summary refs log tree commit diff stats
path: root/disas/libvixl/a64/instructions-a64.h
diff options
context:
space:
mode:
Diffstat (limited to 'disas/libvixl/a64/instructions-a64.h')
-rw-r--r--disas/libvixl/a64/instructions-a64.h344
1 files changed, 344 insertions, 0 deletions
diff --git a/disas/libvixl/a64/instructions-a64.h b/disas/libvixl/a64/instructions-a64.h
new file mode 100644
index 0000000000..ba9068ca8b
--- /dev/null
+++ b/disas/libvixl/a64/instructions-a64.h
@@ -0,0 +1,344 @@
+// Copyright 2013, ARM Limited
+// All rights reserved.
+//
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are met:
+//
+//   * Redistributions of source code must retain the above copyright notice,
+//     this list of conditions and the following disclaimer.
+//   * Redistributions in binary form must reproduce the above copyright notice,
+//     this list of conditions and the following disclaimer in the documentation
+//     and/or other materials provided with the distribution.
+//   * Neither the name of ARM Limited nor the names of its contributors may be
+//     used to endorse or promote products derived from this software without
+//     specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
+// ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
+// WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+// DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
+// FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+// DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+// CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+// OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#ifndef VIXL_A64_INSTRUCTIONS_A64_H_
+#define VIXL_A64_INSTRUCTIONS_A64_H_
+
+#include "globals.h"
+#include "utils.h"
+#include "a64/constants-a64.h"
+
+namespace vixl {
+// ISA constants. --------------------------------------------------------------
+
+typedef uint32_t Instr;
+const unsigned kInstructionSize = 4;
+const unsigned kInstructionSizeLog2 = 2;
+const unsigned kLiteralEntrySize = 4;
+const unsigned kLiteralEntrySizeLog2 = 2;
+const unsigned kMaxLoadLiteralRange = 1 * MBytes;
+
+const unsigned kWRegSize = 32;
+const unsigned kWRegSizeLog2 = 5;
+const unsigned kWRegSizeInBytes = kWRegSize / 8;
+const unsigned kXRegSize = 64;
+const unsigned kXRegSizeLog2 = 6;
+const unsigned kXRegSizeInBytes = kXRegSize / 8;
+const unsigned kSRegSize = 32;
+const unsigned kSRegSizeLog2 = 5;
+const unsigned kSRegSizeInBytes = kSRegSize / 8;
+const unsigned kDRegSize = 64;
+const unsigned kDRegSizeLog2 = 6;
+const unsigned kDRegSizeInBytes = kDRegSize / 8;
+const int64_t kWRegMask = 0x00000000ffffffffLL;
+const int64_t kXRegMask = 0xffffffffffffffffLL;
+const int64_t kSRegMask = 0x00000000ffffffffLL;
+const int64_t kDRegMask = 0xffffffffffffffffLL;
+const int64_t kXSignMask = 0x1LL << 63;
+const int64_t kWSignMask = 0x1LL << 31;
+const int64_t kByteMask = 0xffL;
+const int64_t kHalfWordMask = 0xffffL;
+const int64_t kWordMask = 0xffffffffLL;
+const uint64_t kXMaxUInt = 0xffffffffffffffffULL;
+const uint64_t kWMaxUInt = 0xffffffffULL;
+const int64_t kXMaxInt = 0x7fffffffffffffffLL;
+const int64_t kXMinInt = 0x8000000000000000LL;
+const int32_t kWMaxInt = 0x7fffffff;
+const int32_t kWMinInt = 0x80000000;
+const unsigned kLinkRegCode = 30;
+const unsigned kZeroRegCode = 31;
+const unsigned kSPRegInternalCode = 63;
+const unsigned kRegCodeMask = 0x1f;
+
+// AArch64 floating-point specifics. These match IEEE-754.
+const unsigned kDoubleMantissaBits = 52;
+const unsigned kDoubleExponentBits = 11;
+const unsigned kFloatMantissaBits = 23;
+const unsigned kFloatExponentBits = 8;
+
+const float kFP32PositiveInfinity = rawbits_to_float(0x7f800000);
+const float kFP32NegativeInfinity = rawbits_to_float(0xff800000);
+const double kFP64PositiveInfinity = rawbits_to_double(0x7ff0000000000000ULL);
+const double kFP64NegativeInfinity = rawbits_to_double(0xfff0000000000000ULL);
+
+// This value is a signalling NaN as both a double and as a float (taking the
+// least-significant word).
+static const double kFP64SignallingNaN = rawbits_to_double(0x7ff000007f800001ULL);
+static const float kFP32SignallingNaN = rawbits_to_float(0x7f800001);
+
+// A similar value, but as a quiet NaN.
+static const double kFP64QuietNaN = rawbits_to_double(0x7ff800007fc00001ULL);
+static const float kFP32QuietNaN = rawbits_to_float(0x7fc00001);
+
+enum LSDataSize {
+  LSByte        = 0,
+  LSHalfword    = 1,
+  LSWord        = 2,
+  LSDoubleWord  = 3
+};
+
+LSDataSize CalcLSPairDataSize(LoadStorePairOp op);
+
+enum ImmBranchType {
+  UnknownBranchType = 0,
+  CondBranchType    = 1,
+  UncondBranchType  = 2,
+  CompareBranchType = 3,
+  TestBranchType    = 4
+};
+
+enum AddrMode {
+  Offset,
+  PreIndex,
+  PostIndex
+};
+
+enum FPRounding {
+  // The first four values are encodable directly by FPCR<RMode>.
+  FPTieEven = 0x0,
+  FPPositiveInfinity = 0x1,
+  FPNegativeInfinity = 0x2,
+  FPZero = 0x3,
+
+  // The final rounding mode is only available when explicitly specified by the
+  // instruction (such as with fcvta). It cannot be set in FPCR.
+  FPTieAway
+};
+
+enum Reg31Mode {
+  Reg31IsStackPointer,
+  Reg31IsZeroRegister
+};
+
+// Instructions. ---------------------------------------------------------------
+
+class Instruction {
+ public:
+  inline Instr InstructionBits() const {
+    return *(reinterpret_cast<const Instr*>(this));
+  }
+
+  inline void SetInstructionBits(Instr new_instr) {
+    *(reinterpret_cast<Instr*>(this)) = new_instr;
+  }
+
+  inline int Bit(int pos) const {
+    return (InstructionBits() >> pos) & 1;
+  }
+
+  inline uint32_t Bits(int msb, int lsb) const {
+    return unsigned_bitextract_32(msb, lsb, InstructionBits());
+  }
+
+  inline int32_t SignedBits(int msb, int lsb) const {
+    int32_t bits = *(reinterpret_cast<const int32_t*>(this));
+    return signed_bitextract_32(msb, lsb, bits);
+  }
+
+  inline Instr Mask(uint32_t mask) const {
+    return InstructionBits() & mask;
+  }
+
+  #define DEFINE_GETTER(Name, HighBit, LowBit, Func)             \
+  inline int64_t Name() const { return Func(HighBit, LowBit); }
+  INSTRUCTION_FIELDS_LIST(DEFINE_GETTER)
+  #undef DEFINE_GETTER
+
+  // ImmPCRel is a compound field (not present in INSTRUCTION_FIELDS_LIST),
+  // formed from ImmPCRelLo and ImmPCRelHi.
+  int ImmPCRel() const {
+    int const offset = ((ImmPCRelHi() << ImmPCRelLo_width) | ImmPCRelLo());
+    int const width = ImmPCRelLo_width + ImmPCRelHi_width;
+    return signed_bitextract_32(width-1, 0, offset);
+  }
+
+  uint64_t ImmLogical();
+  float ImmFP32();
+  double ImmFP64();
+
+  inline LSDataSize SizeLSPair() const {
+    return CalcLSPairDataSize(
+             static_cast<LoadStorePairOp>(Mask(LoadStorePairMask)));
+  }
+
+  // Helpers.
+  inline bool IsCondBranchImm() const {
+    return Mask(ConditionalBranchFMask) == ConditionalBranchFixed;
+  }
+
+  inline bool IsUncondBranchImm() const {
+    return Mask(UnconditionalBranchFMask) == UnconditionalBranchFixed;
+  }
+
+  inline bool IsCompareBranch() const {
+    return Mask(CompareBranchFMask) == CompareBranchFixed;
+  }
+
+  inline bool IsTestBranch() const {
+    return Mask(TestBranchFMask) == TestBranchFixed;
+  }
+
+  inline bool IsPCRelAddressing() const {
+    return Mask(PCRelAddressingFMask) == PCRelAddressingFixed;
+  }
+
+  inline bool IsLogicalImmediate() const {
+    return Mask(LogicalImmediateFMask) == LogicalImmediateFixed;
+  }
+
+  inline bool IsAddSubImmediate() const {
+    return Mask(AddSubImmediateFMask) == AddSubImmediateFixed;
+  }
+
+  inline bool IsAddSubExtended() const {
+    return Mask(AddSubExtendedFMask) == AddSubExtendedFixed;
+  }
+
+  inline bool IsLoadOrStore() const {
+    return Mask(LoadStoreAnyFMask) == LoadStoreAnyFixed;
+  }
+
+  inline bool IsMovn() const {
+    return (Mask(MoveWideImmediateMask) == MOVN_x) ||
+           (Mask(MoveWideImmediateMask) == MOVN_w);
+  }
+
+  // Indicate whether Rd can be the stack pointer or the zero register. This
+  // does not check that the instruction actually has an Rd field.
+  inline Reg31Mode RdMode() const {
+    // The following instructions use sp or wsp as Rd:
+    //  Add/sub (immediate) when not setting the flags.
+    //  Add/sub (extended) when not setting the flags.
+    //  Logical (immediate) when not setting the flags.
+    // Otherwise, r31 is the zero register.
+    if (IsAddSubImmediate() || IsAddSubExtended()) {
+      if (Mask(AddSubSetFlagsBit)) {
+        return Reg31IsZeroRegister;
+      } else {
+        return Reg31IsStackPointer;
+      }
+    }
+    if (IsLogicalImmediate()) {
+      // Of the logical (immediate) instructions, only ANDS (and its aliases)
+      // can set the flags. The others can all write into sp.
+      // Note that some logical operations are not available to
+      // immediate-operand instructions, so we have to combine two masks here.
+      if (Mask(LogicalImmediateMask & LogicalOpMask) == ANDS) {
+        return Reg31IsZeroRegister;
+      } else {
+        return Reg31IsStackPointer;
+      }
+    }
+    return Reg31IsZeroRegister;
+  }
+
+  // Indicate whether Rn can be the stack pointer or the zero register. This
+  // does not check that the instruction actually has an Rn field.
+  inline Reg31Mode RnMode() const {
+    // The following instructions use sp or wsp as Rn:
+    //  All loads and stores.
+    //  Add/sub (immediate).
+    //  Add/sub (extended).
+    // Otherwise, r31 is the zero register.
+    if (IsLoadOrStore() || IsAddSubImmediate() || IsAddSubExtended()) {
+      return Reg31IsStackPointer;
+    }
+    return Reg31IsZeroRegister;
+  }
+
+  inline ImmBranchType BranchType() const {
+    if (IsCondBranchImm()) {
+      return CondBranchType;
+    } else if (IsUncondBranchImm()) {
+      return UncondBranchType;
+    } else if (IsCompareBranch()) {
+      return CompareBranchType;
+    } else if (IsTestBranch()) {
+      return TestBranchType;
+    } else {
+      return UnknownBranchType;
+    }
+  }
+
+  // Find the target of this instruction. 'this' may be a branch or a
+  // PC-relative addressing instruction.
+  Instruction* ImmPCOffsetTarget();
+
+  // Patch a PC-relative offset to refer to 'target'. 'this' may be a branch or
+  // a PC-relative addressing instruction.
+  void SetImmPCOffsetTarget(Instruction* target);
+  // Patch a literal load instruction to load from 'source'.
+  void SetImmLLiteral(Instruction* source);
+
+  inline uint8_t* LiteralAddress() {
+    int offset = ImmLLiteral() << kLiteralEntrySizeLog2;
+    return reinterpret_cast<uint8_t*>(this) + offset;
+  }
+
+  inline uint32_t Literal32() {
+    uint32_t literal;
+    memcpy(&literal, LiteralAddress(), sizeof(literal));
+
+    return literal;
+  }
+
+  inline uint64_t Literal64() {
+    uint64_t literal;
+    memcpy(&literal, LiteralAddress(), sizeof(literal));
+
+    return literal;
+  }
+
+  inline float LiteralFP32() {
+    return rawbits_to_float(Literal32());
+  }
+
+  inline double LiteralFP64() {
+    return rawbits_to_double(Literal64());
+  }
+
+  inline Instruction* NextInstruction() {
+    return this + kInstructionSize;
+  }
+
+  inline Instruction* InstructionAtOffset(int64_t offset) {
+    ASSERT(IsWordAligned(this + offset));
+    return this + offset;
+  }
+
+  template<typename T> static inline Instruction* Cast(T src) {
+    return reinterpret_cast<Instruction*>(src);
+  }
+
+ private:
+  inline int ImmBranch() const;
+
+  void SetPCRelImmTarget(Instruction* target);
+  void SetBranchImmTarget(Instruction* target);
+};
+}  // namespace vixl
+
+#endif  // VIXL_A64_INSTRUCTIONS_A64_H_