irq, int level);
 
@@ -398,11 +235,6 @@ static inline bool kvm_arm_sve_supported(void)
     return false;
 }
 
-static inline bool kvm_arm_steal_time_supported(void)
-{
-    return false;
-}
-
 /*
  * These functions should never actually be called without KVM support.
  */
@@ -411,7 +243,7 @@ static inline void kvm_arm_set_cpu_features_from_host(ARMCPU *cpu)
     g_assert_not_reached();
 }
 
-static inline void kvm_arm_add_vcpu_properties(Object *obj)
+static inline void kvm_arm_add_vcpu_properties(ARMCPU *cpu)
 {
     g_assert_not_reached();
 }
@@ -426,17 +258,17 @@ static inline int kvm_arm_vgic_probe(void)
     g_assert_not_reached();
 }
 
-static inline void kvm_arm_pmu_set_irq(CPUState *cs, int irq)
+static inline void kvm_arm_pmu_set_irq(ARMCPU *cpu, int irq)
 {
     g_assert_not_reached();
 }
 
-static inline void kvm_arm_pmu_init(CPUState *cs)
+static inline void kvm_arm_pmu_init(ARMCPU *cpu)
 {
     g_assert_not_reached();
 }
 
-static inline void kvm_arm_pvtime_init(CPUState *cs, uint64_t ipa)
+static inline void kvm_arm_pvtime_init(ARMCPU *cpu, uint64_t ipa)
 {
     g_assert_not_reached();
 }
@@ -446,48 +278,11 @@ static inline void kvm_arm_steal_time_finalize(ARMCPU *cpu, Error **errp)
     g_assert_not_reached();
 }
 
-static inline uint32_t kvm_arm_sve_get_vls(CPUState *cs)
+static inline uint32_t kvm_arm_sve_get_vls(ARMCPU *cpu)
 {
     g_assert_not_reached();
 }
 
 #endif
 
-/**
- * kvm_arm_handle_debug:
- * @cs: CPUState
- * @debug_exit: debug part of the KVM exit structure
- *
- * Returns: TRUE if the debug exception was handled.
- */
-bool kvm_arm_handle_debug(CPUState *cs, struct kvm_debug_exit_arch *debug_exit);
-
-/**
- * kvm_arm_hw_debug_active:
- * @cs: CPU State
- *
- * Return: TRUE if any hardware breakpoints in use.
- */
-bool kvm_arm_hw_debug_active(CPUState *cs);
-
-/**
- * kvm_arm_copy_hw_debug_data:
- * @ptr: kvm_guest_debug_arch structure
- *
- * Copy the architecture specific debug registers into the
- * kvm_guest_debug ioctl structure.
- */
-struct kvm_guest_debug_arch;
-void kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch *ptr);
-
-/**
- * kvm_arm_verify_ext_dabt_pending:
- * @cs: CPUState
- *
- * Verify the fault status code wrt the Ext DABT injection
- *
- * Returns: true if the fault status code is as expected, false otherwise
- */
-bool kvm_arm_verify_ext_dabt_pending(CPUState *cs);
-
 #endif
diff --git a/target/arm/meson.build b/target/arm/meson.build
index 5d04a8e94f..d6c3902e67 100644
--- a/target/arm/meson.build
+++ b/target/arm/meson.build
@@ -8,7 +8,7 @@ arm_ss.add(files(
 ))
 arm_ss.add(zlib)
 
-arm_ss.add(when: 'CONFIG_KVM', if_true: files('hyp_gdbstub.c', 'kvm.c', 'kvm64.c'), if_false: files('kvm-stub.c'))
+arm_ss.add(when: 'CONFIG_KVM', if_true: files('hyp_gdbstub.c', 'kvm.c'), if_false: files('kvm-stub.c'))
 arm_ss.add(when: 'CONFIG_HVF', if_true: files('hyp_gdbstub.c'))
 
 arm_ss.add(when: 'TARGET_AARCH64', if_true: files(
diff --git a/target/arm/tcg/op_helper.c b/target/arm/tcg/op_helper.c
index ea08936a85..9de0fa2d1f 100644
--- a/target/arm/tcg/op_helper.c
+++ b/target/arm/tcg/op_helper.c
@@ -121,6 +121,61 @@ void HELPER(v8m_stackcheck)(CPUARMState *env, uint32_t newvalue)
     }
 }
 
+/* Sign/zero extend */
+uint32_t HELPER(sxtb16)(uint32_t x)
+{
+    uint32_t res;
+    res = (uint16_t)(int8_t)x;
+    res |= (uint32_t)(int8_t)(x >> 16) << 16;
+    return res;
+}
+
+static void handle_possible_div0_trap(CPUARMState *env, uintptr_t ra)
+{
+    /*
+     * Take a division-by-zero exception if necessary; otherwise return
+     * to get the usual non-trapping division behaviour (result of 0)
+     */
+    if (arm_feature(env, ARM_FEATURE_M)
+        && (env->v7m.ccr[env->v7m.secure] & R_V7M_CCR_DIV_0_TRP_MASK)) {
+        raise_exception_ra(env, EXCP_DIVBYZERO, 0, 1, ra);
+    }
+}
+
+uint32_t HELPER(uxtb16)(uint32_t x)
+{
+    uint32_t res;
+    res = (uint16_t)(uint8_t)x;
+    res |= (uint32_t)(uint8_t)(x >> 16) << 16;
+    return res;
+}
+
+int32_t HELPER(sdiv)(CPUARMState *env, int32_t num, int32_t den)
+{
+    if (den == 0) {
+        handle_possible_div0_trap(env, GETPC());
+        return 0;
+    }
+    if (num == INT_MIN && den == -1) {
+        return INT_MIN;
+    }
+    return num / den;
+}
+
+uint32_t HELPER(udiv)(CPUARMState *env, uint32_t num, uint32_t den)
+{
+    if (den == 0) {
+        handle_possible_div0_trap(env, GETPC());
+        return 0;
+    }
+    return num / den;
+}
+
+uint32_t HELPER(rbit)(uint32_t x)
+{
+    return revbit32(x);
+}
+
 uint32_t HELPER(add_setq)(CPUARMState *env, uint32_t a, uint32_t b)
 {
     uint32_t res = a + b;
diff --git a/target/arm/tcg/translate-a64.c b/target/arm/tcg/translate-a64.c
index a2e49c39f9..f3b5b9124d 100644
--- a/target/arm/tcg/translate-a64.c
+++ b/target/arm/tcg/translate-a64.c
@@ -18,6 +18,7 @@
  */
 #include "qemu/osdep.h"
 
+#include "exec/exec-all.h"
 #include "translate.h"
 #include "translate-a64.h"
 #include "qemu/log.h"