summary refs log tree commit diff stats
path: root/hw/arm_timer.c
diff options
context:
space:
mode:
Diffstat (limited to 'hw/arm_timer.c')
-rw-r--r--hw/arm_timer.c383
1 files changed, 383 insertions, 0 deletions
diff --git a/hw/arm_timer.c b/hw/arm_timer.c
new file mode 100644
index 0000000000..a97d73e447
--- /dev/null
+++ b/hw/arm_timer.c
@@ -0,0 +1,383 @@
+/* 
+ * ARM PrimeCell Timer modules.
+ *
+ * Copyright (c) 2005-2006 CodeSourcery.
+ * Written by Paul Brook
+ *
+ * This code is licenced under the GPL.
+ */
+
+#include "vl.h"
+#include "arm_pic.h"
+
+/* Common timer implementation.  */
+
+#define TIMER_CTRL_ONESHOT      (1 << 0)
+#define TIMER_CTRL_32BIT        (1 << 1)
+#define TIMER_CTRL_DIV1         (0 << 2)
+#define TIMER_CTRL_DIV16        (1 << 2)
+#define TIMER_CTRL_DIV256       (2 << 2)
+#define TIMER_CTRL_IE           (1 << 5)
+#define TIMER_CTRL_PERIODIC     (1 << 6)
+#define TIMER_CTRL_ENABLE       (1 << 7)
+
+typedef struct {
+    int64_t next_time;
+    int64_t expires;
+    int64_t loaded;
+    QEMUTimer *timer;
+    uint32_t control;
+    uint32_t count;
+    uint32_t limit;
+    int raw_freq;
+    int freq;
+    int int_level;
+    void *pic;
+    int irq;
+} arm_timer_state;
+
+/* Calculate the new expiry time of the given timer.  */
+
+static void arm_timer_reload(arm_timer_state *s)
+{
+    int64_t delay;
+
+    s->loaded = s->expires;
+    delay = muldiv64(s->count, ticks_per_sec, s->freq);
+    if (delay == 0)
+        delay = 1;
+    s->expires += delay;
+}
+
+/* Check all active timers, and schedule the next timer interrupt.  */
+
+static void arm_timer_update(arm_timer_state *s, int64_t now)
+{
+    int64_t next;
+
+    /* Ignore disabled timers.  */
+    if ((s->control & TIMER_CTRL_ENABLE) == 0)
+        return;
+    /* Ignore expired one-shot timers.  */
+    if (s->count == 0 && (s->control & TIMER_CTRL_ONESHOT))
+        return;
+    if (s->expires - now <= 0) {
+        /* Timer has expired.  */
+        s->int_level = 1;
+        if (s->control & TIMER_CTRL_ONESHOT) {
+            /* One-shot.  */
+            s->count = 0;
+        } else {
+            if ((s->control & TIMER_CTRL_PERIODIC) == 0) {
+                /* Free running.  */
+                if (s->control & TIMER_CTRL_32BIT)
+                    s->count = 0xffffffff;
+                else
+                    s->count = 0xffff;
+            } else {
+                  /* Periodic.  */
+                  s->count = s->limit;
+            }
+        }
+    }
+    while (s->expires - now <= 0) {
+        arm_timer_reload(s);
+    }
+    /* Update interrupts.  */
+    if (s->int_level && (s->control & TIMER_CTRL_IE)) {
+        pic_set_irq_new(s->pic, s->irq, 1);
+    } else {
+        pic_set_irq_new(s->pic, s->irq, 0);
+    }
+
+    next = now;
+    if (next - s->expires < 0)
+        next = s->expires;
+
+    /* Schedule the next timer interrupt.  */
+    if (next == now) {
+        qemu_del_timer(s->timer);
+        s->next_time = 0;
+    } else if (next != s->next_time) {
+        qemu_mod_timer(s->timer, next);
+        s->next_time = next;
+    }
+}
+
+/* Return the current value of the timer.  */
+static uint32_t arm_timer_getcount(arm_timer_state *s, int64_t now)
+{
+    int64_t elapsed;
+    int64_t period;
+
+    if (s->count == 0)
+        return 0;
+    if ((s->control & TIMER_CTRL_ENABLE) == 0)
+        return s->count;
+    elapsed = now - s->loaded;
+    period = s->expires - s->loaded;
+    /* If the timer should have expired then return 0.  This can happen
+       when the host timer signal doesnt occur immediately.  It's better to
+       have a timer appear to sit at zero for a while than have it wrap
+       around before the guest interrupt is raised.  */
+    /* ??? Could we trigger the interrupt here?  */
+    if (elapsed > period)
+        return 0;
+    /* We need to calculate count * elapsed / period without overfowing.
+       Scale both elapsed and period so they fit in a 32-bit int.  */
+    while (period != (int32_t)period) {
+        period >>= 1;
+        elapsed >>= 1;
+    }
+    return ((uint64_t)s->count * (uint64_t)(int32_t)elapsed)
+            / (int32_t)period;
+}
+
+uint32_t arm_timer_read(void *opaque, target_phys_addr_t offset)
+{
+    arm_timer_state *s = (arm_timer_state *)opaque;
+
+    switch (offset >> 2) {
+    case 0: /* TimerLoad */
+    case 6: /* TimerBGLoad */
+        return s->limit;
+    case 1: /* TimerValue */
+        return arm_timer_getcount(s, qemu_get_clock(vm_clock));
+    case 2: /* TimerControl */
+        return s->control;
+    case 4: /* TimerRIS */
+        return s->int_level;
+    case 5: /* TimerMIS */
+        if ((s->control & TIMER_CTRL_IE) == 0)
+            return 0;
+        return s->int_level;
+    default:
+        cpu_abort (cpu_single_env, "arm_timer_read: Bad offset %x\n", offset);
+        return 0;
+    }
+}
+
+static void arm_timer_write(void *opaque, target_phys_addr_t offset,
+                            uint32_t value)
+{
+    arm_timer_state *s = (arm_timer_state *)opaque;
+    int64_t now;
+
+    now = qemu_get_clock(vm_clock);
+    switch (offset >> 2) {
+    case 0: /* TimerLoad */
+        s->limit = value;
+        s->count = value;
+        s->expires = now;
+        arm_timer_reload(s);
+        break;
+    case 1: /* TimerValue */
+        /* ??? Linux seems to want to write to this readonly register.
+           Ignore it.  */
+        break;
+    case 2: /* TimerControl */
+        if (s->control & TIMER_CTRL_ENABLE) {
+            /* Pause the timer if it is running.  This may cause some
+               inaccuracy dure to rounding, but avoids a whole lot of other
+               messyness.  */
+            s->count = arm_timer_getcount(s, now);
+        }
+        s->control = value;
+        s->freq = s->raw_freq;
+        /* ??? Need to recalculate expiry time after changing divisor.  */
+        switch ((value >> 2) & 3) {
+        case 1: s->freq >>= 4; break;
+        case 2: s->freq >>= 8; break;
+        }
+        if (s->control & TIMER_CTRL_ENABLE) {
+            /* Restart the timer if still enabled.  */
+            s->expires = now;
+            arm_timer_reload(s);
+        }
+        break;
+    case 3: /* TimerIntClr */
+        s->int_level = 0;
+        break;
+    case 6: /* TimerBGLoad */
+        s->limit = value;
+        break;
+    default:
+        cpu_abort (cpu_single_env, "arm_timer_write: Bad offset %x\n", offset);
+    }
+    arm_timer_update(s, now);
+}
+
+static void arm_timer_tick(void *opaque)
+{
+    int64_t now;
+
+    now = qemu_get_clock(vm_clock);
+    arm_timer_update((arm_timer_state *)opaque, now);
+}
+
+static void *arm_timer_init(uint32_t freq, void *pic, int irq)
+{
+    arm_timer_state *s;
+
+    s = (arm_timer_state *)qemu_mallocz(sizeof(arm_timer_state));
+    s->pic = pic;
+    s->irq = irq;
+    s->raw_freq = s->freq = 1000000;
+    s->control = TIMER_CTRL_IE;
+    s->count = 0xffffffff;
+
+    s->timer = qemu_new_timer(vm_clock, arm_timer_tick, s);
+    /* ??? Save/restore.  */
+    return s;
+}
+
+/* ARM PrimeCell SP804 dual timer module.
+   Docs for this device don't seem to be publicly available.  This
+   implementation is based on gueswork, the linux kernel sources and the
+   Integrator/CP timer modules.  */
+
+typedef struct {
+    /* Include a pseudo-PIC device to merge the two interrupt sources.  */
+    arm_pic_handler handler;
+    void *timer[2];
+    int level[2];
+    uint32_t base;
+    /* The output PIC device.  */
+    void *pic;
+    int irq;
+} sp804_state;
+
+static void sp804_set_irq(void *opaque, int irq, int level)
+{
+    sp804_state *s = (sp804_state *)opaque;
+
+    s->level[irq] = level;
+    pic_set_irq_new(s->pic, s->irq, s->level[0] || s->level[1]);
+}
+
+static uint32_t sp804_read(void *opaque, target_phys_addr_t offset)
+{
+    sp804_state *s = (sp804_state *)opaque;
+
+    /* ??? Don't know the PrimeCell ID for this device.  */
+    offset -= s->base;
+    if (offset < 0x20) {
+        return arm_timer_read(s->timer[0], offset);
+    } else {
+        return arm_timer_read(s->timer[1], offset - 0x20);
+    }
+}
+
+static void sp804_write(void *opaque, target_phys_addr_t offset,
+                        uint32_t value)
+{
+    sp804_state *s = (sp804_state *)opaque;
+
+    offset -= s->base;
+    if (offset < 0x20) {
+        arm_timer_write(s->timer[0], offset, value);
+    } else {
+        arm_timer_write(s->timer[1], offset - 0x20, value);
+    }
+}
+
+static CPUReadMemoryFunc *sp804_readfn[] = {
+   sp804_read,
+   sp804_read,
+   sp804_read
+};
+
+static CPUWriteMemoryFunc *sp804_writefn[] = {
+   sp804_write,
+   sp804_write,
+   sp804_write
+};
+
+void sp804_init(uint32_t base, void *pic, int irq)
+{
+    int iomemtype;
+    sp804_state *s;
+
+    s = (sp804_state *)qemu_mallocz(sizeof(sp804_state));
+    s->handler = sp804_set_irq;
+    s->base = base;
+    s->pic = pic;
+    s->irq = irq;
+    /* ??? The timers are actually configurable between 32kHz and 1MHz, but
+       we don't implement that.  */
+    s->timer[0] = arm_timer_init(1000000, s, 0);
+    s->timer[1] = arm_timer_init(1000000, s, 1);
+    iomemtype = cpu_register_io_memory(0, sp804_readfn,
+                                       sp804_writefn, s);
+    cpu_register_physical_memory(base, 0x00000fff, iomemtype);
+    /* ??? Save/restore.  */
+}
+
+
+/* Integrator/CP timer module.  */
+
+typedef struct {
+    void *timer[3];
+    uint32_t base;
+} icp_pit_state;
+
+static uint32_t icp_pit_read(void *opaque, target_phys_addr_t offset)
+{
+    icp_pit_state *s = (icp_pit_state *)opaque;
+    int n;
+
+    /* ??? Don't know the PrimeCell ID for this device.  */
+    offset -= s->base;
+    n = offset >> 8;
+    if (n > 3)
+        cpu_abort(cpu_single_env, "sp804_read: Bad timer %d\n", n);
+
+    return arm_timer_read(s->timer[n], offset & 0xff);
+}
+
+static void icp_pit_write(void *opaque, target_phys_addr_t offset,
+                          uint32_t value)
+{
+    icp_pit_state *s = (icp_pit_state *)opaque;
+    int n;
+
+    offset -= s->base;
+    n = offset >> 8;
+    if (n > 3)
+        cpu_abort(cpu_single_env, "sp804_write: Bad timer %d\n", n);
+
+    arm_timer_write(s->timer[n], offset & 0xff, value);
+}
+
+
+static CPUReadMemoryFunc *icp_pit_readfn[] = {
+   icp_pit_read,
+   icp_pit_read,
+   icp_pit_read
+};
+
+static CPUWriteMemoryFunc *icp_pit_writefn[] = {
+   icp_pit_write,
+   icp_pit_write,
+   icp_pit_write
+};
+
+void icp_pit_init(uint32_t base, void *pic, int irq)
+{
+    int iomemtype;
+    icp_pit_state *s;
+
+    s = (icp_pit_state *)qemu_mallocz(sizeof(icp_pit_state));
+    s->base = base;
+    /* Timer 0 runs at the system clock speed (40MHz).  */
+    s->timer[0] = arm_timer_init(40000000, pic, irq);
+    /* The other two timers run at 1MHz.  */
+    s->timer[1] = arm_timer_init(1000000, pic, irq + 1);
+    s->timer[2] = arm_timer_init(1000000, pic, irq + 2);
+
+    iomemtype = cpu_register_io_memory(0, icp_pit_readfn,
+                                       icp_pit_writefn, s);
+    cpu_register_physical_memory(base, 0x00000fff, iomemtype);
+    /* ??? Save/restore.  */
+}
+