summary refs log tree commit diff stats
path: root/docs/devel
diff options
context:
space:
mode:
Diffstat (limited to 'docs/devel')
-rw-r--r--docs/devel/migration.rst520
1 files changed, 520 insertions, 0 deletions
diff --git a/docs/devel/migration.rst b/docs/devel/migration.rst
index c3e1400c0c..be913630c3 100644
--- a/docs/devel/migration.rst
+++ b/docs/devel/migration.rst
@@ -28,6 +28,8 @@ the guest to be stopped.  Typically the time that the guest is
 unresponsive during live migration is the low hundred of milliseconds
 (notice that this depends on a lot of things).
 
+.. contents::
+
 Transports
 ==========
 
@@ -917,3 +919,521 @@ versioned machine types to cut down on the combinations that will need
 support.  This is also useful when newer versions of firmware outgrow
 the padding.
 
+
+Backwards compatibility
+=======================
+
+How backwards compatibility works
+---------------------------------
+
+When we do migration, we have two QEMU processes: the source and the
+target.  There are two cases, they are the same version or they are
+different versions.  The easy case is when they are the same version.
+The difficult one is when they are different versions.
+
+There are two things that are different, but they have very similar
+names and sometimes get confused:
+
+- QEMU version
+- machine type version
+
+Let's start with a practical example, we start with:
+
+- qemu-system-x86_64 (v5.2), from now on qemu-5.2.
+- qemu-system-x86_64 (v5.1), from now on qemu-5.1.
+
+Related to this are the "latest" machine types defined on each of
+them:
+
+- pc-q35-5.2 (newer one in qemu-5.2) from now on pc-5.2
+- pc-q35-5.1 (newer one in qemu-5.1) from now on pc-5.1
+
+First of all, migration is only supposed to work if you use the same
+machine type in both source and destination. The QEMU hardware
+configuration needs to be the same also on source and destination.
+Most aspects of the backend configuration can be changed at will,
+except for a few cases where the backend features influence frontend
+device feature exposure.  But that is not relevant for this section.
+
+I am going to list the number of combinations that we can have.  Let's
+start with the trivial ones, QEMU is the same on source and
+destination:
+
+1 - qemu-5.2 -M pc-5.2  -> migrates to -> qemu-5.2 -M pc-5.2
+
+  This is the latest QEMU with the latest machine type.
+  This have to work, and if it doesn't work it is a bug.
+
+2 - qemu-5.1 -M pc-5.1  -> migrates to -> qemu-5.1 -M pc-5.1
+
+  Exactly the same case than the previous one, but for 5.1.
+  Nothing to see here either.
+
+This are the easiest ones, we will not talk more about them in this
+section.
+
+Now we start with the more interesting cases.  Consider the case where
+we have the same QEMU version in both sides (qemu-5.2) but we are using
+the latest machine type for that version (pc-5.2) but one of an older
+QEMU version, in this case pc-5.1.
+
+3 - qemu-5.2 -M pc-5.1  -> migrates to -> qemu-5.2 -M pc-5.1
+
+  It needs to use the definition of pc-5.1 and the devices as they
+  were configured on 5.1, but this should be easy in the sense that
+  both sides are the same QEMU and both sides have exactly the same
+  idea of what the pc-5.1 machine is.
+
+4 - qemu-5.1 -M pc-5.2  -> migrates to -> qemu-5.1 -M pc-5.2
+
+  This combination is not possible as the qemu-5.1 doen't understand
+  pc-5.2 machine type.  So nothing to worry here.
+
+Now it comes the interesting ones, when both QEMU processes are
+different.  Notice also that the machine type needs to be pc-5.1,
+because we have the limitation than qemu-5.1 doesn't know pc-5.2.  So
+the possible cases are:
+
+5 - qemu-5.2 -M pc-5.1  -> migrates to -> qemu-5.1 -M pc-5.1
+
+  This migration is known as newer to older.  We need to make sure
+  when we are developing 5.2 we need to take care about not to break
+  migration to qemu-5.1.  Notice that we can't make updates to
+  qemu-5.1 to understand whatever qemu-5.2 decides to change, so it is
+  in qemu-5.2 side to make the relevant changes.
+
+6 - qemu-5.1 -M pc-5.1  -> migrates to -> qemu-5.2 -M pc-5.1
+
+  This migration is known as older to newer.  We need to make sure
+  than we are able to receive migrations from qemu-5.1. The problem is
+  similar to the previous one.
+
+If qemu-5.1 and qemu-5.2 were the same, there will not be any
+compatibility problems.  But the reason that we create qemu-5.2 is to
+get new features, devices, defaults, etc.
+
+If we get a device that has a new feature, or change a default value,
+we have a problem when we try to migrate between different QEMU
+versions.
+
+So we need a way to tell qemu-5.2 that when we are using machine type
+pc-5.1, it needs to **not** use the feature, to be able to migrate to
+real qemu-5.1.
+
+And the equivalent part when migrating from qemu-5.1 to qemu-5.2.
+qemu-5.2 has to expect that it is not going to get data for the new
+feature, because qemu-5.1 doesn't know about it.
+
+How do we tell QEMU about these device feature changes?  In
+hw/core/machine.c:hw_compat_X_Y arrays.
+
+If we change a default value, we need to put back the old value on
+that array.  And the device, during initialization needs to look at
+that array to see what value it needs to get for that feature.  And
+what are we going to put in that array, the value of a property.
+
+To create a property for a device, we need to use one of the
+DEFINE_PROP_*() macros. See include/hw/qdev-properties.h to find the
+macros that exist.  With it, we set the default value for that
+property, and that is what it is going to get in the latest released
+version.  But if we want a different value for a previous version, we
+can change that in the hw_compat_X_Y arrays.
+
+hw_compat_X_Y is an array of registers that have the format:
+
+- name_device
+- name_property
+- value
+
+Let's see a practical example.
+
+In qemu-5.2 virtio-blk-device got multi queue support.  This is a
+change that is not backward compatible.  In qemu-5.1 it has one
+queue. In qemu-5.2 it has the same number of queues as the number of
+cpus in the system.
+
+When we are doing migration, if we migrate from a device that has 4
+queues to a device that have only one queue, we don't know where to
+put the extra information for the other 3 queues, and we fail
+migration.
+
+Similar problem when we migrate from qemu-5.1 that has only one queue
+to qemu-5.2, we only sent information for one queue, but destination
+has 4, and we have 3 queues that are not properly initialized and
+anything can happen.
+
+So, how can we address this problem.  Easy, just convince qemu-5.2
+that when it is running pc-5.1, it needs to set the number of queues
+for virtio-blk-devices to 1.
+
+That way we fix the cases 5 and 6.
+
+5 - qemu-5.2 -M pc-5.1  -> migrates to -> qemu-5.1 -M pc-5.1
+
+    qemu-5.2 -M pc-5.1 sets number of queues to be 1.
+    qemu-5.1 -M pc-5.1 expects number of queues to be 1.
+
+    correct.  migration works.
+
+6 - qemu-5.1 -M pc-5.1  -> migrates to -> qemu-5.2 -M pc-5.1
+
+    qemu-5.1 -M pc-5.1 sets number of queues to be 1.
+    qemu-5.2 -M pc-5.1 expects number of queues to be 1.
+
+    correct.  migration works.
+
+And now the other interesting case, case 3.  In this case we have:
+
+3 - qemu-5.2 -M pc-5.1  -> migrates to -> qemu-5.2 -M pc-5.1
+
+    Here we have the same QEMU in both sides.  So it doesn't matter a
+    lot if we have set the number of queues to 1 or not, because
+    they are the same.
+
+    WRONG!
+
+    Think what happens if we do one of this double migrations:
+
+    A -> migrates -> B -> migrates -> C
+
+    where:
+
+    A: qemu-5.1 -M pc-5.1
+    B: qemu-5.2 -M pc-5.1
+    C: qemu-5.2 -M pc-5.1
+
+    migration A -> B is case 6, so number of queues needs to be 1.
+
+    migration B -> C is case 3, so we don't care.  But actually we
+    care because we haven't started the guest in qemu-5.2, it came
+    migrated from qemu-5.1.  So to be in the safe place, we need to
+    always use number of queues 1 when we are using pc-5.1.
+
+Now, how was this done in reality?  The following commit shows how it
+was done::
+
+  commit 9445e1e15e66c19e42bea942ba810db28052cd05
+  Author: Stefan Hajnoczi <stefanha@redhat.com>
+  Date:   Tue Aug 18 15:33:47 2020 +0100
+
+  virtio-blk-pci: default num_queues to -smp N
+
+The relevant parts for migration are::
+
+    @@ -1281,7 +1284,8 @@ static Property virtio_blk_properties[] = {
+     #endif
+         DEFINE_PROP_BIT("request-merging", VirtIOBlock, conf.request_merging, 0,
+                         true),
+    -    DEFINE_PROP_UINT16("num-queues", VirtIOBlock, conf.num_queues, 1),
+    +    DEFINE_PROP_UINT16("num-queues", VirtIOBlock, conf.num_queues,
+    +                       VIRTIO_BLK_AUTO_NUM_QUEUES),
+         DEFINE_PROP_UINT16("queue-size", VirtIOBlock, conf.queue_size, 256),
+
+It changes the default value of num_queues.  But it fishes it for old
+machine types to have the right value::
+
+    @@ -31,6 +31,7 @@
+     GlobalProperty hw_compat_5_1[] = {
+         ...
+    +    { "virtio-blk-device", "num-queues", "1"},
+         ...
+     };
+
+A device with diferent features on both sides
+---------------------------------------------
+
+Let's assume that we are using the same QEMU binary on both sides,
+just to make the things easier.  But we have a device that has
+different features on both sides of the migration.  That can be
+because the devices are different, because the kernel driver of both
+devices have different features, whatever.
+
+How can we get this to work with migration.  The way to do that is
+"theoretically" easy.  You have to get the features that the device
+has in the source of the migration.  The features that the device has
+on the target of the migration, you get the intersection of the
+features of both sides, and that is the way that you should launch
+QEMU.
+
+Notice that this is not completely related to QEMU.  The most
+important thing here is that this should be handled by the managing
+application that launches QEMU.  If QEMU is configured correctly, the
+migration will succeed.
+
+That said, actually doing it is complicated.  Almost all devices are
+bad at being able to be launched with only some features enabled.
+With one big exception: cpus.
+
+You can read the documentation for QEMU x86 cpu models here:
+
+https://qemu-project.gitlab.io/qemu/system/qemu-cpu-models.html
+
+See when they talk about migration they recommend that one chooses the
+newest cpu model that is supported for all cpus.
+
+Let's say that we have:
+
+Host A:
+
+Device X has the feature Y
+
+Host B:
+
+Device X has not the feature Y
+
+If we try to migrate without any care from host A to host B, it will
+fail because when migration tries to load the feature Y on
+destination, it will find that the hardware is not there.
+
+Doing this would be the equivalent of doing with cpus:
+
+Host A:
+
+$ qemu-system-x86_64 -cpu host
+
+Host B:
+
+$ qemu-system-x86_64 -cpu host
+
+When both hosts have different cpu features this is guaranteed to
+fail.  Especially if Host B has less features than host A.  If host A
+has less features than host B, sometimes it works.  Important word of
+last sentence is "sometimes".
+
+So, forgetting about cpu models and continuing with the -cpu host
+example, let's see that the differences of the cpus is that Host A and
+B have the following features:
+
+Features:   'pcid'  'stibp' 'taa-no'
+Host A:        X       X
+Host B:                        X
+
+And we want to migrate between them, the way configure both QEMU cpu
+will be:
+
+Host A:
+
+$ qemu-system-x86_64 -cpu host,pcid=off,stibp=off
+
+Host B:
+
+$ qemu-system-x86_64 -cpu host,taa-no=off
+
+And you would be able to migrate between them.  It is responsability
+of the management application or of the user to make sure that the
+configuration is correct.  QEMU doesn't know how to look at this kind
+of features in general.
+
+Notice that we don't recomend to use -cpu host for migration.  It is
+used in this example because it makes the example simpler.
+
+Other devices have worse control about individual features.  If they
+want to be able to migrate between hosts that show different features,
+the device needs a way to configure which ones it is going to use.
+
+In this section we have considered that we are using the same QEMU
+binary in both sides of the migration.  If we use different QEMU
+versions process, then we need to have into account all other
+differences and the examples become even more complicated.
+
+How to mitigate when we have a backward compatibility error
+-----------------------------------------------------------
+
+We broke migration for old machine types continuously during
+development.  But as soon as we find that there is a problem, we fix
+it.  The problem is what happens when we detect after we have done a
+release that something has gone wrong.
+
+Let see how it worked with one example.
+
+After the release of qemu-8.0 we found a problem when doing migration
+of the machine type pc-7.2.
+
+- $ qemu-7.2 -M pc-7.2  ->  qemu-7.2 -M pc-7.2
+
+  This migration works
+
+- $ qemu-8.0 -M pc-7.2  ->  qemu-8.0 -M pc-7.2
+
+  This migration works
+
+- $ qemu-8.0 -M pc-7.2  ->  qemu-7.2 -M pc-7.2
+
+  This migration fails
+
+- $ qemu-7.2 -M pc-7.2  ->  qemu-8.0 -M pc-7.2
+
+  This migration fails
+
+So clearly something fails when migration between qemu-7.2 and
+qemu-8.0 with machine type pc-7.2.  The error messages, and git bisect
+pointed to this commit.
+
+In qemu-8.0 we got this commit::
+
+    commit 010746ae1db7f52700cb2e2c46eb94f299cfa0d2
+    Author: Jonathan Cameron <Jonathan.Cameron@huawei.com>
+    Date:   Thu Mar 2 13:37:02 2023 +0000
+
+    hw/pci/aer: Implement PCI_ERR_UNCOR_MASK register
+
+
+The relevant bits of the commit for our example are this ones::
+
+    --- a/hw/pci/pcie_aer.c
+    +++ b/hw/pci/pcie_aer.c
+    @@ -112,6 +112,10 @@ int pcie_aer_init(PCIDevice *dev,
+
+         pci_set_long(dev->w1cmask + offset + PCI_ERR_UNCOR_STATUS,
+                      PCI_ERR_UNC_SUPPORTED);
+    +    pci_set_long(dev->config + offset + PCI_ERR_UNCOR_MASK,
+    +                 PCI_ERR_UNC_MASK_DEFAULT);
+    +    pci_set_long(dev->wmask + offset + PCI_ERR_UNCOR_MASK,
+    +                 PCI_ERR_UNC_SUPPORTED);
+
+         pci_set_long(dev->config + offset + PCI_ERR_UNCOR_SEVER,
+                     PCI_ERR_UNC_SEVERITY_DEFAULT);
+
+The patch changes how we configure PCI space for AER.  But QEMU fails
+when the PCI space configuration is different between source and
+destination.
+
+The following commit shows how this got fixed::
+
+    commit 5ed3dabe57dd9f4c007404345e5f5bf0e347317f
+    Author: Leonardo Bras <leobras@redhat.com>
+    Date:   Tue May 2 21:27:02 2023 -0300
+
+    hw/pci: Disable PCI_ERR_UNCOR_MASK register for machine type < 8.0
+
+    [...]
+
+The relevant parts of the fix in QEMU are as follow:
+
+First, we create a new property for the device to be able to configure
+the old behaviour or the new behaviour::
+
+    diff --git a/hw/pci/pci.c b/hw/pci/pci.c
+    index 8a87ccc8b0..5153ad63d6 100644
+    --- a/hw/pci/pci.c
+    +++ b/hw/pci/pci.c
+    @@ -79,6 +79,8 @@ static Property pci_props[] = {
+         DEFINE_PROP_STRING("failover_pair_id", PCIDevice,
+                            failover_pair_id),
+         DEFINE_PROP_UINT32("acpi-index",  PCIDevice, acpi_index, 0),
+    +    DEFINE_PROP_BIT("x-pcie-err-unc-mask", PCIDevice, cap_present,
+    +                    QEMU_PCIE_ERR_UNC_MASK_BITNR, true),
+         DEFINE_PROP_END_OF_LIST()
+     };
+
+Notice that we enable the feature for new machine types.
+
+Now we see how the fix is done.  This is going to depend on what kind
+of breakage happens, but in this case it is quite simple::
+
+    diff --git a/hw/pci/pcie_aer.c b/hw/pci/pcie_aer.c
+    index 103667c368..374d593ead 100644
+    --- a/hw/pci/pcie_aer.c
+    +++ b/hw/pci/pcie_aer.c
+    @@ -112,10 +112,13 @@ int pcie_aer_init(PCIDevice *dev, uint8_t cap_ver,
+    uint16_t offset,
+
+         pci_set_long(dev->w1cmask + offset + PCI_ERR_UNCOR_STATUS,
+                      PCI_ERR_UNC_SUPPORTED);
+    -    pci_set_long(dev->config + offset + PCI_ERR_UNCOR_MASK,
+    -                 PCI_ERR_UNC_MASK_DEFAULT);
+    -    pci_set_long(dev->wmask + offset + PCI_ERR_UNCOR_MASK,
+    -                 PCI_ERR_UNC_SUPPORTED);
+    +
+    +    if (dev->cap_present & QEMU_PCIE_ERR_UNC_MASK) {
+    +        pci_set_long(dev->config + offset + PCI_ERR_UNCOR_MASK,
+    +                     PCI_ERR_UNC_MASK_DEFAULT);
+    +        pci_set_long(dev->wmask + offset + PCI_ERR_UNCOR_MASK,
+    +                     PCI_ERR_UNC_SUPPORTED);
+    +    }
+
+         pci_set_long(dev->config + offset + PCI_ERR_UNCOR_SEVER,
+                      PCI_ERR_UNC_SEVERITY_DEFAULT);
+
+I.e. If the property bit is enabled, we configure it as we did for
+qemu-8.0.  If the property bit is not set, we configure it as it was in 7.2.
+
+And now, everything that is missing is disabling the feature for old
+machine types::
+
+    diff --git a/hw/core/machine.c b/hw/core/machine.c
+    index 47a34841a5..07f763eb2e 100644
+    --- a/hw/core/machine.c
+    +++ b/hw/core/machine.c
+    @@ -48,6 +48,7 @@ GlobalProperty hw_compat_7_2[] = {
+         { "e1000e", "migrate-timadj", "off" },
+         { "virtio-mem", "x-early-migration", "false" },
+         { "migration", "x-preempt-pre-7-2", "true" },
+    +    { TYPE_PCI_DEVICE, "x-pcie-err-unc-mask", "off" },
+     };
+     const size_t hw_compat_7_2_len = G_N_ELEMENTS(hw_compat_7_2);
+
+And now, when qemu-8.0.1 is released with this fix, all combinations
+are going to work as supposed.
+
+- $ qemu-7.2 -M pc-7.2  ->  qemu-7.2 -M pc-7.2 (works)
+- $ qemu-8.0.1 -M pc-7.2  ->  qemu-8.0.1 -M pc-7.2 (works)
+- $ qemu-8.0.1 -M pc-7.2  ->  qemu-7.2 -M pc-7.2 (works)
+- $ qemu-7.2 -M pc-7.2  ->  qemu-8.0.1 -M pc-7.2 (works)
+
+So the normality has been restored and everything is ok, no?
+
+Not really, now our matrix is much bigger.  We started with the easy
+cases, migration from the same version to the same version always
+works:
+
+- $ qemu-7.2 -M pc-7.2  ->  qemu-7.2 -M pc-7.2
+- $ qemu-8.0 -M pc-7.2  ->  qemu-8.0 -M pc-7.2
+- $ qemu-8.0.1 -M pc-7.2  ->  qemu-8.0.1 -M pc-7.2
+
+Now the interesting ones.  When the QEMU processes versions are
+different.  For the 1st set, their fail and we can do nothing, both
+versions are released and we can't change anything.
+
+- $ qemu-7.2 -M pc-7.2  ->  qemu-8.0 -M pc-7.2
+- $ qemu-8.0 -M pc-7.2  ->  qemu-7.2 -M pc-7.2
+
+This two are the ones that work. The whole point of making the
+change in qemu-8.0.1 release was to fix this issue:
+
+- $ qemu-7.2 -M pc-7.2  ->  qemu-8.0.1 -M pc-7.2
+- $ qemu-8.0.1 -M pc-7.2  ->  qemu-7.2 -M pc-7.2
+
+But now we found that qemu-8.0 neither can migrate to qemu-7.2 not
+qemu-8.0.1.
+
+- $ qemu-8.0 -M pc-7.2  ->  qemu-8.0.1 -M pc-7.2
+- $ qemu-8.0.1 -M pc-7.2  ->  qemu-8.0 -M pc-7.2
+
+So, if we start a pc-7.2 machine in qemu-8.0 we can't migrate it to
+anything except to qemu-8.0.
+
+Can we do better?
+
+Yeap.  If we know that we are going to do this migration:
+
+- $ qemu-8.0 -M pc-7.2  ->  qemu-8.0.1 -M pc-7.2
+
+We can launch the appropriate devices with::
+
+  --device...,x-pci-e-err-unc-mask=on
+
+And now we can receive a migration from 8.0.  And from now on, we can
+do that migration to new machine types if we remember to enable that
+property for pc-7.2.  Notice that we need to remember, it is not
+enough to know that the source of the migration is qemu-8.0.  Think of
+this example:
+
+$ qemu-8.0 -M pc-7.2 -> qemu-8.0.1 -M pc-7.2 -> qemu-8.2 -M pc-7.2
+
+In the second migration, the source is not qemu-8.0, but we still have
+that "problem" and have that property enabled.  Notice that we need to
+continue having this mark/property until we have this machine
+rebooted.  But it is not a normal reboot (that don't reload QEMU) we
+need the machine to poweroff/poweron on a fixed QEMU.  And from now
+on we can use the proper real machine.