summary refs log tree commit diff stats
path: root/disas/libvixl/a64/assembler-a64.h
diff options
context:
space:
mode:
Diffstat (limited to 'disas/libvixl/a64/assembler-a64.h')
-rw-r--r--disas/libvixl/a64/assembler-a64.h1784
1 files changed, 1784 insertions, 0 deletions
diff --git a/disas/libvixl/a64/assembler-a64.h b/disas/libvixl/a64/assembler-a64.h
new file mode 100644
index 0000000000..93b3011868
--- /dev/null
+++ b/disas/libvixl/a64/assembler-a64.h
@@ -0,0 +1,1784 @@
+// Copyright 2013, ARM Limited
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are met:
+//
+//   * Redistributions of source code must retain the above copyright notice,
+//     this list of conditions and the following disclaimer.
+//   * Redistributions in binary form must reproduce the above copyright notice,
+//     this list of conditions and the following disclaimer in the documentation
+//     and/or other materials provided with the distribution.
+//   * Neither the name of ARM Limited nor the names of its contributors may be
+//     used to endorse or promote products derived from this software without
+//     specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
+// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
+// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#ifndef VIXL_A64_ASSEMBLER_A64_H_
+#define VIXL_A64_ASSEMBLER_A64_H_
+
+#include <list>
+
+#include "globals.h"
+#include "utils.h"
+#include "a64/instructions-a64.h"
+
+namespace vixl {
+
+typedef uint64_t RegList;
+static const int kRegListSizeInBits = sizeof(RegList) * 8;
+
+// Registers.
+
+// Some CPURegister methods can return Register and FPRegister types, so we
+// need to declare them in advance.
+class Register;
+class FPRegister;
+
+
+class CPURegister {
+ public:
+  enum RegisterType {
+    // The kInvalid value is used to detect uninitialized static instances,
+    // which are always zero-initialized before any constructors are called.
+    kInvalid = 0,
+    kRegister,
+    kFPRegister,
+    kNoRegister
+  };
+
+  CPURegister() : code_(0), size_(0), type_(kNoRegister) {
+    ASSERT(!IsValid());
+    ASSERT(IsNone());
+  }
+
+  CPURegister(unsigned code, unsigned size, RegisterType type)
+      : code_(code), size_(size), type_(type) {
+    ASSERT(IsValidOrNone());
+  }
+
+  unsigned code() const {
+    ASSERT(IsValid());
+    return code_;
+  }
+
+  RegisterType type() const {
+    ASSERT(IsValidOrNone());
+    return type_;
+  }
+
+  RegList Bit() const {
+    ASSERT(code_ < (sizeof(RegList) * 8));
+    return IsValid() ? (static_cast<RegList>(1) << code_) : 0;
+  }
+
+  unsigned size() const {
+    ASSERT(IsValid());
+    return size_;
+  }
+
+  int SizeInBytes() const {
+    ASSERT(IsValid());
+    ASSERT(size() % 8 == 0);
+    return size_ / 8;
+  }
+
+  int SizeInBits() const {
+    ASSERT(IsValid());
+    return size_;
+  }
+
+  bool Is32Bits() const {
+    ASSERT(IsValid());
+    return size_ == 32;
+  }
+
+  bool Is64Bits() const {
+    ASSERT(IsValid());
+    return size_ == 64;
+  }
+
+  bool IsValid() const {
+    if (IsValidRegister() || IsValidFPRegister()) {
+      ASSERT(!IsNone());
+      return true;
+    } else {
+      ASSERT(IsNone());
+      return false;
+    }
+  }
+
+  bool IsValidRegister() const {
+    return IsRegister() &&
+           ((size_ == kWRegSize) || (size_ == kXRegSize)) &&
+           ((code_ < kNumberOfRegisters) || (code_ == kSPRegInternalCode));
+  }
+
+  bool IsValidFPRegister() const {
+    return IsFPRegister() &&
+           ((size_ == kSRegSize) || (size_ == kDRegSize)) &&
+           (code_ < kNumberOfFPRegisters);
+  }
+
+  bool IsNone() const {
+    // kNoRegister types should always have size 0 and code 0.
+    ASSERT((type_ != kNoRegister) || (code_ == 0));
+    ASSERT((type_ != kNoRegister) || (size_ == 0));
+
+    return type_ == kNoRegister;
+  }
+
+  bool Is(const CPURegister& other) const {
+    ASSERT(IsValidOrNone() && other.IsValidOrNone());
+    return (code_ == other.code_) && (size_ == other.size_) &&
+           (type_ == other.type_);
+  }
+
+  inline bool IsZero() const {
+    ASSERT(IsValid());
+    return IsRegister() && (code_ == kZeroRegCode);
+  }
+
+  inline bool IsSP() const {
+    ASSERT(IsValid());
+    return IsRegister() && (code_ == kSPRegInternalCode);
+  }
+
+  inline bool IsRegister() const {
+    return type_ == kRegister;
+  }
+
+  inline bool IsFPRegister() const {
+    return type_ == kFPRegister;
+  }
+
+  const Register& W() const;
+  const Register& X() const;
+  const FPRegister& S() const;
+  const FPRegister& D() const;
+
+  inline bool IsSameSizeAndType(const CPURegister& other) const {
+    return (size_ == other.size_) && (type_ == other.type_);
+  }
+
+ protected:
+  unsigned code_;
+  unsigned size_;
+  RegisterType type_;
+
+ private:
+  bool IsValidOrNone() const {
+    return IsValid() || IsNone();
+  }
+};
+
+
+class Register : public CPURegister {
+ public:
+  explicit Register() : CPURegister() {}
+  inline explicit Register(const CPURegister& other)
+      : CPURegister(other.code(), other.size(), other.type()) {
+    ASSERT(IsValidRegister());
+  }
+  explicit Register(unsigned code, unsigned size)
+      : CPURegister(code, size, kRegister) {}
+
+  bool IsValid() const {
+    ASSERT(IsRegister() || IsNone());
+    return IsValidRegister();
+  }
+
+  static const Register& WRegFromCode(unsigned code);
+  static const Register& XRegFromCode(unsigned code);
+
+  // V8 compatibility.
+  static const int kNumRegisters = kNumberOfRegisters;
+  static const int kNumAllocatableRegisters = kNumberOfRegisters - 1;
+
+ private:
+  static const Register wregisters[];
+  static const Register xregisters[];
+};
+
+
+class FPRegister : public CPURegister {
+ public:
+  inline FPRegister() : CPURegister() {}
+  inline explicit FPRegister(const CPURegister& other)
+      : CPURegister(other.code(), other.size(), other.type()) {
+    ASSERT(IsValidFPRegister());
+  }
+  inline FPRegister(unsigned code, unsigned size)
+      : CPURegister(code, size, kFPRegister) {}
+
+  bool IsValid() const {
+    ASSERT(IsFPRegister() || IsNone());
+    return IsValidFPRegister();
+  }
+
+  static const FPRegister& SRegFromCode(unsigned code);
+  static const FPRegister& DRegFromCode(unsigned code);
+
+  // V8 compatibility.
+  static const int kNumRegisters = kNumberOfFPRegisters;
+  static const int kNumAllocatableRegisters = kNumberOfFPRegisters - 1;
+
+ private:
+  static const FPRegister sregisters[];
+  static const FPRegister dregisters[];
+};
+
+
+// No*Reg is used to indicate an unused argument, or an error case. Note that
+// these all compare equal (using the Is() method). The Register and FPRegister
+// variants are provided for convenience.
+const Register NoReg;
+const FPRegister NoFPReg;
+const CPURegister NoCPUReg;
+
+
+#define DEFINE_REGISTERS(N)  \
+const Register w##N(N, kWRegSize);  \
+const Register x##N(N, kXRegSize);
+REGISTER_CODE_LIST(DEFINE_REGISTERS)
+#undef DEFINE_REGISTERS
+const Register wsp(kSPRegInternalCode, kWRegSize);
+const Register sp(kSPRegInternalCode, kXRegSize);
+
+
+#define DEFINE_FPREGISTERS(N)  \
+const FPRegister s##N(N, kSRegSize);  \
+const FPRegister d##N(N, kDRegSize);
+REGISTER_CODE_LIST(DEFINE_FPREGISTERS)
+#undef DEFINE_FPREGISTERS
+
+
+// Registers aliases.
+const Register ip0 = x16;
+const Register ip1 = x17;
+const Register lr = x30;
+const Register xzr = x31;
+const Register wzr = w31;
+
+
+// AreAliased returns true if any of the named registers overlap. Arguments
+// set to NoReg are ignored. The system stack pointer may be specified.
+bool AreAliased(const CPURegister& reg1,
+                const CPURegister& reg2,
+                const CPURegister& reg3 = NoReg,
+                const CPURegister& reg4 = NoReg,
+                const CPURegister& reg5 = NoReg,
+                const CPURegister& reg6 = NoReg,
+                const CPURegister& reg7 = NoReg,
+                const CPURegister& reg8 = NoReg);
+
+
+// AreSameSizeAndType returns true if all of the specified registers have the
+// same size, and are of the same type. The system stack pointer may be
+// specified. Arguments set to NoReg are ignored, as are any subsequent
+// arguments. At least one argument (reg1) must be valid (not NoCPUReg).
+bool AreSameSizeAndType(const CPURegister& reg1,
+                        const CPURegister& reg2,
+                        const CPURegister& reg3 = NoCPUReg,
+                        const CPURegister& reg4 = NoCPUReg,
+                        const CPURegister& reg5 = NoCPUReg,
+                        const CPURegister& reg6 = NoCPUReg,
+                        const CPURegister& reg7 = NoCPUReg,
+                        const CPURegister& reg8 = NoCPUReg);
+
+
+// Lists of registers.
+class CPURegList {
+ public:
+  inline explicit CPURegList(CPURegister reg1,
+                             CPURegister reg2 = NoCPUReg,
+                             CPURegister reg3 = NoCPUReg,
+                             CPURegister reg4 = NoCPUReg)
+      : list_(reg1.Bit() | reg2.Bit() | reg3.Bit() | reg4.Bit()),
+        size_(reg1.size()), type_(reg1.type()) {
+    ASSERT(AreSameSizeAndType(reg1, reg2, reg3, reg4));
+    ASSERT(IsValid());
+  }
+
+  inline CPURegList(CPURegister::RegisterType type, unsigned size, RegList list)
+      : list_(list), size_(size), type_(type) {
+    ASSERT(IsValid());
+  }
+
+  inline CPURegList(CPURegister::RegisterType type, unsigned size,
+                    unsigned first_reg, unsigned last_reg)
+      : size_(size), type_(type) {
+    ASSERT(((type == CPURegister::kRegister) &&
+            (last_reg < kNumberOfRegisters)) ||
+           ((type == CPURegister::kFPRegister) &&
+            (last_reg < kNumberOfFPRegisters)));
+    ASSERT(last_reg >= first_reg);
+    list_ = (1UL << (last_reg + 1)) - 1;
+    list_ &= ~((1UL << first_reg) - 1);
+    ASSERT(IsValid());
+  }
+
+  inline CPURegister::RegisterType type() const {
+    ASSERT(IsValid());
+    return type_;
+  }
+
+  // Combine another CPURegList into this one. Registers that already exist in
+  // this list are left unchanged. The type and size of the registers in the
+  // 'other' list must match those in this list.
+  void Combine(const CPURegList& other) {
+    ASSERT(IsValid());
+    ASSERT(other.type() == type_);
+    ASSERT(other.RegisterSizeInBits() == size_);
+    list_ |= other.list();
+  }
+
+  // Remove every register in the other CPURegList from this one. Registers that
+  // do not exist in this list are ignored. The type and size of the registers
+  // in the 'other' list must match those in this list.
+  void Remove(const CPURegList& other) {
+    ASSERT(IsValid());
+    ASSERT(other.type() == type_);
+    ASSERT(other.RegisterSizeInBits() == size_);
+    list_ &= ~other.list();
+  }
+
+  // Variants of Combine and Remove which take a single register.
+  inline void Combine(const CPURegister& other) {
+    ASSERT(other.type() == type_);
+    ASSERT(other.size() == size_);
+    Combine(other.code());
+  }
+
+  inline void Remove(const CPURegister& other) {
+    ASSERT(other.type() == type_);
+    ASSERT(other.size() == size_);
+    Remove(other.code());
+  }
+
+  // Variants of Combine and Remove which take a single register by its code;
+  // the type and size of the register is inferred from this list.
+  inline void Combine(int code) {
+    ASSERT(IsValid());
+    ASSERT(CPURegister(code, size_, type_).IsValid());
+    list_ |= (1UL << code);
+  }
+
+  inline void Remove(int code) {
+    ASSERT(IsValid());
+    ASSERT(CPURegister(code, size_, type_).IsValid());
+    list_ &= ~(1UL << code);
+  }
+
+  inline RegList list() const {
+    ASSERT(IsValid());
+    return list_;
+  }
+
+  // Remove all callee-saved registers from the list. This can be useful when
+  // preparing registers for an AAPCS64 function call, for example.
+  void RemoveCalleeSaved();
+
+  CPURegister PopLowestIndex();
+  CPURegister PopHighestIndex();
+
+  // AAPCS64 callee-saved registers.
+  static CPURegList GetCalleeSaved(unsigned size = kXRegSize);
+  static CPURegList GetCalleeSavedFP(unsigned size = kDRegSize);
+
+  // AAPCS64 caller-saved registers. Note that this includes lr.
+  static CPURegList GetCallerSaved(unsigned size = kXRegSize);
+  static CPURegList GetCallerSavedFP(unsigned size = kDRegSize);
+
+  inline bool IsEmpty() const {
+    ASSERT(IsValid());
+    return list_ == 0;
+  }
+
+  inline bool IncludesAliasOf(const CPURegister& other) const {
+    ASSERT(IsValid());
+    return (type_ == other.type()) && (other.Bit() & list_);
+  }
+
+  inline int Count() const {
+    ASSERT(IsValid());
+    return CountSetBits(list_, kRegListSizeInBits);
+  }
+
+  inline unsigned RegisterSizeInBits() const {
+    ASSERT(IsValid());
+    return size_;
+  }
+
+  inline unsigned RegisterSizeInBytes() const {
+    int size_in_bits = RegisterSizeInBits();
+    ASSERT((size_in_bits % 8) == 0);
+    return size_in_bits / 8;
+  }
+
+ private:
+  RegList list_;
+  unsigned size_;
+  CPURegister::RegisterType type_;
+
+  bool IsValid() const;
+};
+
+
+// AAPCS64 callee-saved registers.
+extern const CPURegList kCalleeSaved;
+extern const CPURegList kCalleeSavedFP;
+
+
+// AAPCS64 caller-saved registers. Note that this includes lr.
+extern const CPURegList kCallerSaved;
+extern const CPURegList kCallerSavedFP;
+
+
+// Operand.
+class Operand {
+ public:
+  // #<immediate>
+  // where <immediate> is int64_t.
+  // This is allowed to be an implicit constructor because Operand is
+  // a wrapper class that doesn't normally perform any type conversion.
+  Operand(int64_t immediate);           // NOLINT(runtime/explicit)
+
+  // rm, {<shift> #<shift_amount>}
+  // where <shift> is one of {LSL, LSR, ASR, ROR}.
+  //       <shift_amount> is uint6_t.
+  // This is allowed to be an implicit constructor because Operand is
+  // a wrapper class that doesn't normally perform any type conversion.
+  Operand(Register reg,
+          Shift shift = LSL,
+          unsigned shift_amount = 0);   // NOLINT(runtime/explicit)
+
+  // rm, {<extend> {#<shift_amount>}}
+  // where <extend> is one of {UXTB, UXTH, UXTW, UXTX, SXTB, SXTH, SXTW, SXTX}.
+  //       <shift_amount> is uint2_t.
+  explicit Operand(Register reg, Extend extend, unsigned shift_amount = 0);
+
+  bool IsImmediate() const;
+  bool IsShiftedRegister() const;
+  bool IsExtendedRegister() const;
+
+  // This returns an LSL shift (<= 4) operand as an equivalent extend operand,
+  // which helps in the encoding of instructions that use the stack pointer.
+  Operand ToExtendedRegister() const;
+
+  int64_t immediate() const {
+    ASSERT(IsImmediate());
+    return immediate_;
+  }
+
+  Register reg() const {
+    ASSERT(IsShiftedRegister() || IsExtendedRegister());
+    return reg_;
+  }
+
+  Shift shift() const {
+    ASSERT(IsShiftedRegister());
+    return shift_;
+  }
+
+  Extend extend() const {
+    ASSERT(IsExtendedRegister());
+    return extend_;
+  }
+
+  unsigned shift_amount() const {
+    ASSERT(IsShiftedRegister() || IsExtendedRegister());
+    return shift_amount_;
+  }
+
+ private:
+  int64_t immediate_;
+  Register reg_;
+  Shift shift_;
+  Extend extend_;
+  unsigned shift_amount_;
+};
+
+
+// MemOperand represents the addressing mode of a load or store instruction.
+class MemOperand {
+ public:
+  explicit MemOperand(Register base,
+                      ptrdiff_t offset = 0,
+                      AddrMode addrmode = Offset);
+  explicit MemOperand(Register base,
+                      Register regoffset,
+                      Shift shift = LSL,
+                      unsigned shift_amount = 0);
+  explicit MemOperand(Register base,
+                      Register regoffset,
+                      Extend extend,
+                      unsigned shift_amount = 0);
+  explicit MemOperand(Register base,
+                      const Operand& offset,
+                      AddrMode addrmode = Offset);
+
+  const Register& base() const { return base_; }
+  const Register& regoffset() const { return regoffset_; }
+  ptrdiff_t offset() const { return offset_; }
+  AddrMode addrmode() const { return addrmode_; }
+  Shift shift() const { return shift_; }
+  Extend extend() const { return extend_; }
+  unsigned shift_amount() const { return shift_amount_; }
+  bool IsImmediateOffset() const;
+  bool IsRegisterOffset() const;
+  bool IsPreIndex() const;
+  bool IsPostIndex() const;
+
+ private:
+  Register base_;
+  Register regoffset_;
+  ptrdiff_t offset_;
+  AddrMode addrmode_;
+  Shift shift_;
+  Extend extend_;
+  unsigned shift_amount_;
+};
+
+
+class Label {
+ public:
+  Label() : is_bound_(false), link_(NULL), target_(NULL) {}
+  ~Label() {
+    // If the label has been linked to, it needs to be bound to a target.
+    ASSERT(!IsLinked() || IsBound());
+  }
+
+  inline Instruction* link() const { return link_; }
+  inline Instruction* target() const { return target_; }
+
+  inline bool IsBound() const { return is_bound_; }
+  inline bool IsLinked() const { return link_ != NULL; }
+
+  inline void set_link(Instruction* new_link) { link_ = new_link; }
+
+  static const int kEndOfChain = 0;
+
+ private:
+  // Indicates if the label has been bound, ie its location is fixed.
+  bool is_bound_;
+  // Branches instructions branching to this label form a chained list, with
+  // their offset indicating where the next instruction is located.
+  // link_ points to the latest branch instruction generated branching to this
+  // branch.
+  // If link_ is not NULL, the label has been linked to.
+  Instruction* link_;
+  // The label location.
+  Instruction* target_;
+
+  friend class Assembler;
+};
+
+
+// TODO: Obtain better values for these, based on real-world data.
+const int kLiteralPoolCheckInterval = 4 * KBytes;
+const int kRecommendedLiteralPoolRange = 2 * kLiteralPoolCheckInterval;
+
+
+// Control whether a branch over the literal pool should also be emitted. This
+// is needed if the literal pool has to be emitted in the middle of the JITted
+// code.
+enum LiteralPoolEmitOption {
+  JumpRequired,
+  NoJumpRequired
+};
+
+
+// Literal pool entry.
+class Literal {
+ public:
+  Literal(Instruction* pc, uint64_t imm, unsigned size)
+      : pc_(pc), value_(imm), size_(size) {}
+
+ private:
+  Instruction* pc_;
+  int64_t value_;
+  unsigned size_;
+
+  friend class Assembler;
+};
+
+
+// Assembler.
+class Assembler {
+ public:
+  Assembler(byte* buffer, unsigned buffer_size);
+
+  // The destructor asserts that one of the following is true:
+  //  * The Assembler object has not been used.
+  //  * Nothing has been emitted since the last Reset() call.
+  //  * Nothing has been emitted since the last FinalizeCode() call.
+  ~Assembler();
+
+  // System functions.
+
+  // Start generating code from the beginning of the buffer, discarding any code
+  // and data that has already been emitted into the buffer.
+  //
+  // In order to avoid any accidental transfer of state, Reset ASSERTs that the
+  // constant pool is not blocked.
+  void Reset();
+
+  // Finalize a code buffer of generated instructions. This function must be
+  // called before executing or copying code from the buffer.
+  void FinalizeCode();
+
+  // Label.
+  // Bind a label to the current PC.
+  void bind(Label* label);
+  int UpdateAndGetByteOffsetTo(Label* label);
+  inline int UpdateAndGetInstructionOffsetTo(Label* label) {
+    ASSERT(Label::kEndOfChain == 0);
+    return UpdateAndGetByteOffsetTo(label) >> kInstructionSizeLog2;
+  }
+
+
+  // Instruction set functions.
+
+  // Branch / Jump instructions.
+  // Branch to register.
+  void br(const Register& xn);
+
+  // Branch with link to register.
+  void blr(const Register& xn);
+
+  // Branch to register with return hint.
+  void ret(const Register& xn = lr);
+
+  // Unconditional branch to label.
+  void b(Label* label);
+
+  // Conditional branch to label.
+  void b(Label* label, Condition cond);
+
+  // Unconditional branch to PC offset.
+  void b(int imm26);
+
+  // Conditional branch to PC offset.
+  void b(int imm19, Condition cond);
+
+  // Branch with link to label.
+  void bl(Label* label);
+
+  // Branch with link to PC offset.
+  void bl(int imm26);
+
+  // Compare and branch to label if zero.
+  void cbz(const Register& rt, Label* label);
+
+  // Compare and branch to PC offset if zero.
+  void cbz(const Register& rt, int imm19);
+
+  // Compare and branch to label if not zero.
+  void cbnz(const Register& rt, Label* label);
+
+  // Compare and branch to PC offset if not zero.
+  void cbnz(const Register& rt, int imm19);
+
+  // Test bit and branch to label if zero.
+  void tbz(const Register& rt, unsigned bit_pos, Label* label);
+
+  // Test bit and branch to PC offset if zero.
+  void tbz(const Register& rt, unsigned bit_pos, int imm14);
+
+  // Test bit and branch to label if not zero.
+  void tbnz(const Register& rt, unsigned bit_pos, Label* label);
+
+  // Test bit and branch to PC offset if not zero.
+  void tbnz(const Register& rt, unsigned bit_pos, int imm14);
+
+  // Address calculation instructions.
+  // Calculate a PC-relative address. Unlike for branches the offset in adr is
+  // unscaled (i.e. the result can be unaligned).
+
+  // Calculate the address of a label.
+  void adr(const Register& rd, Label* label);
+
+  // Calculate the address of a PC offset.
+  void adr(const Register& rd, int imm21);
+
+  // Data Processing instructions.
+  // Add.
+  void add(const Register& rd,
+           const Register& rn,
+           const Operand& operand,
+           FlagsUpdate S = LeaveFlags);
+
+  // Compare negative.
+  void cmn(const Register& rn, const Operand& operand);
+
+  // Subtract.
+  void sub(const Register& rd,
+           const Register& rn,
+           const Operand& operand,
+           FlagsUpdate S = LeaveFlags);
+
+  // Compare.
+  void cmp(const Register& rn, const Operand& operand);
+
+  // Negate.
+  void neg(const Register& rd,
+           const Operand& operand,
+           FlagsUpdate S = LeaveFlags);
+
+  // Add with carry bit.
+  void adc(const Register& rd,
+           const Register& rn,
+           const Operand& operand,
+           FlagsUpdate S = LeaveFlags);
+
+  // Subtract with carry bit.
+  void sbc(const Register& rd,
+           const Register& rn,
+           const Operand& operand,
+           FlagsUpdate S = LeaveFlags);
+
+  // Negate with carry bit.
+  void ngc(const Register& rd,
+           const Operand& operand,
+           FlagsUpdate S = LeaveFlags);
+
+  // Logical instructions.
+  // Bitwise and (A & B).
+  void and_(const Register& rd,
+            const Register& rn,
+            const Operand& operand,
+            FlagsUpdate S = LeaveFlags);
+
+  // Bit test and set flags.
+  void tst(const Register& rn, const Operand& operand);
+
+  // Bit clear (A & ~B).
+  void bic(const Register& rd,
+           const Register& rn,
+           const Operand& operand,
+           FlagsUpdate S = LeaveFlags);
+
+  // Bitwise or (A | B).
+  void orr(const Register& rd, const Register& rn, const Operand& operand);
+
+  // Bitwise nor (A | ~B).
+  void orn(const Register& rd, const Register& rn, const Operand& operand);
+
+  // Bitwise eor/xor (A ^ B).
+  void eor(const Register& rd, const Register& rn, const Operand& operand);
+
+  // Bitwise enor/xnor (A ^ ~B).
+  void eon(const Register& rd, const Register& rn, const Operand& operand);
+
+  // Logical shift left by variable.
+  void lslv(const Register& rd, const Register& rn, const Register& rm);
+
+  // Logical shift right by variable.
+  void lsrv(const Register& rd, const Register& rn, const Register& rm);
+
+  // Arithmetic shift right by variable.
+  void asrv(const Register& rd, const Register& rn, const Register& rm);
+
+  // Rotate right by variable.
+  void rorv(const Register& rd, const Register& rn, const Register& rm);
+
+  // Bitfield instructions.
+  // Bitfield move.
+  void bfm(const Register& rd,
+           const Register& rn,
+           unsigned immr,
+           unsigned imms);
+
+  // Signed bitfield move.
+  void sbfm(const Register& rd,
+            const Register& rn,
+            unsigned immr,
+            unsigned imms);
+
+  // Unsigned bitfield move.
+  void ubfm(const Register& rd,
+            const Register& rn,
+            unsigned immr,
+            unsigned imms);
+
+  // Bfm aliases.
+  // Bitfield insert.
+  inline void bfi(const Register& rd,
+                  const Register& rn,
+                  unsigned lsb,
+                  unsigned width) {
+    ASSERT(width >= 1);
+    ASSERT(lsb + width <= rn.size());
+    bfm(rd, rn, (rd.size() - lsb) & (rd.size() - 1), width - 1);
+  }
+
+  // Bitfield extract and insert low.
+  inline void bfxil(const Register& rd,
+                    const Register& rn,
+                    unsigned lsb,
+                    unsigned width) {
+    ASSERT(width >= 1);
+    ASSERT(lsb + width <= rn.size());
+    bfm(rd, rn, lsb, lsb + width - 1);
+  }
+
+  // Sbfm aliases.
+  // Arithmetic shift right.
+  inline void asr(const Register& rd, const Register& rn, unsigned shift) {
+    ASSERT(shift < rd.size());
+    sbfm(rd, rn, shift, rd.size() - 1);
+  }
+
+  // Signed bitfield insert with zero at right.
+  inline void sbfiz(const Register& rd,
+                    const Register& rn,
+                    unsigned lsb,
+                    unsigned width) {
+    ASSERT(width >= 1);
+    ASSERT(lsb + width <= rn.size());
+    sbfm(rd, rn, (rd.size() - lsb) & (rd.size() - 1), width - 1);
+  }
+
+  // Signed bitfield extract.
+  inline void sbfx(const Register& rd,
+                   const Register& rn,
+                   unsigned lsb,
+                   unsigned width) {
+    ASSERT(width >= 1);
+    ASSERT(lsb + width <= rn.size());
+    sbfm(rd, rn, lsb, lsb + width - 1);
+  }
+
+  // Signed extend byte.
+  inline void sxtb(const Register& rd, const Register& rn) {
+    sbfm(rd, rn, 0, 7);
+  }
+
+  // Signed extend halfword.
+  inline void sxth(const Register& rd, const Register& rn) {
+    sbfm(rd, rn, 0, 15);
+  }
+
+  // Signed extend word.
+  inline void sxtw(const Register& rd, const Register& rn) {
+    sbfm(rd, rn, 0, 31);
+  }
+
+  // Ubfm aliases.
+  // Logical shift left.
+  inline void lsl(const Register& rd, const Register& rn, unsigned shift) {
+    unsigned reg_size = rd.size();
+    ASSERT(shift < reg_size);
+    ubfm(rd, rn, (reg_size - shift) % reg_size, reg_size - shift - 1);
+  }
+
+  // Logical shift right.
+  inline void lsr(const Register& rd, const Register& rn, unsigned shift) {
+    ASSERT(shift < rd.size());
+    ubfm(rd, rn, shift, rd.size() - 1);
+  }
+
+  // Unsigned bitfield insert with zero at right.
+  inline void ubfiz(const Register& rd,
+                    const Register& rn,
+                    unsigned lsb,
+                    unsigned width) {
+    ASSERT(width >= 1);
+    ASSERT(lsb + width <= rn.size());
+    ubfm(rd, rn, (rd.size() - lsb) & (rd.size() - 1), width - 1);
+  }
+
+  // Unsigned bitfield extract.
+  inline void ubfx(const Register& rd,
+                   const Register& rn,
+                   unsigned lsb,
+                   unsigned width) {
+    ASSERT(width >= 1);
+    ASSERT(lsb + width <= rn.size());
+    ubfm(rd, rn, lsb, lsb + width - 1);
+  }
+
+  // Unsigned extend byte.
+  inline void uxtb(const Register& rd, const Register& rn) {
+    ubfm(rd, rn, 0, 7);
+  }
+
+  // Unsigned extend halfword.
+  inline void uxth(const Register& rd, const Register& rn) {
+    ubfm(rd, rn, 0, 15);
+  }
+
+  // Unsigned extend word.
+  inline void uxtw(const Register& rd, const Register& rn) {
+    ubfm(rd, rn, 0, 31);
+  }
+
+  // Extract.
+  void extr(const Register& rd,
+            const Register& rn,
+            const Register& rm,
+            unsigned lsb);
+
+  // Conditional select: rd = cond ? rn : rm.
+  void csel(const Register& rd,
+            const Register& rn,
+            const Register& rm,
+            Condition cond);
+
+  // Conditional select increment: rd = cond ? rn : rm + 1.
+  void csinc(const Register& rd,
+             const Register& rn,
+             const Register& rm,
+             Condition cond);
+
+  // Conditional select inversion: rd = cond ? rn : ~rm.
+  void csinv(const Register& rd,
+             const Register& rn,
+             const Register& rm,
+             Condition cond);
+
+  // Conditional select negation: rd = cond ? rn : -rm.
+  void csneg(const Register& rd,
+             const Register& rn,
+             const Register& rm,
+             Condition cond);
+
+  // Conditional set: rd = cond ? 1 : 0.
+  void cset(const Register& rd, Condition cond);
+
+  // Conditional set mask: rd = cond ? -1 : 0.
+  void csetm(const Register& rd, Condition cond);
+
+  // Conditional increment: rd = cond ? rn + 1 : rn.
+  void cinc(const Register& rd, const Register& rn, Condition cond);
+
+  // Conditional invert: rd = cond ? ~rn : rn.
+  void cinv(const Register& rd, const Register& rn, Condition cond);
+
+  // Conditional negate: rd = cond ? -rn : rn.
+  void cneg(const Register& rd, const Register& rn, Condition cond);
+
+  // Rotate right.
+  inline void ror(const Register& rd, const Register& rs, unsigned shift) {
+    extr(rd, rs, rs, shift);
+  }
+
+  // Conditional comparison.
+  // Conditional compare negative.
+  void ccmn(const Register& rn,
+            const Operand& operand,
+            StatusFlags nzcv,
+            Condition cond);
+
+  // Conditional compare.
+  void ccmp(const Register& rn,
+            const Operand& operand,
+            StatusFlags nzcv,
+            Condition cond);
+
+  // Multiply.
+  void mul(const Register& rd, const Register& rn, const Register& rm);
+
+  // Negated multiply.
+  void mneg(const Register& rd, const Register& rn, const Register& rm);
+
+  // Signed long multiply: 32 x 32 -> 64-bit.
+  void smull(const Register& rd, const Register& rn, const Register& rm);
+
+  // Signed multiply high: 64 x 64 -> 64-bit <127:64>.
+  void smulh(const Register& xd, const Register& xn, const Register& xm);
+
+  // Multiply and accumulate.
+  void madd(const Register& rd,
+            const Register& rn,
+            const Register& rm,
+            const Register& ra);
+
+  // Multiply and subtract.
+  void msub(const Register& rd,
+            const Register& rn,
+            const Register& rm,
+            const Register& ra);
+
+  // Signed long multiply and accumulate: 32 x 32 + 64 -> 64-bit.
+  void smaddl(const Register& rd,
+              const Register& rn,
+              const Register& rm,
+              const Register& ra);
+
+  // Unsigned long multiply and accumulate: 32 x 32 + 64 -> 64-bit.
+  void umaddl(const Register& rd,
+              const Register& rn,
+              const Register& rm,
+              const Register& ra);
+
+  // Signed long multiply and subtract: 64 - (32 x 32) -> 64-bit.
+  void smsubl(const Register& rd,
+              const Register& rn,
+              const Register& rm,
+              const Register& ra);
+
+  // Unsigned long multiply and subtract: 64 - (32 x 32) -> 64-bit.
+  void umsubl(const Register& rd,
+              const Register& rn,
+              const Register& rm,
+              const Register& ra);
+
+  // Signed integer divide.
+  void sdiv(const Register& rd, const Register& rn, const Register& rm);
+
+  // Unsigned integer divide.
+  void udiv(const Register& rd, const Register& rn, const Register& rm);
+
+  // Bit reverse.
+  void rbit(const Register& rd, const Register& rn);
+
+  // Reverse bytes in 16-bit half words.
+  void rev16(const Register& rd, const Register& rn);
+
+  // Reverse bytes in 32-bit words.
+  void rev32(const Register& rd, const Register& rn);
+
+  // Reverse bytes.
+  void rev(const Register& rd, const Register& rn);
+
+  // Count leading zeroes.
+  void clz(const Register& rd, const Register& rn);
+
+  // Count leading sign bits.
+  void cls(const Register& rd, const Register& rn);
+
+  // Memory instructions.
+  // Load integer or FP register.
+  void ldr(const CPURegister& rt, const MemOperand& src);
+
+  // Store integer or FP register.
+  void str(const CPURegister& rt, const MemOperand& dst);
+
+  // Load word with sign extension.
+  void ldrsw(const Register& rt, const MemOperand& src);
+
+  // Load byte.
+  void ldrb(const Register& rt, const MemOperand& src);
+
+  // Store byte.
+  void strb(const Register& rt, const MemOperand& dst);
+
+  // Load byte with sign extension.
+  void ldrsb(const Register& rt, const MemOperand& src);
+
+  // Load half-word.
+  void ldrh(const Register& rt, const MemOperand& src);
+
+  // Store half-word.
+  void strh(const Register& rt, const MemOperand& dst);
+
+  // Load half-word with sign extension.
+  void ldrsh(const Register& rt, const MemOperand& src);
+
+  // Load integer or FP register pair.
+  void ldp(const CPURegister& rt, const CPURegister& rt2,
+           const MemOperand& src);
+
+  // Store integer or FP register pair.
+  void stp(const CPURegister& rt, const CPURegister& rt2,
+           const MemOperand& dst);
+
+  // Load word pair with sign extension.
+  void ldpsw(const Register& rt, const Register& rt2, const MemOperand& src);
+
+  // Load integer or FP register pair, non-temporal.
+  void ldnp(const CPURegister& rt, const CPURegister& rt2,
+            const MemOperand& src);
+
+  // Store integer or FP register pair, non-temporal.
+  void stnp(const CPURegister& rt, const CPURegister& rt2,
+            const MemOperand& dst);
+
+  // Load literal to register.
+  void ldr(const Register& rt, uint64_t imm);
+
+  // Load literal to FP register.
+  void ldr(const FPRegister& ft, double imm);
+
+  // Move instructions. The default shift of -1 indicates that the move
+  // instruction will calculate an appropriate 16-bit immediate and left shift
+  // that is equal to the 64-bit immediate argument. If an explicit left shift
+  // is specified (0, 16, 32 or 48), the immediate must be a 16-bit value.
+  //
+  // For movk, an explicit shift can be used to indicate which half word should
+  // be overwritten, eg. movk(x0, 0, 0) will overwrite the least-significant
+  // half word with zero, whereas movk(x0, 0, 48) will overwrite the
+  // most-significant.
+
+  // Move immediate and keep.
+  void movk(const Register& rd, uint64_t imm, int shift = -1) {
+    MoveWide(rd, imm, shift, MOVK);
+  }
+
+  // Move inverted immediate.
+  void movn(const Register& rd, uint64_t imm, int shift = -1) {
+    MoveWide(rd, imm, shift, MOVN);
+  }
+
+  // Move immediate.
+  void movz(const Register& rd, uint64_t imm, int shift = -1) {
+    MoveWide(rd, imm, shift, MOVZ);
+  }
+
+  // Misc instructions.
+  // Monitor debug-mode breakpoint.
+  void brk(int code);
+
+  // Halting debug-mode breakpoint.
+  void hlt(int code);
+
+  // Move register to register.
+  void mov(const Register& rd, const Register& rn);
+
+  // Move inverted operand to register.
+  void mvn(const Register& rd, const Operand& operand);
+
+  // System instructions.
+  // Move to register from system register.
+  void mrs(const Register& rt, SystemRegister sysreg);
+
+  // Move from register to system register.
+  void msr(SystemRegister sysreg, const Register& rt);
+
+  // System hint.
+  void hint(SystemHint code);
+
+  // Alias for system instructions.
+  // No-op.
+  void nop() {
+    hint(NOP);
+  }
+
+  // FP instructions.
+  // Move immediate to FP register.
+  void fmov(FPRegister fd, double imm);
+
+  // Move FP register to register.
+  void fmov(Register rd, FPRegister fn);
+
+  // Move register to FP register.
+  void fmov(FPRegister fd, Register rn);
+
+  // Move FP register to FP register.
+  void fmov(FPRegister fd, FPRegister fn);
+
+  // FP add.
+  void fadd(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm);
+
+  // FP subtract.
+  void fsub(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm);
+
+  // FP multiply.
+  void fmul(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm);
+
+  // FP multiply and subtract.
+  void fmsub(const FPRegister& fd,
+             const FPRegister& fn,
+             const FPRegister& fm,
+             const FPRegister& fa);
+
+  // FP divide.
+  void fdiv(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm);
+
+  // FP maximum.
+  void fmax(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm);
+
+  // FP minimum.
+  void fmin(const FPRegister& fd, const FPRegister& fn, const FPRegister& fm);
+
+  // FP absolute.
+  void fabs(const FPRegister& fd, const FPRegister& fn);
+
+  // FP negate.
+  void fneg(const FPRegister& fd, const FPRegister& fn);
+
+  // FP square root.
+  void fsqrt(const FPRegister& fd, const FPRegister& fn);
+
+  // FP round to integer (nearest with ties to even).
+  void frintn(const FPRegister& fd, const FPRegister& fn);
+
+  // FP round to integer (towards zero).
+  void frintz(const FPRegister& fd, const FPRegister& fn);
+
+  // FP compare registers.
+  void fcmp(const FPRegister& fn, const FPRegister& fm);
+
+  // FP compare immediate.
+  void fcmp(const FPRegister& fn, double value);
+
+  // FP conditional compare.
+  void fccmp(const FPRegister& fn,
+             const FPRegister& fm,
+             StatusFlags nzcv,
+             Condition cond);
+
+  // FP conditional select.
+  void fcsel(const FPRegister& fd,
+             const FPRegister& fn,
+             const FPRegister& fm,
+             Condition cond);
+
+  // Common FP Convert function.
+  void FPConvertToInt(const Register& rd,
+                      const FPRegister& fn,
+                      FPIntegerConvertOp op);
+
+  // FP convert between single and double precision.
+  void fcvt(const FPRegister& fd, const FPRegister& fn);
+
+  // Convert FP to unsigned integer (round towards -infinity).
+  void fcvtmu(const Register& rd, const FPRegister& fn);
+
+  // Convert FP to signed integer (round towards -infinity).
+  void fcvtms(const Register& rd, const FPRegister& fn);
+
+  // Convert FP to unsigned integer (nearest with ties to even).
+  void fcvtnu(const Register& rd, const FPRegister& fn);
+
+  // Convert FP to signed integer (nearest with ties to even).
+  void fcvtns(const Register& rd, const FPRegister& fn);
+
+  // Convert FP to unsigned integer (round towards zero).
+  void fcvtzu(const Register& rd, const FPRegister& fn);
+
+  // Convert FP to signed integer (round towards zero).
+  void fcvtzs(const Register& rd, const FPRegister& fn);
+
+  // Convert signed integer or fixed point to FP.
+  void scvtf(const FPRegister& fd, const Register& rn, unsigned fbits = 0);
+
+  // Convert unsigned integer or fixed point to FP.
+  void ucvtf(const FPRegister& fd, const Register& rn, unsigned fbits = 0);
+
+  // Emit generic instructions.
+  // Emit raw instructions into the instruction stream.
+  inline void dci(Instr raw_inst) { Emit(raw_inst); }
+
+  // Emit 32 bits of data into the instruction stream.
+  inline void dc32(uint32_t data) { EmitData(&data, sizeof(data)); }
+
+  // Emit 64 bits of data into the instruction stream.
+  inline void dc64(uint64_t data) { EmitData(&data, sizeof(data)); }
+
+  // Copy a string into the instruction stream, including the terminating NULL
+  // character. The instruction pointer (pc_) is then aligned correctly for
+  // subsequent instructions.
+  void EmitStringData(const char * string) {
+    ASSERT(string != NULL);
+
+    size_t len = strlen(string) + 1;
+    EmitData(string, len);
+
+    // Pad with NULL characters until pc_ is aligned.
+    const char pad[] = {'\0', '\0', '\0', '\0'};
+    ASSERT(sizeof(pad) == kInstructionSize);
+    Instruction* next_pc = AlignUp(pc_, kInstructionSize);
+    EmitData(&pad, next_pc - pc_);
+  }
+
+  // Code generation helpers.
+
+  // Register encoding.
+  static Instr Rd(CPURegister rd) {
+    ASSERT(rd.code() != kSPRegInternalCode);
+    return rd.code() << Rd_offset;
+  }
+
+  static Instr Rn(CPURegister rn) {
+    ASSERT(rn.code() != kSPRegInternalCode);
+    return rn.code() << Rn_offset;
+  }
+
+  static Instr Rm(CPURegister rm) {
+    ASSERT(rm.code() != kSPRegInternalCode);
+    return rm.code() << Rm_offset;
+  }
+
+  static Instr Ra(CPURegister ra) {
+    ASSERT(ra.code() != kSPRegInternalCode);
+    return ra.code() << Ra_offset;
+  }
+
+  static Instr Rt(CPURegister rt) {
+    ASSERT(rt.code() != kSPRegInternalCode);
+    return rt.code() << Rt_offset;
+  }
+
+  static Instr Rt2(CPURegister rt2) {
+    ASSERT(rt2.code() != kSPRegInternalCode);
+    return rt2.code() << Rt2_offset;
+  }
+
+  // These encoding functions allow the stack pointer to be encoded, and
+  // disallow the zero register.
+  static Instr RdSP(Register rd) {
+    ASSERT(!rd.IsZero());
+    return (rd.code() & kRegCodeMask) << Rd_offset;
+  }
+
+  static Instr RnSP(Register rn) {
+    ASSERT(!rn.IsZero());
+    return (rn.code() & kRegCodeMask) << Rn_offset;
+  }
+
+  // Flags encoding.
+  static Instr Flags(FlagsUpdate S) {
+    if (S == SetFlags) {
+      return 1 << FlagsUpdate_offset;
+    } else if (S == LeaveFlags) {
+      return 0 << FlagsUpdate_offset;
+    }
+    UNREACHABLE();
+    return 0;
+  }
+
+  static Instr Cond(Condition cond) {
+    return cond << Condition_offset;
+  }
+
+  // PC-relative address encoding.
+  static Instr ImmPCRelAddress(int imm21) {
+    ASSERT(is_int21(imm21));
+    Instr imm = static_cast<Instr>(truncate_to_int21(imm21));
+    Instr immhi = (imm >> ImmPCRelLo_width) << ImmPCRelHi_offset;
+    Instr immlo = imm << ImmPCRelLo_offset;
+    return (immhi & ImmPCRelHi_mask) | (immlo & ImmPCRelLo_mask);
+  }
+
+  // Branch encoding.
+  static Instr ImmUncondBranch(int imm26) {
+    ASSERT(is_int26(imm26));
+    return truncate_to_int26(imm26) << ImmUncondBranch_offset;
+  }
+
+  static Instr ImmCondBranch(int imm19) {
+    ASSERT(is_int19(imm19));
+    return truncate_to_int19(imm19) << ImmCondBranch_offset;
+  }
+
+  static Instr ImmCmpBranch(int imm19) {
+    ASSERT(is_int19(imm19));
+    return truncate_to_int19(imm19) << ImmCmpBranch_offset;
+  }
+
+  static Instr ImmTestBranch(int imm14) {
+    ASSERT(is_int14(imm14));
+    return truncate_to_int14(imm14) << ImmTestBranch_offset;
+  }
+
+  static Instr ImmTestBranchBit(unsigned bit_pos) {
+    ASSERT(is_uint6(bit_pos));
+    // Subtract five from the shift offset, as we need bit 5 from bit_pos.
+    unsigned b5 = bit_pos << (ImmTestBranchBit5_offset - 5);
+    unsigned b40 = bit_pos << ImmTestBranchBit40_offset;
+    b5 &= ImmTestBranchBit5_mask;
+    b40 &= ImmTestBranchBit40_mask;
+    return b5 | b40;
+  }
+
+  // Data Processing encoding.
+  static Instr SF(Register rd) {
+      return rd.Is64Bits() ? SixtyFourBits : ThirtyTwoBits;
+  }
+
+  static Instr ImmAddSub(int64_t imm) {
+    ASSERT(IsImmAddSub(imm));
+    if (is_uint12(imm)) {  // No shift required.
+      return imm << ImmAddSub_offset;
+    } else {
+      return ((imm >> 12) << ImmAddSub_offset) | (1 << ShiftAddSub_offset);
+    }
+  }
+
+  static inline Instr ImmS(unsigned imms, unsigned reg_size) {
+    ASSERT(((reg_size == kXRegSize) && is_uint6(imms)) ||
+           ((reg_size == kWRegSize) && is_uint5(imms)));
+    USE(reg_size);
+    return imms << ImmS_offset;
+  }
+
+  static inline Instr ImmR(unsigned immr, unsigned reg_size) {
+    ASSERT(((reg_size == kXRegSize) && is_uint6(immr)) ||
+           ((reg_size == kWRegSize) && is_uint5(immr)));
+    USE(reg_size);
+    ASSERT(is_uint6(immr));
+    return immr << ImmR_offset;
+  }
+
+  static inline Instr ImmSetBits(unsigned imms, unsigned reg_size) {
+    ASSERT((reg_size == kWRegSize) || (reg_size == kXRegSize));
+    ASSERT(is_uint6(imms));
+    ASSERT((reg_size == kXRegSize) || is_uint6(imms + 3));
+    USE(reg_size);
+    return imms << ImmSetBits_offset;
+  }
+
+  static inline Instr ImmRotate(unsigned immr, unsigned reg_size) {
+    ASSERT((reg_size == kWRegSize) || (reg_size == kXRegSize));
+    ASSERT(((reg_size == kXRegSize) && is_uint6(immr)) ||
+           ((reg_size == kWRegSize) && is_uint5(immr)));
+    USE(reg_size);
+    return immr << ImmRotate_offset;
+  }
+
+  static inline Instr ImmLLiteral(int imm19) {
+    ASSERT(is_int19(imm19));
+    return truncate_to_int19(imm19) << ImmLLiteral_offset;
+  }
+
+  static inline Instr BitN(unsigned bitn, unsigned reg_size) {
+    ASSERT((reg_size == kWRegSize) || (reg_size == kXRegSize));
+    ASSERT((reg_size == kXRegSize) || (bitn == 0));
+    USE(reg_size);
+    return bitn << BitN_offset;
+  }
+
+  static Instr ShiftDP(Shift shift) {
+    ASSERT(shift == LSL || shift == LSR || shift == ASR || shift == ROR);
+    return shift << ShiftDP_offset;
+  }
+
+  static Instr ImmDPShift(unsigned amount) {
+    ASSERT(is_uint6(amount));
+    return amount << ImmDPShift_offset;
+  }
+
+  static Instr ExtendMode(Extend extend) {
+    return extend << ExtendMode_offset;
+  }
+
+  static Instr ImmExtendShift(unsigned left_shift) {
+    ASSERT(left_shift <= 4);
+    return left_shift << ImmExtendShift_offset;
+  }
+
+  static Instr ImmCondCmp(unsigned imm) {
+    ASSERT(is_uint5(imm));
+    return imm << ImmCondCmp_offset;
+  }
+
+  static Instr Nzcv(StatusFlags nzcv) {
+    return ((nzcv >> Flags_offset) & 0xf) << Nzcv_offset;
+  }
+
+  // MemOperand offset encoding.
+  static Instr ImmLSUnsigned(int imm12) {
+    ASSERT(is_uint12(imm12));
+    return imm12 << ImmLSUnsigned_offset;
+  }
+
+  static Instr ImmLS(int imm9) {
+    ASSERT(is_int9(imm9));
+    return truncate_to_int9(imm9) << ImmLS_offset;
+  }
+
+  static Instr ImmLSPair(int imm7, LSDataSize size) {
+    ASSERT(((imm7 >> size) << size) == imm7);
+    int scaled_imm7 = imm7 >> size;
+    ASSERT(is_int7(scaled_imm7));
+    return truncate_to_int7(scaled_imm7) << ImmLSPair_offset;
+  }
+
+  static Instr ImmShiftLS(unsigned shift_amount) {
+    ASSERT(is_uint1(shift_amount));
+    return shift_amount << ImmShiftLS_offset;
+  }
+
+  static Instr ImmException(int imm16) {
+    ASSERT(is_uint16(imm16));
+    return imm16 << ImmException_offset;
+  }
+
+  static Instr ImmSystemRegister(int imm15) {
+    ASSERT(is_uint15(imm15));
+    return imm15 << ImmSystemRegister_offset;
+  }
+
+  static Instr ImmHint(int imm7) {
+    ASSERT(is_uint7(imm7));
+    return imm7 << ImmHint_offset;
+  }
+
+  static LSDataSize CalcLSDataSize(LoadStoreOp op) {
+    ASSERT((SizeLS_offset + SizeLS_width) == (kInstructionSize * 8));
+    return static_cast<LSDataSize>(op >> SizeLS_offset);
+  }
+
+  // Move immediates encoding.
+  static Instr ImmMoveWide(uint64_t imm) {
+    ASSERT(is_uint16(imm));
+    return imm << ImmMoveWide_offset;
+  }
+
+  static Instr ShiftMoveWide(int64_t shift) {
+    ASSERT(is_uint2(shift));
+    return shift << ShiftMoveWide_offset;
+  }
+
+  // FP Immediates.
+  static Instr ImmFP32(float imm);
+  static Instr ImmFP64(double imm);
+
+  // FP register type.
+  static Instr FPType(FPRegister fd) {
+    return fd.Is64Bits() ? FP64 : FP32;
+  }
+
+  static Instr FPScale(unsigned scale) {
+    ASSERT(is_uint6(scale));
+    return scale << FPScale_offset;
+  }
+
+  // Size of the code generated in bytes
+  uint64_t SizeOfCodeGenerated() const {
+    ASSERT((pc_ >= buffer_) && (pc_ < (buffer_ + buffer_size_)));
+    return pc_ - buffer_;
+  }
+
+  // Size of the code generated since label to the current position.
+  uint64_t SizeOfCodeGeneratedSince(Label* label) const {
+    ASSERT(label->IsBound());
+    ASSERT((pc_ >= label->target()) && (pc_ < (buffer_ + buffer_size_)));
+    return pc_ - label->target();
+  }
+
+
+  inline void BlockLiteralPool() {
+    literal_pool_monitor_++;
+  }
+
+  inline void ReleaseLiteralPool() {
+    if (--literal_pool_monitor_ == 0) {
+      // Has the literal pool been blocked for too long?
+      ASSERT(literals_.empty() ||
+             (pc_ < (literals_.back()->pc_ + kMaxLoadLiteralRange)));
+    }
+  }
+
+  inline bool IsLiteralPoolBlocked() {
+    return literal_pool_monitor_ != 0;
+  }
+
+  void CheckLiteralPool(LiteralPoolEmitOption option = JumpRequired);
+  void EmitLiteralPool(LiteralPoolEmitOption option = NoJumpRequired);
+  size_t LiteralPoolSize();
+
+ protected:
+  inline const Register& AppropriateZeroRegFor(const CPURegister& reg) const {
+    return reg.Is64Bits() ? xzr : wzr;
+  }
+
+
+  void LoadStore(const CPURegister& rt,
+                 const MemOperand& addr,
+                 LoadStoreOp op);
+  static bool IsImmLSUnscaled(ptrdiff_t offset);
+  static bool IsImmLSScaled(ptrdiff_t offset, LSDataSize size);
+
+  void Logical(const Register& rd,
+               const Register& rn,
+               const Operand& operand,
+               LogicalOp op);
+  void LogicalImmediate(const Register& rd,
+                        const Register& rn,
+                        unsigned n,
+                        unsigned imm_s,
+                        unsigned imm_r,
+                        LogicalOp op);
+  static bool IsImmLogical(uint64_t value,
+                           unsigned width,
+                           unsigned* n,
+                           unsigned* imm_s,
+                           unsigned* imm_r);
+
+  void ConditionalCompare(const Register& rn,
+                          const Operand& operand,
+                          StatusFlags nzcv,
+                          Condition cond,
+                          ConditionalCompareOp op);
+  static bool IsImmConditionalCompare(int64_t immediate);
+
+  void AddSubWithCarry(const Register& rd,
+                       const Register& rn,
+                       const Operand& operand,
+                       FlagsUpdate S,
+                       AddSubWithCarryOp op);
+
+  // Functions for emulating operands not directly supported by the instruction
+  // set.
+  void EmitShift(const Register& rd,
+                 const Register& rn,
+                 Shift shift,
+                 unsigned amount);
+  void EmitExtendShift(const Register& rd,
+                       const Register& rn,
+                       Extend extend,
+                       unsigned left_shift);
+
+  void AddSub(const Register& rd,
+              const Register& rn,
+              const Operand& operand,
+              FlagsUpdate S,
+              AddSubOp op);
+  static bool IsImmAddSub(int64_t immediate);
+
+  // Find an appropriate LoadStoreOp or LoadStorePairOp for the specified
+  // registers. Only simple loads are supported; sign- and zero-extension (such
+  // as in LDPSW_x or LDRB_w) are not supported.
+  static LoadStoreOp LoadOpFor(const CPURegister& rt);
+  static LoadStorePairOp LoadPairOpFor(const CPURegister& rt,
+                                       const CPURegister& rt2);
+  static LoadStoreOp StoreOpFor(const CPURegister& rt);
+  static LoadStorePairOp StorePairOpFor(const CPURegister& rt,
+                                        const CPURegister& rt2);
+  static LoadStorePairNonTemporalOp LoadPairNonTemporalOpFor(
+    const CPURegister& rt, const CPURegister& rt2);
+  static LoadStorePairNonTemporalOp StorePairNonTemporalOpFor(
+    const CPURegister& rt, const CPURegister& rt2);
+
+
+ private:
+  // Instruction helpers.
+  void MoveWide(const Register& rd,
+                uint64_t imm,
+                int shift,
+                MoveWideImmediateOp mov_op);
+  void DataProcShiftedRegister(const Register& rd,
+                               const Register& rn,
+                               const Operand& operand,
+                               FlagsUpdate S,
+                               Instr op);
+  void DataProcExtendedRegister(const Register& rd,
+                                const Register& rn,
+                                const Operand& operand,
+                                FlagsUpdate S,
+                                Instr op);
+  void LoadStorePair(const CPURegister& rt,
+                     const CPURegister& rt2,
+                     const MemOperand& addr,
+                     LoadStorePairOp op);
+  void LoadStorePairNonTemporal(const CPURegister& rt,
+                                const CPURegister& rt2,
+                                const MemOperand& addr,
+                                LoadStorePairNonTemporalOp op);
+  void LoadLiteral(const CPURegister& rt, uint64_t imm, LoadLiteralOp op);
+  void ConditionalSelect(const Register& rd,
+                         const Register& rn,
+                         const Register& rm,
+                         Condition cond,
+                         ConditionalSelectOp op);
+  void DataProcessing1Source(const Register& rd,
+                             const Register& rn,
+                             DataProcessing1SourceOp op);
+  void DataProcessing3Source(const Register& rd,
+                             const Register& rn,
+                             const Register& rm,
+                             const Register& ra,
+                             DataProcessing3SourceOp op);
+  void FPDataProcessing1Source(const FPRegister& fd,
+                               const FPRegister& fn,
+                               FPDataProcessing1SourceOp op);
+  void FPDataProcessing2Source(const FPRegister& fd,
+                               const FPRegister& fn,
+                               const FPRegister& fm,
+                               FPDataProcessing2SourceOp op);
+  void FPDataProcessing3Source(const FPRegister& fd,
+                               const FPRegister& fn,
+                               const FPRegister& fm,
+                               const FPRegister& fa,
+                               FPDataProcessing3SourceOp op);
+
+  // Encoding helpers.
+  static bool IsImmFP32(float imm);
+  static bool IsImmFP64(double imm);
+
+  void RecordLiteral(int64_t imm, unsigned size);
+
+  // Emit the instruction at pc_.
+  void Emit(Instr instruction) {
+    ASSERT(sizeof(*pc_) == 1);
+    ASSERT(sizeof(instruction) == kInstructionSize);
+    ASSERT((pc_ + sizeof(instruction)) <= (buffer_ + buffer_size_));
+
+#ifdef DEBUG
+    finalized_ = false;
+#endif
+
+    memcpy(pc_, &instruction, sizeof(instruction));
+    pc_ += sizeof(instruction);
+    CheckBufferSpace();
+  }
+
+  // Emit data inline in the instruction stream.
+  void EmitData(void const * data, unsigned size) {
+    ASSERT(sizeof(*pc_) == 1);
+    ASSERT((pc_ + size) <= (buffer_ + buffer_size_));
+
+#ifdef DEBUG
+    finalized_ = false;
+#endif
+
+    // TODO: Record this 'instruction' as data, so that it can be disassembled
+    // correctly.
+    memcpy(pc_, data, size);
+    pc_ += size;
+    CheckBufferSpace();
+  }
+
+  inline void CheckBufferSpace() {
+    ASSERT(pc_ < (buffer_ + buffer_size_));
+    if (pc_ > next_literal_pool_check_) {
+      CheckLiteralPool();
+    }
+  }
+
+  // The buffer into which code and relocation info are generated.
+  Instruction* buffer_;
+  // Buffer size, in bytes.
+  unsigned buffer_size_;
+  Instruction* pc_;
+  std::list<Literal*> literals_;
+  Instruction* next_literal_pool_check_;
+  unsigned literal_pool_monitor_;
+
+  friend class BlockLiteralPoolScope;
+
+#ifdef DEBUG
+  bool finalized_;
+#endif
+};
+
+class BlockLiteralPoolScope {
+ public:
+  explicit BlockLiteralPoolScope(Assembler* assm) : assm_(assm) {
+    assm_->BlockLiteralPool();
+  }
+
+  ~BlockLiteralPoolScope() {
+    assm_->ReleaseLiteralPool();
+  }
+
+ private:
+  Assembler* assm_;
+};
+}  // namespace vixl
+
+#endif  // VIXL_A64_ASSEMBLER_A64_H_