summary refs log tree commit diff stats
path: root/docs/devel/migration/main.rst
diff options
context:
space:
mode:
Diffstat (limited to 'docs/devel/migration/main.rst')
-rw-r--r--docs/devel/migration/main.rst575
1 files changed, 575 insertions, 0 deletions
diff --git a/docs/devel/migration/main.rst b/docs/devel/migration/main.rst
new file mode 100644
index 0000000000..00b9c3d32f
--- /dev/null
+++ b/docs/devel/migration/main.rst
@@ -0,0 +1,575 @@
+===================
+Migration framework
+===================
+
+QEMU has code to load/save the state of the guest that it is running.
+These are two complementary operations.  Saving the state just does
+that, saves the state for each device that the guest is running.
+Restoring a guest is just the opposite operation: we need to load the
+state of each device.
+
+For this to work, QEMU has to be launched with the same arguments the
+two times.  I.e. it can only restore the state in one guest that has
+the same devices that the one it was saved (this last requirement can
+be relaxed a bit, but for now we can consider that configuration has
+to be exactly the same).
+
+Once that we are able to save/restore a guest, a new functionality is
+requested: migration.  This means that QEMU is able to start in one
+machine and being "migrated" to another machine.  I.e. being moved to
+another machine.
+
+Next was the "live migration" functionality.  This is important
+because some guests run with a lot of state (specially RAM), and it
+can take a while to move all state from one machine to another.  Live
+migration allows the guest to continue running while the state is
+transferred.  Only while the last part of the state is transferred has
+the guest to be stopped.  Typically the time that the guest is
+unresponsive during live migration is the low hundred of milliseconds
+(notice that this depends on a lot of things).
+
+.. contents::
+
+Transports
+==========
+
+The migration stream is normally just a byte stream that can be passed
+over any transport.
+
+- tcp migration: do the migration using tcp sockets
+- unix migration: do the migration using unix sockets
+- exec migration: do the migration using the stdin/stdout through a process.
+- fd migration: do the migration using a file descriptor that is
+  passed to QEMU.  QEMU doesn't care how this file descriptor is opened.
+
+In addition, support is included for migration using RDMA, which
+transports the page data using ``RDMA``, where the hardware takes care of
+transporting the pages, and the load on the CPU is much lower.  While the
+internals of RDMA migration are a bit different, this isn't really visible
+outside the RAM migration code.
+
+All these migration protocols use the same infrastructure to
+save/restore state devices.  This infrastructure is shared with the
+savevm/loadvm functionality.
+
+Common infrastructure
+=====================
+
+The files, sockets or fd's that carry the migration stream are abstracted by
+the  ``QEMUFile`` type (see ``migration/qemu-file.h``).  In most cases this
+is connected to a subtype of ``QIOChannel`` (see ``io/``).
+
+
+Saving the state of one device
+==============================
+
+For most devices, the state is saved in a single call to the migration
+infrastructure; these are *non-iterative* devices.  The data for these
+devices is sent at the end of precopy migration, when the CPUs are paused.
+There are also *iterative* devices, which contain a very large amount of
+data (e.g. RAM or large tables).  See the iterative device section below.
+
+General advice for device developers
+------------------------------------
+
+- The migration state saved should reflect the device being modelled rather
+  than the way your implementation works.  That way if you change the implementation
+  later the migration stream will stay compatible.  That model may include
+  internal state that's not directly visible in a register.
+
+- When saving a migration stream the device code may walk and check
+  the state of the device.  These checks might fail in various ways (e.g.
+  discovering internal state is corrupt or that the guest has done something bad).
+  Consider carefully before asserting/aborting at this point, since the
+  normal response from users is that *migration broke their VM* since it had
+  apparently been running fine until then.  In these error cases, the device
+  should log a message indicating the cause of error, and should consider
+  putting the device into an error state, allowing the rest of the VM to
+  continue execution.
+
+- The migration might happen at an inconvenient point,
+  e.g. right in the middle of the guest reprogramming the device, during
+  guest reboot or shutdown or while the device is waiting for external IO.
+  It's strongly preferred that migrations do not fail in this situation,
+  since in the cloud environment migrations might happen automatically to
+  VMs that the administrator doesn't directly control.
+
+- If you do need to fail a migration, ensure that sufficient information
+  is logged to identify what went wrong.
+
+- The destination should treat an incoming migration stream as hostile
+  (which we do to varying degrees in the existing code).  Check that offsets
+  into buffers and the like can't cause overruns.  Fail the incoming migration
+  in the case of a corrupted stream like this.
+
+- Take care with internal device state or behaviour that might become
+  migration version dependent.  For example, the order of PCI capabilities
+  is required to stay constant across migration.  Another example would
+  be that a special case handled by subsections (see below) might become
+  much more common if a default behaviour is changed.
+
+- The state of the source should not be changed or destroyed by the
+  outgoing migration.  Migrations timing out or being failed by
+  higher levels of management, or failures of the destination host are
+  not unusual, and in that case the VM is restarted on the source.
+  Note that the management layer can validly revert the migration
+  even though the QEMU level of migration has succeeded as long as it
+  does it before starting execution on the destination.
+
+- Buses and devices should be able to explicitly specify addresses when
+  instantiated, and management tools should use those.  For example,
+  when hot adding USB devices it's important to specify the ports
+  and addresses, since implicit ordering based on the command line order
+  may be different on the destination.  This can result in the
+  device state being loaded into the wrong device.
+
+VMState
+-------
+
+Most device data can be described using the ``VMSTATE`` macros (mostly defined
+in ``include/migration/vmstate.h``).
+
+An example (from hw/input/pckbd.c)
+
+.. code:: c
+
+  static const VMStateDescription vmstate_kbd = {
+      .name = "pckbd",
+      .version_id = 3,
+      .minimum_version_id = 3,
+      .fields = (const VMStateField[]) {
+          VMSTATE_UINT8(write_cmd, KBDState),
+          VMSTATE_UINT8(status, KBDState),
+          VMSTATE_UINT8(mode, KBDState),
+          VMSTATE_UINT8(pending, KBDState),
+          VMSTATE_END_OF_LIST()
+      }
+  };
+
+We are declaring the state with name "pckbd".  The ``version_id`` is
+3, and there are 4 uint8_t fields in the KBDState structure.  We
+registered this ``VMSTATEDescription`` with one of the following
+functions.  The first one will generate a device ``instance_id``
+different for each registration.  Use the second one if you already
+have an id that is different for each instance of the device:
+
+.. code:: c
+
+    vmstate_register_any(NULL, &vmstate_kbd, s);
+    vmstate_register(NULL, instance_id, &vmstate_kbd, s);
+
+For devices that are ``qdev`` based, we can register the device in the class
+init function:
+
+.. code:: c
+
+    dc->vmsd = &vmstate_kbd_isa;
+
+The VMState macros take care of ensuring that the device data section
+is formatted portably (normally big endian) and make some compile time checks
+against the types of the fields in the structures.
+
+VMState macros can include other VMStateDescriptions to store substructures
+(see ``VMSTATE_STRUCT_``), arrays (``VMSTATE_ARRAY_``) and variable length
+arrays (``VMSTATE_VARRAY_``).  Various other macros exist for special
+cases.
+
+Note that the format on the wire is still very raw; i.e. a VMSTATE_UINT32
+ends up with a 4 byte bigendian representation on the wire; in the future
+it might be possible to use a more structured format.
+
+Legacy way
+----------
+
+This way is going to disappear as soon as all current users are ported to VMSTATE;
+although converting existing code can be tricky, and thus 'soon' is relative.
+
+Each device has to register two functions, one to save the state and
+another to load the state back.
+
+.. code:: c
+
+  int register_savevm_live(const char *idstr,
+                           int instance_id,
+                           int version_id,
+                           SaveVMHandlers *ops,
+                           void *opaque);
+
+Two functions in the ``ops`` structure are the ``save_state``
+and ``load_state`` functions.  Notice that ``load_state`` receives a version_id
+parameter to know what state format is receiving.  ``save_state`` doesn't
+have a version_id parameter because it always uses the latest version.
+
+Note that because the VMState macros still save the data in a raw
+format, in many cases it's possible to replace legacy code
+with a carefully constructed VMState description that matches the
+byte layout of the existing code.
+
+Changing migration data structures
+----------------------------------
+
+When we migrate a device, we save/load the state as a series
+of fields.  Sometimes, due to bugs or new functionality, we need to
+change the state to store more/different information.  Changing the migration
+state saved for a device can break migration compatibility unless
+care is taken to use the appropriate techniques.  In general QEMU tries
+to maintain forward migration compatibility (i.e. migrating from
+QEMU n->n+1) and there are users who benefit from backward compatibility
+as well.
+
+Subsections
+-----------
+
+The most common structure change is adding new data, e.g. when adding
+a newer form of device, or adding that state that you previously
+forgot to migrate.  This is best solved using a subsection.
+
+A subsection is "like" a device vmstate, but with a particularity, it
+has a Boolean function that tells if that values are needed to be sent
+or not.  If this functions returns false, the subsection is not sent.
+Subsections have a unique name, that is looked for on the receiving
+side.
+
+On the receiving side, if we found a subsection for a device that we
+don't understand, we just fail the migration.  If we understand all
+the subsections, then we load the state with success.  There's no check
+that a subsection is loaded, so a newer QEMU that knows about a subsection
+can (with care) load a stream from an older QEMU that didn't send
+the subsection.
+
+If the new data is only needed in a rare case, then the subsection
+can be made conditional on that case and the migration will still
+succeed to older QEMUs in most cases.  This is OK for data that's
+critical, but in some use cases it's preferred that the migration
+should succeed even with the data missing.  To support this the
+subsection can be connected to a device property and from there
+to a versioned machine type.
+
+The 'pre_load' and 'post_load' functions on subsections are only
+called if the subsection is loaded.
+
+One important note is that the outer post_load() function is called "after"
+loading all subsections, because a newer subsection could change the same
+value that it uses.  A flag, and the combination of outer pre_load and
+post_load can be used to detect whether a subsection was loaded, and to
+fall back on default behaviour when the subsection isn't present.
+
+Example:
+
+.. code:: c
+
+  static bool ide_drive_pio_state_needed(void *opaque)
+  {
+      IDEState *s = opaque;
+
+      return ((s->status & DRQ_STAT) != 0)
+          || (s->bus->error_status & BM_STATUS_PIO_RETRY);
+  }
+
+  const VMStateDescription vmstate_ide_drive_pio_state = {
+      .name = "ide_drive/pio_state",
+      .version_id = 1,
+      .minimum_version_id = 1,
+      .pre_save = ide_drive_pio_pre_save,
+      .post_load = ide_drive_pio_post_load,
+      .needed = ide_drive_pio_state_needed,
+      .fields = (const VMStateField[]) {
+          VMSTATE_INT32(req_nb_sectors, IDEState),
+          VMSTATE_VARRAY_INT32(io_buffer, IDEState, io_buffer_total_len, 1,
+                               vmstate_info_uint8, uint8_t),
+          VMSTATE_INT32(cur_io_buffer_offset, IDEState),
+          VMSTATE_INT32(cur_io_buffer_len, IDEState),
+          VMSTATE_UINT8(end_transfer_fn_idx, IDEState),
+          VMSTATE_INT32(elementary_transfer_size, IDEState),
+          VMSTATE_INT32(packet_transfer_size, IDEState),
+          VMSTATE_END_OF_LIST()
+      }
+  };
+
+  const VMStateDescription vmstate_ide_drive = {
+      .name = "ide_drive",
+      .version_id = 3,
+      .minimum_version_id = 0,
+      .post_load = ide_drive_post_load,
+      .fields = (const VMStateField[]) {
+          .... several fields ....
+          VMSTATE_END_OF_LIST()
+      },
+      .subsections = (const VMStateDescription * const []) {
+          &vmstate_ide_drive_pio_state,
+          NULL
+      }
+  };
+
+Here we have a subsection for the pio state.  We only need to
+save/send this state when we are in the middle of a pio operation
+(that is what ``ide_drive_pio_state_needed()`` checks).  If DRQ_STAT is
+not enabled, the values on that fields are garbage and don't need to
+be sent.
+
+Connecting subsections to properties
+------------------------------------
+
+Using a condition function that checks a 'property' to determine whether
+to send a subsection allows backward migration compatibility when
+new subsections are added, especially when combined with versioned
+machine types.
+
+For example:
+
+   a) Add a new property using ``DEFINE_PROP_BOOL`` - e.g. support-foo and
+      default it to true.
+   b) Add an entry to the ``hw_compat_`` for the previous version that sets
+      the property to false.
+   c) Add a static bool  support_foo function that tests the property.
+   d) Add a subsection with a .needed set to the support_foo function
+   e) (potentially) Add an outer pre_load that sets up a default value
+      for 'foo' to be used if the subsection isn't loaded.
+
+Now that subsection will not be generated when using an older
+machine type and the migration stream will be accepted by older
+QEMU versions.
+
+Not sending existing elements
+-----------------------------
+
+Sometimes members of the VMState are no longer needed:
+
+  - removing them will break migration compatibility
+
+  - making them version dependent and bumping the version will break backward migration
+    compatibility.
+
+Adding a dummy field into the migration stream is normally the best way to preserve
+compatibility.
+
+If the field really does need to be removed then:
+
+  a) Add a new property/compatibility/function in the same way for subsections above.
+  b) replace the VMSTATE macro with the _TEST version of the macro, e.g.:
+
+   ``VMSTATE_UINT32(foo, barstruct)``
+
+   becomes
+
+   ``VMSTATE_UINT32_TEST(foo, barstruct, pre_version_baz)``
+
+   Sometime in the future when we no longer care about the ancient versions these can be killed off.
+   Note that for backward compatibility it's important to fill in the structure with
+   data that the destination will understand.
+
+Any difference in the predicates on the source and destination will end up
+with different fields being enabled and data being loaded into the wrong
+fields; for this reason conditional fields like this are very fragile.
+
+Versions
+--------
+
+Version numbers are intended for major incompatible changes to the
+migration of a device, and using them breaks backward-migration
+compatibility; in general most changes can be made by adding Subsections
+(see above) or _TEST macros (see above) which won't break compatibility.
+
+Each version is associated with a series of fields saved.  The ``save_state`` always saves
+the state as the newer version.  But ``load_state`` sometimes is able to
+load state from an older version.
+
+You can see that there are two version fields:
+
+- ``version_id``: the maximum version_id supported by VMState for that device.
+- ``minimum_version_id``: the minimum version_id that VMState is able to understand
+  for that device.
+
+VMState is able to read versions from minimum_version_id to version_id.
+
+There are *_V* forms of many ``VMSTATE_`` macros to load fields for version dependent fields,
+e.g.
+
+.. code:: c
+
+   VMSTATE_UINT16_V(ip_id, Slirp, 2),
+
+only loads that field for versions 2 and newer.
+
+Saving state will always create a section with the 'version_id' value
+and thus can't be loaded by any older QEMU.
+
+Massaging functions
+-------------------
+
+Sometimes, it is not enough to be able to save the state directly
+from one structure, we need to fill the correct values there.  One
+example is when we are using kvm.  Before saving the cpu state, we
+need to ask kvm to copy to QEMU the state that it is using.  And the
+opposite when we are loading the state, we need a way to tell kvm to
+load the state for the cpu that we have just loaded from the QEMUFile.
+
+The functions to do that are inside a vmstate definition, and are called:
+
+- ``int (*pre_load)(void *opaque);``
+
+  This function is called before we load the state of one device.
+
+- ``int (*post_load)(void *opaque, int version_id);``
+
+  This function is called after we load the state of one device.
+
+- ``int (*pre_save)(void *opaque);``
+
+  This function is called before we save the state of one device.
+
+- ``int (*post_save)(void *opaque);``
+
+  This function is called after we save the state of one device
+  (even upon failure, unless the call to pre_save returned an error).
+
+Example: You can look at hpet.c, that uses the first three functions
+to massage the state that is transferred.
+
+The ``VMSTATE_WITH_TMP`` macro may be useful when the migration
+data doesn't match the stored device data well; it allows an
+intermediate temporary structure to be populated with migration
+data and then transferred to the main structure.
+
+If you use memory API functions that update memory layout outside
+initialization (i.e., in response to a guest action), this is a strong
+indication that you need to call these functions in a ``post_load`` callback.
+Examples of such memory API functions are:
+
+  - memory_region_add_subregion()
+  - memory_region_del_subregion()
+  - memory_region_set_readonly()
+  - memory_region_set_nonvolatile()
+  - memory_region_set_enabled()
+  - memory_region_set_address()
+  - memory_region_set_alias_offset()
+
+Iterative device migration
+--------------------------
+
+Some devices, such as RAM, Block storage or certain platform devices,
+have large amounts of data that would mean that the CPUs would be
+paused for too long if they were sent in one section.  For these
+devices an *iterative* approach is taken.
+
+The iterative devices generally don't use VMState macros
+(although it may be possible in some cases) and instead use
+qemu_put_*/qemu_get_* macros to read/write data to the stream.  Specialist
+versions exist for high bandwidth IO.
+
+
+An iterative device must provide:
+
+  - A ``save_setup`` function that initialises the data structures and
+    transmits a first section containing information on the device.  In the
+    case of RAM this transmits a list of RAMBlocks and sizes.
+
+  - A ``load_setup`` function that initialises the data structures on the
+    destination.
+
+  - A ``state_pending_exact`` function that indicates how much more
+    data we must save.  The core migration code will use this to
+    determine when to pause the CPUs and complete the migration.
+
+  - A ``state_pending_estimate`` function that indicates how much more
+    data we must save.  When the estimated amount is smaller than the
+    threshold, we call ``state_pending_exact``.
+
+  - A ``save_live_iterate`` function should send a chunk of data until
+    the point that stream bandwidth limits tell it to stop.  Each call
+    generates one section.
+
+  - A ``save_live_complete_precopy`` function that must transmit the
+    last section for the device containing any remaining data.
+
+  - A ``load_state`` function used to load sections generated by
+    any of the save functions that generate sections.
+
+  - ``cleanup`` functions for both save and load that are called
+    at the end of migration.
+
+Note that the contents of the sections for iterative migration tend
+to be open-coded by the devices; care should be taken in parsing
+the results and structuring the stream to make them easy to validate.
+
+Device ordering
+---------------
+
+There are cases in which the ordering of device loading matters; for
+example in some systems where a device may assert an interrupt during loading,
+if the interrupt controller is loaded later then it might lose the state.
+
+Some ordering is implicitly provided by the order in which the machine
+definition creates devices, however this is somewhat fragile.
+
+The ``MigrationPriority`` enum provides a means of explicitly enforcing
+ordering.  Numerically higher priorities are loaded earlier.
+The priority is set by setting the ``priority`` field of the top level
+``VMStateDescription`` for the device.
+
+Stream structure
+================
+
+The stream tries to be word and endian agnostic, allowing migration between hosts
+of different characteristics running the same VM.
+
+  - Header
+
+    - Magic
+    - Version
+    - VM configuration section
+
+       - Machine type
+       - Target page bits
+  - List of sections
+    Each section contains a device, or one iteration of a device save.
+
+    - section type
+    - section id
+    - ID string (First section of each device)
+    - instance id (First section of each device)
+    - version id (First section of each device)
+    - <device data>
+    - Footer mark
+  - EOF mark
+  - VM Description structure
+    Consisting of a JSON description of the contents for analysis only
+
+The ``device data`` in each section consists of the data produced
+by the code described above.  For non-iterative devices they have a single
+section; iterative devices have an initial and last section and a set
+of parts in between.
+Note that there is very little checking by the common code of the integrity
+of the ``device data`` contents, that's up to the devices themselves.
+The ``footer mark`` provides a little bit of protection for the case where
+the receiving side reads more or less data than expected.
+
+The ``ID string`` is normally unique, having been formed from a bus name
+and device address, PCI devices and storage devices hung off PCI controllers
+fit this pattern well.  Some devices are fixed single instances (e.g. "pc-ram").
+Others (especially either older devices or system devices which for
+some reason don't have a bus concept) make use of the ``instance id``
+for otherwise identically named devices.
+
+Return path
+-----------
+
+Only a unidirectional stream is required for normal migration, however a
+``return path`` can be created when bidirectional communication is desired.
+This is primarily used by postcopy, but is also used to return a success
+flag to the source at the end of migration.
+
+``qemu_file_get_return_path(QEMUFile* fwdpath)`` gives the QEMUFile* for the return
+path.
+
+  Source side
+
+     Forward path - written by migration thread
+     Return path  - opened by main thread, read by return-path thread
+
+  Destination side
+
+     Forward path - read by main thread
+     Return path  - opened by main thread, written by main thread AND postcopy
+     thread (protected by rp_mutex)
+