summary refs log tree commit diff stats
path: root/docs
diff options
context:
space:
mode:
Diffstat (limited to 'docs')
-rw-r--r--docs/devel/memory.rst14
-rw-r--r--docs/devel/style.rst14
-rw-r--r--docs/devel/testing.rst104
-rw-r--r--docs/specs/ppc-spapr-hotplug.rst510
-rw-r--r--docs/specs/ppc-spapr-hotplug.txt409
-rw-r--r--docs/specs/ppc-spapr-uv-hcalls.rst89
-rw-r--r--docs/specs/ppc-spapr-uv-hcalls.txt76
-rw-r--r--docs/system/arm/virt.rst8
-rw-r--r--docs/system/ppc/pseries.rst8
9 files changed, 729 insertions, 503 deletions
diff --git a/docs/devel/memory.rst b/docs/devel/memory.rst
index 5dc8a12682..69c5e3f914 100644
--- a/docs/devel/memory.rst
+++ b/docs/devel/memory.rst
@@ -67,11 +67,15 @@ MemoryRegion):
 
   You initialize a pure container with memory_region_init().
 
-- alias: a subsection of another region.  Aliases allow a region to be
-  split apart into discontiguous regions.  Examples of uses are memory banks
-  used when the guest address space is smaller than the amount of RAM
-  addressed, or a memory controller that splits main memory to expose a "PCI
-  hole".  Aliases may point to any type of region, including other aliases,
+- alias: a subsection of another region. Aliases allow a region to be
+  split apart into discontiguous regions. Examples of uses are memory
+  banks used when the guest address space is smaller than the amount
+  of RAM addressed, or a memory controller that splits main memory to
+  expose a "PCI hole". You can also create aliases to avoid trying to
+  add the original region to multiple parents via
+  `memory_region_add_subregion`.
+
+  Aliases may point to any type of region, including other aliases,
   but an alias may not point back to itself, directly or indirectly.
   You initialize these with memory_region_init_alias().
 
diff --git a/docs/devel/style.rst b/docs/devel/style.rst
index 9c5c0fffd9..793a8d4280 100644
--- a/docs/devel/style.rst
+++ b/docs/devel/style.rst
@@ -151,6 +151,12 @@ If there are two versions of a function to be called with or without a
 lock held, the function that expects the lock to be already held
 usually uses the suffix ``_locked``.
 
+If a function is a shim designed to deal with compatibility
+workarounds we use the suffix ``_compat``. These are generally not
+called directly and aliased to the plain function name via the
+pre-processor. Another common suffix is ``_impl``; it is used for the
+concrete implementation of a function that will not be called
+directly, but rather through a macro or an inline function.
 
 Block structure
 ===============
@@ -483,11 +489,11 @@ of arguments.
 C standard, implementation defined and undefined behaviors
 ==========================================================
 
-C code in QEMU should be written to the C99 language specification. A copy
-of the final version of the C99 standard with corrigenda TC1, TC2, and TC3
-included, formatted as a draft, can be downloaded from:
+C code in QEMU should be written to the C11 language specification. A
+copy of the final version of the C11 standard formatted as a draft,
+can be downloaded from:
 
-    `<http://www.open-std.org/jtc1/sc22/WG14/www/docs/n1256.pdf>`_
+    `<http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1548.pdf>`_
 
 The C language specification defines regions of undefined behavior and
 implementation defined behavior (to give compiler authors enough leeway to
diff --git a/docs/devel/testing.rst b/docs/devel/testing.rst
index 755343c7dd..d744b5909c 100644
--- a/docs/devel/testing.rst
+++ b/docs/devel/testing.rst
@@ -382,14 +382,112 @@ Along with many other images, the ``centos8`` image is defined in a Dockerfile
 in ``tests/docker/dockerfiles/``, called ``centos8.docker``. ``make docker-help``
 command will list all the available images.
 
-To add a new image, simply create a new ``.docker`` file under the
-``tests/docker/dockerfiles/`` directory.
-
 A ``.pre`` script can be added beside the ``.docker`` file, which will be
 executed before building the image under the build context directory. This is
 mainly used to do necessary host side setup. One such setup is ``binfmt_misc``,
 for example, to make qemu-user powered cross build containers work.
 
+Most of the existing Dockerfiles were written by hand, simply by creating a
+a new ``.docker`` file under the ``tests/docker/dockerfiles/`` directory.
+This has led to an inconsistent set of packages being present across the
+different containers.
+
+Thus going forward, QEMU is aiming to automatically generate the Dockerfiles
+using the ``lcitool`` program provided by the ``libvirt-ci`` project:
+
+  https://gitlab.com/libvirt/libvirt-ci
+
+In that project, there is a ``mappings.yml`` file defining the distro native
+package names for a wide variety of third party projects. This is processed
+in combination with a project defined list of build pre-requisites to determine
+the list of native packages to install on each distribution. This can be used
+to generate dockerfiles, VM package lists and Cirrus CI variables needed to
+setup build environments across OS distributions with a consistent set of
+packages present.
+
+When preparing a patch series that adds a new build pre-requisite to QEMU,
+updates to various lcitool data files may be required.
+
+
+Adding new build pre-requisites
+^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
+
+In the simple case where the pre-requisite is already known to ``libvirt-ci``
+the following steps are needed
+
+ * Edit ``tests/lcitool/projects/qemu.yml`` and add the pre-requisite
+
+ * Run ``make lcitool-refresh`` to re-generate all relevant build environment
+   manifests
+
+In some cases ``libvirt-ci`` will not know about the build pre-requisite and
+thus some extra preparation steps will be required first
+
+ * Fork the ``libvirt-ci`` project on gitlab
+
+ * Edit the ``mappings.yml`` change to add an entry for the new build
+   prerequisite, listing its native package name on as many OS distros
+   as practical.
+
+ * Commit the ``mappings.yml`` change and submit a merge request to
+   the ``libvirt-ci`` project, noting in the description that this
+   is a new build pre-requisite desired for use with QEMU
+
+ * CI pipeline will run to validate that the changes to ``mappings.yml``
+   are correct, by attempting to install the newly listed package on
+   all OS distributions supported by ``libvirt-ci``.
+
+ * Once the merge request is accepted, go back to QEMU and update
+   the ``libvirt-ci`` submodule to point to a commit that contains
+   the ``mappings.yml`` update.
+
+
+Adding new OS distros
+^^^^^^^^^^^^^^^^^^^^^
+
+In some cases ``libvirt-ci`` will not know about the OS distro that is
+desired to be tested. Before adding a new OS distro, discuss the proposed
+addition:
+
+ * Send a mail to qemu-devel, copying people listed in the
+   MAINTAINERS file for ``Build and test automation``.
+
+   There are limited CI compute resources available to QEMU, so the
+   cost/benefit tradeoff of adding new OS distros needs to be considered.
+
+ * File an issue at https://gitlab.com/libvirt/libvirt-ci/-/issues
+   pointing to the qemu-devel mail thread in the archives.
+
+   This alerts other people who might be interested in the work
+   to avoid duplication, as well as to get feedback from libvirt-ci
+   maintainers on any tips to ease the addition
+
+Assuming there is agreement to add a new OS distro then
+
+ * Fork the ``libvirt-ci`` project on gitlab
+
+ * Add metadata under ``guests/lcitool/lcitool/ansible/group_vars/``
+   for the new OS distro. There might be code changes required if
+   the OS distro uses a package format not currently known. The
+   ``libvirt-ci`` maintainers can advise on this when the issue
+   is file.
+
+ * Edit the ``mappings.yml`` change to update all the existing package
+   entries, providing details of the new OS distro
+
+ * Commit the ``mappings.yml`` change and submit a merge request to
+   the ``libvirt-ci`` project, noting in the description that this
+   is a new build pre-requisite desired for use with QEMU
+
+ * CI pipeline will run to validate that the changes to ``mappings.yml``
+   are correct, by attempting to install the newly listed package on
+   all OS distributions supported by ``libvirt-ci``.
+
+ * Once the merge request is accepted, go back to QEMU and update
+   the ``libvirt-ci`` submodule to point to a commit that contains
+   the ``mappings.yml`` update.
+
+
 Tests
 ~~~~~
 
diff --git a/docs/specs/ppc-spapr-hotplug.rst b/docs/specs/ppc-spapr-hotplug.rst
new file mode 100644
index 0000000000..f84dc55ad9
--- /dev/null
+++ b/docs/specs/ppc-spapr-hotplug.rst
@@ -0,0 +1,510 @@
+=============================
+sPAPR Dynamic Reconfiguration
+=============================
+
+sPAPR or pSeries guests make use of a facility called dynamic reconfiguration
+to handle hot plugging of dynamic "physical" resources like PCI cards, or
+"logical"/para-virtual resources like memory, CPUs, and "physical"
+host-bridges, which are generally managed by the host/hypervisor and provided
+to guests as virtualized resources. The specifics of dynamic reconfiguration
+are documented extensively in section 13 of the Linux on Power Architecture
+Reference document ([LoPAR]_). This document provides a summary of that
+information as it applies to the implementation within QEMU.
+
+Dynamic-reconfiguration Connectors
+==================================
+
+To manage hot plug/unplug of these resources, a firmware abstraction known as
+a Dynamic Resource Connector (DRC) is used to assign a particular dynamic
+resource to the guest, and provide an interface for the guest to manage
+configuration/removal of the resource associated with it.
+
+Device tree description of DRCs
+===============================
+
+A set of four Open Firmware device tree array properties are used to describe
+the name/index/power-domain/type of each DRC allocated to a guest at
+boot time. There may be multiple sets of these arrays, rooted at different
+paths in the device tree depending on the type of resource the DRCs manage.
+
+In some cases, the DRCs themselves may be provided by a dynamic resource,
+such as the DRCs managing PCI slots on a hot plugged PHB. In this case the
+arrays would be fetched as part of the device tree retrieval interfaces
+for hot plugged resources described under :ref:`guest-host-interface`.
+
+The array properties are described below. Each entry/element in an array
+describes the DRC identified by the element in the corresponding position
+of ``ibm,drc-indexes``:
+
+``ibm,drc-names``
+-----------------
+
+  First 4-bytes: big-endian (BE) encoded integer denoting the number of entries.
+
+  Each entry: a NULL-terminated ``<name>`` string encoded as a byte array.
+
+    ``<name>`` values for logical/virtual resources are defined in the Linux on
+    Power Architecture Reference ([LoPAR]_) section 13.5.2.4, and basically
+    consist of the type of the resource followed by a space and a numerical
+    value that's unique across resources of that type.
+
+    ``<name>`` values for "physical" resources such as PCI or VIO devices are
+    defined as being "location codes", which are the "location labels" of each
+    encapsulating device, starting from the chassis down to the individual slot
+    for the device, concatenated by a hyphen. This provides a mapping of
+    resources to a physical location in a chassis for debugging purposes. For
+    QEMU, this mapping is less important, so we assign a location code that
+    conforms to naming specifications, but is simply a location label for the
+    slot by itself to simplify the implementation. The naming convention for
+    location labels is documented in detail in the [LoPAR]_ section 12.3.1.5,
+    and in our case amounts to using ``C<n>`` for PCI/VIO device slots, where
+    ``<n>`` is unique across all PCI/VIO device slots.
+
+``ibm,drc-indexes``
+-------------------
+
+  First 4-bytes: BE-encoded integer denoting the number of entries.
+
+  Each 4-byte entry: BE-encoded ``<index>`` integer that is unique across all
+  DRCs in the machine.
+
+    ``<index>`` is arbitrary, but in the case of QEMU we try to maintain the
+    convention used to assign them to pSeries guests on pHyp (the hypervisor
+    portion of PowerVM):
+
+      ``bit[31:28]``: integer encoding of ``<type>``, where ``<type>`` is:
+
+        ``1`` for CPU resource.
+
+        ``2`` for PHB resource.
+
+        ``3`` for VIO resource.
+
+        ``4`` for PCI resource.
+
+        ``8`` for memory resource.
+
+      ``bit[27:0]``: integer encoding of ``<id>``, where ``<id>`` is unique
+      across all resources of specified type.
+
+``ibm,drc-power-domains``
+-------------------------
+
+  First 4-bytes: BE-encoded integer denoting the number of entries.
+
+  Each 4-byte entry: 32-bit, BE-encoded ``<index>`` integer that specifies the
+  power domain the resource will be assigned to. In the case of QEMU we
+  associated all resources with a "live insertion" domain, where the power is
+  assumed to be managed automatically. The integer value for this domain is a
+  special value of ``-1``.
+
+
+``ibm,drc-types``
+-----------------
+
+  First 4-bytes: BE-encoded integer denoting the number of entries.
+
+  Each entry: a NULL-terminated ``<type>`` string encoded as a byte array.
+  ``<type>`` is assigned as follows:
+
+    "CPU" for a CPU.
+
+    "PHB" for a physical host-bridge.
+
+    "SLOT" for a VIO slot.
+
+    "28" for a PCI slot.
+
+    "MEM" for memory resource.
+
+.. _guest-host-interface:
+
+Guest->Host interface to manage dynamic resources
+=================================================
+
+Each DRC is given a globally unique DRC index, and resources associated with a
+particular DRC are configured/managed by the guest via a number of RTAS calls
+which reference individual DRCs based on the DRC index. This can be considered
+the guest->host interface.
+
+``rtas-set-power-level``
+------------------------
+
+Set the power level for a specified power domain.
+
+  ``arg[0]``: integer identifying power domain.
+
+  ``arg[1]``: new power level for the domain, ``0-100``.
+
+  ``output[0]``: status, ``0`` on success.
+
+  ``output[1]``: power level after command.
+
+``rtas-get-power-level``
+------------------------
+
+Get the power level for a specified power domain.
+
+  ``arg[0]``: integer identifying power domain.
+
+  ``output[0]``: status, ``0`` on success.
+
+  ``output[1]``: current power level.
+
+``rtas-set-indicator``
+----------------------
+
+Set the state of an indicator or sensor.
+
+  ``arg[0]``: integer identifying sensor/indicator type.
+
+  ``arg[1]``: index of sensor, for DR-related sensors this is generally the DRC
+  index.
+
+  ``arg[2]``: desired sensor value.
+
+  ``output[0]``: status, ``0`` on success.
+
+For the purpose of this document we focus on the indicator/sensor types
+associated with a DRC. The types are:
+
+* ``9001``: ``isolation-state``, controls/indicates whether a device has been
+  made accessible to a guest. Supported sensor values:
+
+    ``0``: ``isolate``, device is made inaccessible by guest OS.
+
+    ``1``: ``unisolate``, device is made available to guest OS.
+
+* ``9002``: ``dr-indicator``, controls "visual" indicator associated with
+  device. Supported sensor values:
+
+    ``0``: ``inactive``, resource may be safely removed.
+
+    ``1``: ``active``, resource is in use and cannot be safely removed.
+
+    ``2``: ``identify``, used to visually identify slot for interactive hot plug.
+
+    ``3``: ``action``, in most cases, used in the same manner as identify.
+
+* ``9003``: ``allocation-state``, generally only used for "logical" DR resources
+  to request the allocation/deallocation of a resource prior to acquiring it via
+  ``isolation-state->unisolate``, or after releasing it via
+  ``isolation-state->isolate``, respectively. For "physical" DR (like PCI
+  hot plug/unplug) the pre-allocation of the resource is implied and this sensor
+  is unused. Supported sensor values:
+
+    ``0``: ``unusable``, tell firmware/system the resource can be
+    unallocated/reclaimed and added back to the system resource pool.
+
+    ``1``: ``usable``, request the resource be allocated/reserved for use by
+    guest OS.
+
+    ``2``: ``exchange``, used to allocate a spare resource to use for fail-over
+    in certain situations. Unused in QEMU.
+
+    ``3``: ``recover``, used to reclaim a previously allocated resource that's
+    not currently allocated to the guest OS. Unused in QEMU.
+
+``rtas-get-sensor-state:``
+--------------------------
+
+Used to read an indicator or sensor value.
+
+  ``arg[0]``: integer identifying sensor/indicator type.
+
+  ``arg[1]``: index of sensor, for DR-related sensors this is generally the DRC
+  index
+
+  ``output[0]``: status, 0 on success
+
+For DR-related operations, the only noteworthy sensor is ``dr-entity-sense``,
+which has a type value of ``9003``, as ``allocation-state`` does in the case of
+``rtas-set-indicator``. The semantics/encodings of the sensor values are
+distinct however.
+
+Supported sensor values for ``dr-entity-sense`` (``9003``) sensor:
+
+  ``0``: empty.
+
+    For physical resources: DRC/slot is empty.
+
+    For logical resources: unused.
+
+  ``1``: present.
+
+    For physical resources: DRC/slot is populated with a device/resource.
+
+    For logical resources: resource has been allocated to the DRC.
+
+  ``2``: unusable.
+
+    For physical resources: unused.
+
+    For logical resources: DRC has no resource allocated to it.
+
+  ``3``: exchange.
+
+    For physical resources: unused.
+
+    For logical resources: resource available for exchange (see
+    ``allocation-state`` sensor semantics above).
+
+  ``4``: recovery.
+
+    For physical resources: unused.
+
+    For logical resources: resource available for recovery (see
+    ``allocation-state`` sensor semantics above).
+
+``rtas-ibm-configure-connector``
+--------------------------------
+
+Used to fetch an OpenFirmware device tree description of the resource associated
+with a particular DRC.
+
+  ``arg[0]``: guest physical address of 4096-byte work area buffer.
+
+  ``arg[1]``: 0, or address of additional 4096-byte work area buffer; only
+  non-zero if a prior RTAS response indicated a need for additional memory.
+
+  ``output[0]``: status:
+
+    ``0``: completed transmittal of device tree node.
+
+    ``1``: instruct guest to prepare for next device tree sibling node.
+
+    ``2``: instruct guest to prepare for next device tree child node.
+
+    ``3``: instruct guest to prepare for next device tree property.
+
+    ``4``: instruct guest to ascend to parent device tree node.
+
+    ``5``: instruct guest to provide additional work-area buffer via ``arg[1]``.
+
+    ``990x``: instruct guest that operation took too long and to try again
+    later.
+
+The DRC index is encoded in the first 4-bytes of the first work area buffer.
+Work area (``wa``) layout, using 4-byte offsets:
+
+  ``wa[0]``: DRC index of the DRC to fetch device tree nodes from.
+
+  ``wa[1]``: ``0`` (hard-coded).
+
+  ``wa[2]``:
+
+    For next-sibling/next-child response:
+
+      ``wa`` offset of null-terminated string denoting the new node's name.
+
+    For next-property response:
+
+      ``wa`` offset of null-terminated string denoting new property's name.
+
+  ``wa[3]``: for next-property response (unused otherwise):
+
+      Byte-length of new property's value.
+
+  ``wa[4]``: for next-property response (unused otherwise):
+
+      New property's value, encoded as an OFDT-compatible byte array.
+
+Hot plug/unplug events
+======================
+
+For most DR operations, the hypervisor will issue host->guest add/remove events
+using the EPOW/check-exception notification framework, where the host issues a
+check-exception interrupt, then provides an RTAS event log via an
+rtas-check-exception call issued by the guest in response. This framework is
+documented by PAPR+ v2.7, and already use in by QEMU for generating powerdown
+requests via EPOW events.
+
+For DR, this framework has been extended to include hotplug events, which were
+previously unneeded due to direct manipulation of DR-related guest userspace
+tools by host-level management such as an HMC. This level of management is not
+applicable to KVM on Power, hence the reason for extending the notification
+framework to support hotplug events.
+
+The format for these EPOW-signalled events is described below under
+:ref:`hot-plug-unplug-event-structure`. Note that these events are not formally
+part of the PAPR+ specification, and have been superseded by a newer format,
+also described below under :ref:`hot-plug-unplug-event-structure`, and so are
+now deemed a "legacy" format. The formats are similar, but the "modern" format
+contains additional fields/flags, which are denoted for the purposes of this
+documentation with ``#ifdef GUEST_SUPPORTS_MODERN`` guards.
+
+QEMU should assume support only for "legacy" fields/flags unless the guest
+advertises support for the "modern" format via
+``ibm,client-architecture-support`` hcall by setting byte 5, bit 6 of it's
+``ibm,architecture-vec-5`` option vector structure (as described by [LoPAR]_,
+section B.5.2.3). As with "legacy" format events, "modern" format events are
+surfaced to the guest via check-exception RTAS calls, but use a dedicated event
+source to signal the guest. This event source is advertised to the guest by the
+addition of a ``hot-plug-events`` node under ``/event-sources`` node of the
+guest's device tree using the standard format described in [LoPAR]_,
+section B.5.12.2.
+
+.. _hot-plug-unplug-event-structure:
+
+Hot plug/unplug event structure
+===============================
+
+The hot plug specific payload in QEMU is implemented as follows (with all values
+encoded in big-endian format):
+
+.. code-block:: c
+
+   struct rtas_event_log_v6_hp {
+   #define SECTION_ID_HOTPLUG              0x4850 /* HP */
+       struct section_header {
+           uint16_t section_id;            /* set to SECTION_ID_HOTPLUG */
+           uint16_t section_length;        /* sizeof(rtas_event_log_v6_hp),
+                                            * plus the length of the DRC name
+                                            * if a DRC name identifier is
+                                            * specified for hotplug_identifier
+                                            */
+           uint8_t section_version;        /* version 1 */
+           uint8_t section_subtype;        /* unused */
+           uint16_t creator_component_id;  /* unused */
+       } hdr;
+   #define RTAS_LOG_V6_HP_TYPE_CPU         1
+   #define RTAS_LOG_V6_HP_TYPE_MEMORY      2
+   #define RTAS_LOG_V6_HP_TYPE_SLOT        3
+   #define RTAS_LOG_V6_HP_TYPE_PHB         4
+   #define RTAS_LOG_V6_HP_TYPE_PCI         5
+       uint8_t hotplug_type;               /* type of resource/device */
+   #define RTAS_LOG_V6_HP_ACTION_ADD       1
+   #define RTAS_LOG_V6_HP_ACTION_REMOVE    2
+       uint8_t hotplug_action;             /* action (add/remove) */
+   #define RTAS_LOG_V6_HP_ID_DRC_NAME          1
+   #define RTAS_LOG_V6_HP_ID_DRC_INDEX         2
+   #define RTAS_LOG_V6_HP_ID_DRC_COUNT         3
+   #ifdef GUEST_SUPPORTS_MODERN
+   #define RTAS_LOG_V6_HP_ID_DRC_COUNT_INDEXED 4
+   #endif
+       uint8_t hotplug_identifier;         /* type of the resource identifier,
+                                            * which serves as the discriminator
+                                            * for the 'drc' union field below
+                                            */
+   #ifdef GUEST_SUPPORTS_MODERN
+       uint8_t capabilities;               /* capability flags, currently unused
+                                            * by QEMU
+                                            */
+   #else
+       uint8_t reserved;
+   #endif
+       union {
+           uint32_t index;                 /* DRC index of resource to take action
+                                            * on
+                                            */
+           uint32_t count;                 /* number of DR resources to take
+                                            * action on (guest chooses which)
+                                            */
+   #ifdef GUEST_SUPPORTS_MODERN
+           struct {
+               uint32_t count;             /* number of DR resources to take
+                                            * action on
+                                            */
+               uint32_t index;             /* DRC index of first resource to take
+                                            * action on. guest will take action
+                                            * on DRC index <index> through
+                                            * DRC index <index + count - 1> in
+                                            * sequential order
+                                            */
+           } count_indexed;
+   #endif
+           char name[1];                   /* string representing the name of the
+                                            * DRC to take action on
+                                            */
+       } drc;
+   } QEMU_PACKED;
+
+``ibm,lrdr-capacity``
+=====================
+
+``ibm,lrdr-capacity`` is a property in the /rtas device tree node that
+identifies the dynamic reconfiguration capabilities of the guest. It consists
+of a triple consisting of ``<phys>``, ``<size>`` and ``<maxcpus>``.
+
+  ``<phys>``, encoded in BE format represents the maximum address in bytes and
+  hence the maximum memory that can be allocated to the guest.
+
+  ``<size>``, encoded in BE format represents the size increments in which
+  memory can be hot-plugged to the guest.
+
+  ``<maxcpus>``, a BE-encoded integer, represents the maximum number of
+  processors that the guest can have.
+
+``pseries`` guests use this property to note the maximum allowed CPUs for the
+guest.
+
+``ibm,dynamic-reconfiguration-memory``
+======================================
+
+``ibm,dynamic-reconfiguration-memory`` is a device tree node that represents
+dynamically reconfigurable logical memory blocks (LMB). This node is generated
+only when the guest advertises the support for it via
+``ibm,client-architecture-support`` call. Memory that is not dynamically
+reconfigurable is represented by ``/memory`` nodes. The properties of this node
+that are of interest to the sPAPR memory hotplug implementation in QEMU are
+described here.
+
+``ibm,lmb-size``
+----------------
+
+This 64-bit integer defines the size of each dynamically reconfigurable LMB.
+
+``ibm,associativity-lookup-arrays``
+-----------------------------------
+
+This property defines a lookup array in which the NUMA associativity
+information for each LMB can be found. It is a property encoded array
+that begins with an integer M, the number of associativity lists followed
+by an integer N, the number of entries per associativity list and terminated
+by M associativity lists each of length N integers.
+
+This property provides the same information as given by ``ibm,associativity``
+property in a ``/memory`` node. Each assigned LMB has an index value between
+0 and M-1 which is used as an index into this table to select which
+associativity list to use for the LMB. This index value for each LMB is defined
+in ``ibm,dynamic-memory`` property.
+
+``ibm,dynamic-memory``
+----------------------
+
+This property describes the dynamically reconfigurable memory. It is a
+property encoded array that has an integer N, the number of LMBs followed
+by N LMB list entries.
+
+Each LMB list entry consists of the following elements:
+
+- Logical address of the start of the LMB encoded as a 64-bit integer. This
+  corresponds to ``reg`` property in ``/memory`` node.
+- DRC index of the LMB that corresponds to ``ibm,my-drc-index`` property
+  in a ``/memory`` node.
+- Four bytes reserved for expansion.
+- Associativity list index for the LMB that is used as an index into
+  ``ibm,associativity-lookup-arrays`` property described earlier. This is used
+  to retrieve the right associativity list to be used for this LMB.
+- A 32-bit flags word. The bit at bit position ``0x00000008`` defines whether
+  the LMB is assigned to the partition as of boot time.
+
+``ibm,dynamic-memory-v2``
+-------------------------
+
+This property describes the dynamically reconfigurable memory. This is
+an alternate and newer way to describe dynamically reconfigurable memory.
+It is a property encoded array that has an integer N (the number of
+LMB set entries) followed by N LMB set entries. There is an LMB set entry
+for each sequential group of LMBs that share common attributes.
+
+Each LMB set entry consists of the following elements:
+
+- Number of sequential LMBs in the entry represented by a 32-bit integer.
+- Logical address of the first LMB in the set encoded as a 64-bit integer.
+- DRC index of the first LMB in the set.
+- Associativity list index that is used as an index into
+  ``ibm,associativity-lookup-arrays`` property described earlier. This
+  is used to retrieve the right associativity list to be used for all
+  the LMBs in this set.
+- A 32-bit flags word that applies to all the LMBs in the set.
diff --git a/docs/specs/ppc-spapr-hotplug.txt b/docs/specs/ppc-spapr-hotplug.txt
deleted file mode 100644
index d4fb2d46d9..0000000000
--- a/docs/specs/ppc-spapr-hotplug.txt
+++ /dev/null
@@ -1,409 +0,0 @@
-= sPAPR Dynamic Reconfiguration =
-
-sPAPR/"pseries" guests make use of a facility called dynamic-reconfiguration
-to handle hotplugging of dynamic "physical" resources like PCI cards, or
-"logical"/paravirtual resources like memory, CPUs, and "physical"
-host-bridges, which are generally managed by the host/hypervisor and provided
-to guests as virtualized resources. The specifics of dynamic-reconfiguration
-are documented extensively in PAPR+ v2.7, Section 13.1. This document
-provides a summary of that information as it applies to the implementation
-within QEMU.
-
-== Dynamic-reconfiguration Connectors ==
-
-To manage hotplug/unplug of these resources, a firmware abstraction known as
-a Dynamic Resource Connector (DRC) is used to assign a particular dynamic
-resource to the guest, and provide an interface for the guest to manage
-configuration/removal of the resource associated with it.
-
-== Device-tree description of DRCs ==
-
-A set of 4 Open Firmware device tree array properties are used to describe
-the name/index/power-domain/type of each DRC allocated to a guest at
-boot-time. There may be multiple sets of these arrays, rooted at different
-paths in the device tree depending on the type of resource the DRCs manage.
-
-In some cases, the DRCs themselves may be provided by a dynamic resource,
-such as the DRCs managing PCI slots on a hotplugged PHB. In this case the
-arrays would be fetched as part of the device tree retrieval interfaces
-for hotplugged resources described under "Guest->Host interface".
-
-The array properties are described below. Each entry/element in an array
-describes the DRC identified by the element in the corresponding position
-of ibm,drc-indexes:
-
-ibm,drc-names:
-  first 4-bytes: BE-encoded integer denoting the number of entries
-  each entry: a NULL-terminated <name> string encoded as a byte array
-
-  <name> values for logical/virtual resources are defined in PAPR+ v2.7,
-  Section 13.5.2.4, and basically consist of the type of the resource
-  followed by a space and a numerical value that's unique across resources
-  of that type.
-
-  <name> values for "physical" resources such as PCI or VIO devices are
-  defined as being "location codes", which are the "location labels" of
-  each encapsulating device, starting from the chassis down to the
-  individual slot for the device, concatenated by a hyphen. This provides
-  a mapping of resources to a physical location in a chassis for debugging
-  purposes. For QEMU, this mapping is less important, so we assign a
-  location code that conforms to naming specifications, but is simply a
-  location label for the slot by itself to simplify the implementation.
-  The naming convention for location labels is documented in detail in
-  PAPR+ v2.7, Section 12.3.1.5, and in our case amounts to using "C<n>"
-  for PCI/VIO device slots, where <n> is unique across all PCI/VIO
-  device slots.
-
-ibm,drc-indexes:
-  first 4-bytes: BE-encoded integer denoting the number of entries
-  each 4-byte entry: BE-encoded <index> integer that is unique across all DRCs
-    in the machine
-
-  <index> is arbitrary, but in the case of QEMU we try to maintain the
-  convention used to assign them to pSeries guests on pHyp:
-
-    bit[31:28]: integer encoding of <type>, where <type> is:
-                  1 for CPU resource
-                  2 for PHB resource
-                  3 for VIO resource
-                  4 for PCI resource
-                  8 for Memory resource
-    bit[27:0]: integer encoding of <id>, where <id> is unique across
-                 all resources of specified type
-
-ibm,drc-power-domains:
-  first 4-bytes: BE-encoded integer denoting the number of entries
-  each 4-byte entry: 32-bit, BE-encoded <index> integer that specifies the
-    power domain the resource will be assigned to. In the case of QEMU
-    we associated all resources with a "live insertion" domain, where the
-    power is assumed to be managed automatically. The integer value for
-    this domain is a special value of -1.
-
-
-ibm,drc-types:
-  first 4-bytes: BE-encoded integer denoting the number of entries
-  each entry: a NULL-terminated <type> string encoded as a byte array
-
-  <type> is assigned as follows:
-    "CPU" for a CPU
-    "PHB" for a physical host-bridge
-    "SLOT" for a VIO slot
-    "28" for a PCI slot
-    "MEM" for memory resource
-
-== Guest->Host interface to manage dynamic resources ==
-
-Each DRC is given a globally unique DRC Index, and resources associated with
-a particular DRC are configured/managed by the guest via a number of RTAS
-calls which reference individual DRCs based on the DRC index. This can be
-considered the guest->host interface.
-
-rtas-set-power-level:
-  arg[0]: integer identifying power domain
-  arg[1]: new power level for the domain, 0-100
-  output[0]: status, 0 on success
-  output[1]: power level after command
-
-  Set the power level for a specified power domain
-
-rtas-get-power-level:
-  arg[0]: integer identifying power domain
-  output[0]: status, 0 on success
-  output[1]: current power level
-
-  Get the power level for a specified power domain
-
-rtas-set-indicator:
-  arg[0]: integer identifying sensor/indicator type
-  arg[1]: index of sensor, for DR-related sensors this is generally the
-          DRC index
-  arg[2]: desired sensor value
-  output[0]: status, 0 on success
-
-  Set the state of an indicator or sensor. For the purpose of this document we
-  focus on the indicator/sensor types associated with a DRC. The types are:
-
-    9001: isolation-state, controls/indicates whether a device has been made
-          accessible to a guest
-
-          supported sensor values:
-            0: isolate, device is made unaccessible by guest OS
-            1: unisolate, device is made available to guest OS
-
-    9002: dr-indicator, controls "visual" indicator associated with device
-
-          supported sensor values:
-            0: inactive, resource may be safely removed
-            1: active, resource is in use and cannot be safely removed
-            2: identify, used to visually identify slot for interactive hotplug
-            3: action, in most cases, used in the same manner as identify
-
-    9003: allocation-state, generally only used for "logical" DR resources to
-          request the allocation/deallocation of a resource prior to acquiring
-          it via isolation-state->unisolate, or after releasing it via
-          isolation-state->isolate, respectively. for "physical" DR (like PCI
-          hotplug/unplug) the pre-allocation of the resource is implied and
-          this sensor is unused.
-
-          supported sensor values:
-            0: unusable, tell firmware/system the resource can be
-               unallocated/reclaimed and added back to the system resource pool
-            1: usable, request the resource be allocated/reserved for use by
-               guest OS
-            2: exchange, used to allocate a spare resource to use for fail-over
-               in certain situations. unused in QEMU
-            3: recover, used to reclaim a previously allocated resource that's
-               not currently allocated to the guest OS. unused in QEMU
-
-rtas-get-sensor-state:
-  arg[0]: integer identifying sensor/indicator type
-  arg[1]: index of sensor, for DR-related sensors this is generally the
-          DRC index
-  output[0]: status, 0 on success
-
-  Used to read an indicator or sensor value.
-
-  For DR-related operations, the only noteworthy sensor is dr-entity-sense,
-  which has a type value of 9003, as allocation-state does in the case of
-  rtas-set-indicator. The semantics/encodings of the sensor values are distinct
-  however:
-
-  supported sensor values for dr-entity-sense (9003) sensor:
-    0: empty,
-         for physical resources: DRC/slot is empty
-         for logical resources: unused
-    1: present,
-         for physical resources: DRC/slot is populated with a device/resource
-         for logical resources: resource has been allocated to the DRC
-    2: unusable,
-         for physical resources: unused
-         for logical resources: DRC has no resource allocated to it
-    3: exchange,
-         for physical resources: unused
-         for logical resources: resource available for exchange (see
-           allocation-state sensor semantics above)
-    4: recovery,
-         for physical resources: unused
-         for logical resources: resource available for recovery (see
-           allocation-state sensor semantics above)
-
-rtas-ibm-configure-connector:
-  arg[0]: guest physical address of 4096-byte work area buffer
-  arg[1]: 0, or address of additional 4096-byte work area buffer. only non-zero
-          if a prior RTAS response indicated a need for additional memory
-  output[0]: status:
-               0: completed transmittal of device-tree node
-               1: instruct guest to prepare for next DT sibling node
-               2: instruct guest to prepare for next DT child node
-               3: instruct guest to prepare for next DT property
-               4: instruct guest to ascend to parent DT node
-               5: instruct guest to provide additional work-area buffer
-                  via arg[1]
-            990x: instruct guest that operation took too long and to try
-                  again later
-
-  Used to fetch an OF device-tree description of the resource associated with
-  a particular DRC. The DRC index is encoded in the first 4-bytes of the first
-  work area buffer.
-
-  Work area layout, using 4-byte offsets:
-    wa[0]: DRC index of the DRC to fetch device-tree nodes from
-    wa[1]: 0 (hard-coded)
-    wa[2]: for next-sibling/next-child response:
-             wa offset of null-terminated string denoting the new node's name
-           for next-property response:
-             wa offset of null-terminated string denoting new property's name
-    wa[3]: for next-property response (unused otherwise):
-             byte-length of new property's value
-    wa[4]: for next-property response (unused otherwise):
-             new property's value, encoded as an OFDT-compatible byte array
-
-== hotplug/unplug events ==
-
-For most DR operations, the hypervisor will issue host->guest add/remove events
-using the EPOW/check-exception notification framework, where the host issues a
-check-exception interrupt, then provides an RTAS event log via an
-rtas-check-exception call issued by the guest in response. This framework is
-documented by PAPR+ v2.7, and already use in by QEMU for generating powerdown
-requests via EPOW events.
-
-For DR, this framework has been extended to include hotplug events, which were
-previously unneeded due to direct manipulation of DR-related guest userspace
-tools by host-level management such as an HMC. This level of management is not
-applicable to PowerKVM, hence the reason for extending the notification
-framework to support hotplug events.
-
-The format for these EPOW-signalled events is described below under
-"hotplug/unplug event structure". Note that these events are not
-formally part of the PAPR+ specification, and have been superseded by a
-newer format, also described below under "hotplug/unplug event structure",
-and so are now deemed a "legacy" format. The formats are similar, but the
-"modern" format contains additional fields/flags, which are denoted for the
-purposes of this documentation with "#ifdef GUEST_SUPPORTS_MODERN" guards.
-
-QEMU should assume support only for "legacy" fields/flags unless the guest
-advertises support for the "modern" format via ibm,client-architecture-support
-hcall by setting byte 5, bit 6 of it's ibm,architecture-vec-5 option vector
-structure (as described by LoPAPR v11, B.6.2.3). As with "legacy" format events,
-"modern" format events are surfaced to the guest via check-exception RTAS calls,
-but use a dedicated event source to signal the guest. This event source is
-advertised to the guest by the addition of a "hot-plug-events" node under
-"/event-sources" node of the guest's device tree using the standard format
-described in LoPAPR v11, B.6.12.1.
-
-== hotplug/unplug event structure ==
-
-The hotplug-specific payload in QEMU is implemented as follows (with all values
-encoded in big-endian format):
-
-struct rtas_event_log_v6_hp {
-#define SECTION_ID_HOTPLUG              0x4850 /* HP */
-    struct section_header {
-        uint16_t section_id;            /* set to SECTION_ID_HOTPLUG */
-        uint16_t section_length;        /* sizeof(rtas_event_log_v6_hp),
-                                         * plus the length of the DRC name
-                                         * if a DRC name identifier is
-                                         * specified for hotplug_identifier
-                                         */
-        uint8_t section_version;        /* version 1 */
-        uint8_t section_subtype;        /* unused */
-        uint16_t creator_component_id;  /* unused */
-    } hdr;
-#define RTAS_LOG_V6_HP_TYPE_CPU         1
-#define RTAS_LOG_V6_HP_TYPE_MEMORY      2
-#define RTAS_LOG_V6_HP_TYPE_SLOT        3
-#define RTAS_LOG_V6_HP_TYPE_PHB         4
-#define RTAS_LOG_V6_HP_TYPE_PCI         5
-    uint8_t hotplug_type;               /* type of resource/device */
-#define RTAS_LOG_V6_HP_ACTION_ADD       1
-#define RTAS_LOG_V6_HP_ACTION_REMOVE    2
-    uint8_t hotplug_action;             /* action (add/remove) */
-#define RTAS_LOG_V6_HP_ID_DRC_NAME          1
-#define RTAS_LOG_V6_HP_ID_DRC_INDEX         2
-#define RTAS_LOG_V6_HP_ID_DRC_COUNT         3
-#ifdef GUEST_SUPPORTS_MODERN
-#define RTAS_LOG_V6_HP_ID_DRC_COUNT_INDEXED 4
-#endif
-    uint8_t hotplug_identifier;         /* type of the resource identifier,
-                                         * which serves as the discriminator
-                                         * for the 'drc' union field below
-                                         */
-#ifdef GUEST_SUPPORTS_MODERN
-    uint8_t capabilities;               /* capability flags, currently unused
-                                         * by QEMU
-                                         */
-#else
-    uint8_t reserved;
-#endif
-    union {
-        uint32_t index;                 /* DRC index of resource to take action
-                                         * on
-                                         */
-        uint32_t count;                 /* number of DR resources to take
-                                         * action on (guest chooses which)
-                                         */
-#ifdef GUEST_SUPPORTS_MODERN
-        struct {
-            uint32_t count;             /* number of DR resources to take
-                                         * action on
-                                         */
-            uint32_t index;             /* DRC index of first resource to take
-                                         * action on. guest will take action
-                                         * on DRC index <index> through
-                                         * DRC index <index + count - 1> in
-                                         * sequential order
-                                         */
-        } count_indexed;
-#endif
-        char name[1];                   /* string representing the name of the
-                                         * DRC to take action on
-                                         */
-    } drc;
-} QEMU_PACKED;
-
-== ibm,lrdr-capacity ==
-
-ibm,lrdr-capacity is a property in the /rtas device tree node that identifies
-the dynamic reconfiguration capabilities of the guest. It consists of a triple
-consisting of <phys>, <size> and <maxcpus>.
-
-  <phys>, encoded in BE format represents the maximum address in bytes and
-  hence the maximum memory that can be allocated to the guest.
-
-  <size>, encoded in BE format represents the size increments in which
-  memory can be hot-plugged to the guest.
-
-  <maxcpus>, a BE-encoded integer, represents the maximum number of
-  processors that the guest can have.
-
-pseries guests use this property to note the maximum allowed CPUs for the
-guest.
-
-== ibm,dynamic-reconfiguration-memory ==
-
-ibm,dynamic-reconfiguration-memory is a device tree node that represents
-dynamically reconfigurable logical memory blocks (LMB). This node
-is generated only when the guest advertises the support for it via
-ibm,client-architecture-support call. Memory that is not dynamically
-reconfigurable is represented by /memory nodes. The properties of this
-node that are of interest to the sPAPR memory hotplug implementation
-in QEMU are described here.
-
-ibm,lmb-size
-
-This 64bit integer defines the size of each dynamically reconfigurable LMB.
-
-ibm,associativity-lookup-arrays
-
-This property defines a lookup array in which the NUMA associativity
-information for each LMB can be found. It is a property encoded array
-that begins with an integer M, the number of associativity lists followed
-by an integer N, the number of entries per associativity list and terminated
-by M associativity lists each of length N integers.
-
-This property provides the same information as given by ibm,associativity
-property in a /memory node. Each assigned LMB has an index value between
-0 and M-1 which is used as an index into this table to select which
-associativity list to use for the LMB. This index value for each LMB
-is defined in ibm,dynamic-memory property.
-
-ibm,dynamic-memory
-
-This property describes the dynamically reconfigurable memory. It is a
-property encoded array that has an integer N, the number of LMBs followed
-by N LMB list entries.
-
-Each LMB list entry consists of the following elements:
-
-- Logical address of the start of the LMB encoded as a 64bit integer. This
-  corresponds to reg property in /memory node.
-- DRC index of the LMB that corresponds to ibm,my-drc-index property
-  in a /memory node.
-- Four bytes reserved for expansion.
-- Associativity list index for the LMB that is used as an index into
-  ibm,associativity-lookup-arrays property described earlier. This
-  is used to retrieve the right associativity list to be used for this
-  LMB.
-- A 32bit flags word. The bit at bit position 0x00000008 defines whether
-  the LMB is assigned to the partition as of boot time.
-
-ibm,dynamic-memory-v2
-
-This property describes the dynamically reconfigurable memory. This is
-an alternate and newer way to describe dynamically reconfigurable memory.
-It is a property encoded array that has an integer N (the number of
-LMB set entries) followed by N LMB set entries. There is an LMB set entry
-for each sequential group of LMBs that share common attributes.
-
-Each LMB set entry consists of the following elements:
-
-- Number of sequential LMBs in the entry represented by a 32bit integer.
-- Logical address of the first LMB in the set encoded as a 64bit integer.
-- DRC index of the first LMB in the set.
-- Associativity list index that is used as an index into
-  ibm,associativity-lookup-arrays property described earlier. This
-  is used to retrieve the right associativity list to be used for all
-  the LMBs in this set.
-- A 32bit flags word that applies to all the LMBs in the set.
-
-[1] http://thread.gmane.org/gmane.linux.ports.ppc.embedded/75350/focus=106867
diff --git a/docs/specs/ppc-spapr-uv-hcalls.rst b/docs/specs/ppc-spapr-uv-hcalls.rst
new file mode 100644
index 0000000000..a00288deb3
--- /dev/null
+++ b/docs/specs/ppc-spapr-uv-hcalls.rst
@@ -0,0 +1,89 @@
+===================================
+Hypervisor calls and the Ultravisor
+===================================
+
+On PPC64 systems supporting Protected Execution Facility (PEF), system memory
+can be placed in a secured region where only an ultravisor running in firmware
+can provide access to. pSeries guests on such systems can communicate with
+the ultravisor (via ultracalls) to switch to a secure virtual machine (SVM) mode
+where the guest's memory is relocated to this secured region, making its memory
+inaccessible to normal processes/guests running on the host.
+
+The various ultracalls/hypercalls relating to SVM mode are currently only
+documented internally, but are planned for direct inclusion into the Linux on
+Power Architecture Reference document ([LoPAR]_). An internal ACR has been filed
+to reserve a hypercall number range specific to this use case to avoid any
+future conflicts with the IBM internally maintained Power Architecture Platform
+Reference (PAPR+) documentation specification. This document summarizes some of
+these details as they relate to QEMU.
+
+Hypercalls needed by the ultravisor
+===================================
+
+Switching to SVM mode involves a number of hcalls issued by the ultravisor to
+the hypervisor to orchestrate the movement of guest memory to secure memory and
+various other aspects of the SVM mode. Numbers are assigned for these hcalls
+within the reserved range ``0xEF00-0xEF80``. The below documents the hcalls
+relevant to QEMU.
+
+``H_TPM_COMM`` (``0xef10``)
+---------------------------
+
+SVM file systems are encrypted using a symmetric key. This key is then
+wrapped/encrypted using the public key of a trusted system which has the private
+key stored in the system's TPM. An Ultravisor will use this hcall to
+unwrap/unseal the symmetric key using the system's TPM device or a TPM Resource
+Manager associated with the device.
+
+The Ultravisor sets up a separate session key with the TPM in advance during
+host system boot. All sensitive in and out values will be encrypted using the
+session key. Though the hypervisor will see the in and out buffers in raw form,
+any sensitive contents will generally be encrypted using this session key.
+
+Arguments:
+
+  ``r3``: ``H_TPM_COMM`` (``0xef10``)
+
+  ``r4``: ``TPM`` operation, one of:
+
+    ``TPM_COMM_OP_EXECUTE`` (``0x1``): send a request to a TPM and receive a
+    response, opening a new TPM session if one has not already been opened.
+
+    ``TPM_COMM_OP_CLOSE_SESSION`` (``0x2``): close the existing TPM session, if
+    any.
+
+  ``r5``: ``in_buffer``, guest physical address of buffer containing the
+  request. Caller may use the same address for both request and response.
+
+  ``r6``: ``in_size``, size of the in buffer. Must be less than or equal to
+  4 KB.
+
+  ``r7``: ``out_buffer``, guest physical address of buffer to store the
+  response. Caller may use the same address for both request and response.
+
+  ``r8``: ``out_size``, size of the out buffer. Must be at least 4 KB, as this
+  is the maximum request/response size supported by most TPM implementations,
+  including the TPM Resource Manager in the linux kernel.
+
+Return values:
+
+  ``r3``: one of the following values:
+
+    ``H_Success``: request processed successfully.
+
+    ``H_PARAMETER``: invalid TPM operation.
+
+    ``H_P2``: ``in_buffer`` is invalid.
+
+    ``H_P3``: ``in_size`` is invalid.
+
+    ``H_P4``: ``out_buffer`` is invalid.
+
+    ``H_P5``: ``out_size`` is invalid.
+
+    ``H_RESOURCE``: problem communicating with TPM.
+
+    ``H_FUNCTION``: TPM access is not currently allowed/configured.
+
+    ``r4``: For ``TPM_COMM_OP_EXECUTE``, the size of the response will be stored
+    here upon success.
diff --git a/docs/specs/ppc-spapr-uv-hcalls.txt b/docs/specs/ppc-spapr-uv-hcalls.txt
deleted file mode 100644
index 389c2740d7..0000000000
--- a/docs/specs/ppc-spapr-uv-hcalls.txt
+++ /dev/null
@@ -1,76 +0,0 @@
-On PPC64 systems supporting Protected Execution Facility (PEF), system
-memory can be placed in a secured region where only an "ultravisor"
-running in firmware can provide to access it. pseries guests on such
-systems can communicate with the ultravisor (via ultracalls) to switch to a
-secure VM mode (SVM) where the guest's memory is relocated to this secured
-region, making its memory inaccessible to normal processes/guests running on
-the host.
-
-The various ultracalls/hypercalls relating to SVM mode are currently
-only documented internally, but are planned for direct inclusion into the
-public OpenPOWER version of the PAPR specification (LoPAPR/LoPAR). An internal
-ACR has been filed to reserve a hypercall number range specific to this
-use-case to avoid any future conflicts with the internally-maintained PAPR
-specification. This document summarizes some of these details as they relate
-to QEMU.
-
-== hypercalls needed by the ultravisor ==
-
-Switching to SVM mode involves a number of hcalls issued by the ultravisor
-to the hypervisor to orchestrate the movement of guest memory to secure
-memory and various other aspects SVM mode. Numbers are assigned for these
-hcalls within the reserved range 0xEF00-0xEF80. The below documents the
-hcalls relevant to QEMU.
-
-- H_TPM_COMM (0xef10)
-
-  For TPM_COMM_OP_EXECUTE operation:
-    Send a request to a TPM and receive a response, opening a new TPM session
-    if one has not already been opened.
-
-  For TPM_COMM_OP_CLOSE_SESSION operation:
-    Close the existing TPM session, if any.
-
-  Arguments:
-
-    r3 : H_TPM_COMM (0xef10)
-    r4 : TPM operation, one of:
-         TPM_COMM_OP_EXECUTE (0x1)
-         TPM_COMM_OP_CLOSE_SESSION (0x2)
-    r5 : in_buffer, guest physical address of buffer containing the request
-         - Caller may use the same address for both request and response
-    r6 : in_size, size of the in buffer
-         - Must be less than or equal to 4KB
-    r7 : out_buffer, guest physical address of buffer to store the response
-         - Caller may use the same address for both request and response
-    r8 : out_size, size of the out buffer
-         - Must be at least 4KB, as this is the maximum request/response size
-           supported by most TPM implementations, including the TPM Resource
-           Manager in the linux kernel.
-
-  Return values:
-
-    r3 : H_Success    request processed successfully
-         H_PARAMETER  invalid TPM operation
-         H_P2         in_buffer is invalid
-         H_P3         in_size is invalid
-         H_P4         out_buffer is invalid
-         H_P5         out_size is invalid
-         H_RESOURCE   problem communicating with TPM
-         H_FUNCTION   TPM access is not currently allowed/configured
-    r4 : For TPM_COMM_OP_EXECUTE, the size of the response will be stored here
-         upon success.
-
-  Use-case/notes:
-
-    SVM filesystems are encrypted using a symmetric key. This key is then
-    wrapped/encrypted using the public key of a trusted system which has the
-    private key stored in the system's TPM. An Ultravisor will use this
-    hcall to unwrap/unseal the symmetric key using the system's TPM device
-    or a TPM Resource Manager associated with the device.
-
-    The Ultravisor sets up a separate session key with the TPM in advance
-    during host system boot. All sensitive in and out values will be
-    encrypted using the session key. Though the hypervisor will see the 'in'
-    and 'out' buffers in raw form, any sensitive contents will generally be
-    encrypted using this session key.
diff --git a/docs/system/arm/virt.rst b/docs/system/arm/virt.rst
index 850787495b..1544632b67 100644
--- a/docs/system/arm/virt.rst
+++ b/docs/system/arm/virt.rst
@@ -121,6 +121,14 @@ ras
   Set ``on``/``off`` to enable/disable reporting host memory errors to a guest
   using ACPI and guest external abort exceptions. The default is off.
 
+dtb-kaslr-seed
+  Set ``on``/``off`` to pass a random seed via the guest dtb
+  kaslr-seed node (in both "/chosen" and /secure-chosen) to use
+  for features like address space randomisation. The default is
+  ``on``. You will want to disable it if your trusted boot chain will
+  verify the DTB it is passed. It would be the responsibility of the
+  firmware to come up with a seed and pass it on if it wants to.
+
 Linux guest kernel configuration
 """"""""""""""""""""""""""""""""
 
diff --git a/docs/system/ppc/pseries.rst b/docs/system/ppc/pseries.rst
index 1689324815..569237dc0c 100644
--- a/docs/system/ppc/pseries.rst
+++ b/docs/system/ppc/pseries.rst
@@ -110,16 +110,12 @@ can  also be found in QEMU documentation:
 .. toctree::
    :maxdepth: 1
 
+   ../../specs/ppc-spapr-hotplug.rst
    ../../specs/ppc-spapr-hcalls.rst
    ../../specs/ppc-spapr-numa.rst
+   ../../specs/ppc-spapr-uv-hcalls.rst
    ../../specs/ppc-spapr-xive.rst
 
-Other documentation available in QEMU docs directory:
-
-* Hot plug (``/docs/specs/ppc-spapr-hotplug.txt``).
-* Hypervisor calls needed by the Ultravisor
-  (``/docs/specs/ppc-spapr-uv-hcalls.txt``).
-
 Switching between the KVM-PR and KVM-HV kernel module
 =====================================================