summary refs log tree commit diff stats
path: root/hw/m68k/next-cube.c
diff options
context:
space:
mode:
Diffstat (limited to 'hw/m68k/next-cube.c')
-rw-r--r--hw/m68k/next-cube.c941
1 files changed, 941 insertions, 0 deletions
diff --git a/hw/m68k/next-cube.c b/hw/m68k/next-cube.c
new file mode 100644
index 0000000000..530c6ac46a
--- /dev/null
+++ b/hw/m68k/next-cube.c
@@ -0,0 +1,941 @@
+/*
+ * NeXT Cube System Driver
+ *
+ * Copyright (c) 2011 Bryce Lanham
+ *
+ * This code is free software; you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published
+ * by the Free Software Foundation; either version 2 of the License,
+ * or (at your option) any later version.
+ */
+
+#include "qemu/osdep.h"
+#include "exec/hwaddr.h"
+#include "exec/address-spaces.h"
+#include "sysemu/sysemu.h"
+#include "sysemu/qtest.h"
+#include "hw/hw.h"
+#include "hw/m68k/next-cube.h"
+#include "hw/boards.h"
+#include "hw/loader.h"
+#include "hw/scsi/esp.h"
+#include "hw/sysbus.h"
+#include "hw/char/escc.h" /* ZILOG 8530 Serial Emulation */
+#include "hw/block/fdc.h"
+#include "qapi/error.h"
+#include "ui/console.h"
+#include "target/m68k/cpu.h"
+
+/* #define DEBUG_NEXT */
+#ifdef DEBUG_NEXT
+#define DPRINTF(fmt, ...) \
+    do { printf("NeXT: " fmt , ## __VA_ARGS__); } while (0)
+#else
+#define DPRINTF(fmt, ...) do { } while (0)
+#endif
+
+#define TYPE_NEXT_MACHINE MACHINE_TYPE_NAME("next-cube")
+#define NEXT_MACHINE(obj) OBJECT_CHECK(NeXTState, (obj), TYPE_NEXT_MACHINE)
+
+#define ENTRY       0x0100001e
+#define RAM_SIZE    0x4000000
+#define ROM_FILE    "Rev_2.5_v66.bin"
+
+typedef struct next_dma {
+    uint32_t csr;
+
+    uint32_t saved_next;
+    uint32_t saved_limit;
+    uint32_t saved_start;
+    uint32_t saved_stop;
+
+    uint32_t next;
+    uint32_t limit;
+    uint32_t start;
+    uint32_t stop;
+
+    uint32_t next_initbuf;
+    uint32_t size;
+} next_dma;
+
+typedef struct {
+    MachineState parent;
+
+    uint32_t int_mask;
+    uint32_t int_status;
+
+    uint8_t scsi_csr_1;
+    uint8_t scsi_csr_2;
+    next_dma dma[10];
+    qemu_irq *scsi_irq;
+    qemu_irq scsi_dma;
+    qemu_irq scsi_reset;
+    qemu_irq *fd_irq;
+
+    uint32_t scr1;
+    uint32_t scr2;
+
+    uint8_t rtc_ram[32];
+} NeXTState;
+
+/* Thanks to NeXT forums for this */
+/*
+static const uint8_t rtc_ram3[32] = {
+    0x94, 0x0f, 0x40, 0x00, 0x00, 0x00, 0x00, 0x00,
+    0x00, 0x00, 0xfb, 0x6d, 0x00, 0x00, 0x7B, 0x00,
+    0x00, 0x00, 0x65, 0x6e, 0x00, 0x00, 0x00, 0x00,
+    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x50, 0x13
+};
+*/
+static const uint8_t rtc_ram2[32] = {
+    0x94, 0x0f, 0x40, 0x03, 0x00, 0x00, 0x00, 0x00,
+    0x00, 0x00, 0xfb, 0x6d, 0x00, 0x00, 0x4b, 0x00,
+    0x41, 0x00, 0x20, 0x00, 0x00, 0x00, 0x00, 0x00,
+    0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x84, 0x7e,
+};
+
+#define SCR2_RTCLK 0x2
+#define SCR2_RTDATA 0x4
+#define SCR2_TOBCD(x) (((x / 10) << 4) + (x % 10))
+
+static void nextscr2_write(NeXTState *s, uint32_t val, int size)
+{
+    static int led;
+    static int phase;
+    static uint8_t old_scr2;
+    static uint8_t rtc_command;
+    static uint8_t rtc_value;
+    static uint8_t rtc_status = 0x90;
+    static uint8_t rtc_return;
+    uint8_t scr2_2;
+
+    if (size == 4) {
+        scr2_2 = (val >> 8) & 0xFF;
+    } else {
+        scr2_2 = val & 0xFF;
+    }
+
+    if (val & 0x1) {
+        DPRINTF("fault!\n");
+        led++;
+        if (led == 10) {
+            DPRINTF("LED flashing, possible fault!\n");
+            led = 0;
+        }
+    }
+
+    if (scr2_2 & 0x1) {
+        /* DPRINTF("RTC %x phase %i\n", scr2_2, phase); */
+        if (phase == -1) {
+            phase = 0;
+        }
+        /* If we are in going down clock... do something */
+        if (((old_scr2 & SCR2_RTCLK) != (scr2_2 & SCR2_RTCLK)) &&
+                ((scr2_2 & SCR2_RTCLK) == 0)) {
+            if (phase < 8) {
+                rtc_command = (rtc_command << 1) |
+                              ((scr2_2 & SCR2_RTDATA) ? 1 : 0);
+            }
+            if (phase >= 8 && phase < 16) {
+                rtc_value = (rtc_value << 1) | ((scr2_2 & SCR2_RTDATA) ? 1 : 0);
+
+                /* if we read RAM register, output RT_DATA bit */
+                if (rtc_command <= 0x1F) {
+                    scr2_2 = scr2_2 & (~SCR2_RTDATA);
+                    if (s->rtc_ram[rtc_command] & (0x80 >> (phase - 8))) {
+                        scr2_2 |= SCR2_RTDATA;
+                    }
+
+                    rtc_return = (rtc_return << 1) |
+                                 ((scr2_2 & SCR2_RTDATA) ? 1 : 0);
+                }
+                /* read the status 0x30 */
+                if (rtc_command == 0x30) {
+                    scr2_2 = scr2_2 & (~SCR2_RTDATA);
+                    /* for now status = 0x98 (new rtc + FTU) */
+                    if (rtc_status & (0x80 >> (phase - 8))) {
+                        scr2_2 |= SCR2_RTDATA;
+                    }
+
+                    rtc_return = (rtc_return << 1) |
+                                 ((scr2_2 & SCR2_RTDATA) ? 1 : 0);
+                }
+                /* read the status 0x31 */
+                if (rtc_command == 0x31) {
+                    scr2_2 = scr2_2 & (~SCR2_RTDATA);
+                    /* for now 0x00 */
+                    if (0x00 & (0x80 >> (phase - 8))) {
+                        scr2_2 |= SCR2_RTDATA;
+                    }
+                    rtc_return = (rtc_return << 1) |
+                                 ((scr2_2 & SCR2_RTDATA) ? 1 : 0);
+                }
+
+                if ((rtc_command >= 0x20) && (rtc_command <= 0x2F)) {
+                    scr2_2 = scr2_2 & (~SCR2_RTDATA);
+                    /* for now 0x00 */
+                    time_t time_h = time(NULL);
+                    struct tm *info = localtime(&time_h);
+                    int ret = 0;
+
+                    switch (rtc_command) {
+                    case 0x20:
+                        ret = SCR2_TOBCD(info->tm_sec);
+                        break;
+                    case 0x21:
+                        ret = SCR2_TOBCD(info->tm_min);
+                        break;
+                    case 0x22:
+                        ret = SCR2_TOBCD(info->tm_hour);
+                        break;
+                    case 0x24:
+                        ret = SCR2_TOBCD(info->tm_mday);
+                        break;
+                    case 0x25:
+                        ret = SCR2_TOBCD((info->tm_mon + 1));
+                        break;
+                    case 0x26:
+                        ret = SCR2_TOBCD((info->tm_year - 100));
+                        break;
+
+                    }
+
+                    if (ret & (0x80 >> (phase - 8))) {
+                        scr2_2 |= SCR2_RTDATA;
+                    }
+                    rtc_return = (rtc_return << 1) |
+                                 ((scr2_2 & SCR2_RTDATA) ? 1 : 0);
+                }
+
+            }
+
+            phase++;
+            if (phase == 16) {
+                if (rtc_command >= 0x80 && rtc_command <= 0x9F) {
+                    s->rtc_ram[rtc_command - 0x80] = rtc_value;
+                }
+                /* write to x30 register */
+                if (rtc_command == 0xB1) {
+                    /* clear FTU */
+                    if (rtc_value & 0x04) {
+                        rtc_status = rtc_status & (~0x18);
+                        s->int_status = s->int_status & (~0x04);
+                    }
+                }
+            }
+        }
+    } else {
+        /* else end or abort */
+        phase = -1;
+        rtc_command = 0;
+        rtc_value = 0;
+    }
+    s->scr2 = val & 0xFFFF00FF;
+    s->scr2 |= scr2_2 << 8;
+    old_scr2 = scr2_2;
+}
+
+static uint32_t mmio_readb(NeXTState *s, hwaddr addr)
+{
+    switch (addr) {
+    case 0xc000:
+        return (s->scr1 >> 24) & 0xFF;
+    case 0xc001:
+        return (s->scr1 >> 16) & 0xFF;
+    case 0xc002:
+        return (s->scr1 >> 8)  & 0xFF;
+    case 0xc003:
+        return (s->scr1 >> 0)  & 0xFF;
+
+    case 0xd000:
+        return (s->scr2 >> 24) & 0xFF;
+    case 0xd001:
+        return (s->scr2 >> 16) & 0xFF;
+    case 0xd002:
+        return (s->scr2 >> 8)  & 0xFF;
+    case 0xd003:
+        return (s->scr2 >> 0)  & 0xFF;
+    case 0x14020:
+        DPRINTF("MMIO Read 0x4020\n");
+        return 0x7f;
+
+    default:
+        DPRINTF("MMIO Read B @ %"HWADDR_PRIx"\n", addr);
+        return 0x0;
+    }
+}
+
+static uint32_t mmio_readw(NeXTState *s, hwaddr addr)
+{
+    switch (addr) {
+    default:
+        DPRINTF("MMIO Read W @ %"HWADDR_PRIx"\n", addr);
+        return 0x0;
+    }
+}
+
+static uint32_t mmio_readl(NeXTState *s, hwaddr addr)
+{
+    switch (addr) {
+    case 0x7000:
+        /* DPRINTF("Read INT status: %x\n", s->int_status); */
+        return s->int_status;
+
+    case 0x7800:
+        DPRINTF("MMIO Read INT mask: %x\n", s->int_mask);
+        return s->int_mask;
+
+    case 0xc000:
+        return s->scr1;
+
+    case 0xd000:
+        return s->scr2;
+
+    default:
+        DPRINTF("MMIO Read L @ %"HWADDR_PRIx"\n", addr);
+        return 0x0;
+    }
+}
+
+static void mmio_writeb(NeXTState *s, hwaddr addr, uint32_t val)
+{
+    switch (addr) {
+    case 0xd003:
+        nextscr2_write(s, val, 1);
+        break;
+    default:
+        DPRINTF("MMIO Write B @ %x with %x\n", (unsigned int)addr, val);
+    }
+
+}
+
+static void mmio_writew(NeXTState *s, hwaddr addr, uint32_t val)
+{
+    DPRINTF("MMIO Write W\n");
+}
+
+static void mmio_writel(NeXTState *s, hwaddr addr, uint32_t val)
+{
+    switch (addr) {
+    case 0x7000:
+        DPRINTF("INT Status old: %x new: %x\n", s->int_status, val);
+        s->int_status = val;
+        break;
+    case 0x7800:
+        DPRINTF("INT Mask old: %x new: %x\n", s->int_mask, val);
+        s->int_mask  = val;
+        break;
+    case 0xc000:
+        DPRINTF("SCR1 Write: %x\n", val);
+        break;
+    case 0xd000:
+        nextscr2_write(s, val, 4);
+        break;
+
+    default:
+        DPRINTF("MMIO Write l @ %x with %x\n", (unsigned int)addr, val);
+    }
+}
+
+static uint64_t mmio_readfn(void *opaque, hwaddr addr, unsigned size)
+{
+    NeXTState *ns = NEXT_MACHINE(opaque);
+
+    switch (size) {
+    case 1:
+        return mmio_readb(ns, addr);
+    case 2:
+        return mmio_readw(ns, addr);
+    case 4:
+        return mmio_readl(ns, addr);
+    default:
+        g_assert_not_reached();
+    }
+}
+
+static void mmio_writefn(void *opaque, hwaddr addr, uint64_t value,
+                         unsigned size)
+{
+    NeXTState *ns = NEXT_MACHINE(opaque);
+
+    switch (size) {
+    case 1:
+        mmio_writeb(ns, addr, value);
+        break;
+    case 2:
+        mmio_writew(ns, addr, value);
+        break;
+    case 4:
+        mmio_writel(ns, addr, value);
+        break;
+    default:
+        g_assert_not_reached();
+    }
+}
+
+static const MemoryRegionOps mmio_ops = {
+    .read = mmio_readfn,
+    .write = mmio_writefn,
+    .valid.min_access_size = 1,
+    .valid.max_access_size = 4,
+    .endianness = DEVICE_NATIVE_ENDIAN,
+};
+
+static uint32_t scr_readb(NeXTState *s, hwaddr addr)
+{
+    switch (addr) {
+    case 0x14108:
+        DPRINTF("FD read @ %x\n", (unsigned int)addr);
+        return 0x40 | 0x04 | 0x2 | 0x1;
+    case 0x14020:
+        DPRINTF("SCSI 4020  STATUS READ %X\n", s->scsi_csr_1);
+        return s->scsi_csr_1;
+
+    case 0x14021:
+        DPRINTF("SCSI 4021 STATUS READ %X\n", s->scsi_csr_2);
+        return 0x40;
+
+    /*
+     * These 4 registers are the hardware timer, not sure which register
+     * is the latch instead of data, but no problems so far
+     */
+    case 0x1a000:
+        return 0xff & (clock() >> 24);
+    case 0x1a001:
+        return 0xff & (clock() >> 16);
+    case 0x1a002:
+        return 0xff & (clock() >> 8);
+    case 0x1a003:
+        /* Hack: We need to have this change consistently to make it work */
+        return 0xFF & clock();
+
+    default:
+        DPRINTF("BMAP Read B @ %x\n", (unsigned int)addr);
+        return 0;
+    }
+}
+
+static uint32_t scr_readw(NeXTState *s, hwaddr addr)
+{
+    DPRINTF("BMAP Read W @ %x\n", (unsigned int)addr);
+    return 0;
+}
+
+static uint32_t scr_readl(NeXTState *s, hwaddr addr)
+{
+    DPRINTF("BMAP Read L @ %x\n", (unsigned int)addr);
+    return 0;
+}
+
+#define SCSICSR_ENABLE  0x01
+#define SCSICSR_RESET   0x02  /* reset scsi dma */
+#define SCSICSR_FIFOFL  0x04
+#define SCSICSR_DMADIR  0x08  /* if set, scsi to mem */
+#define SCSICSR_CPUDMA  0x10  /* if set, dma enabled */
+#define SCSICSR_INTMASK 0x20  /* if set, interrupt enabled */
+
+static void scr_writeb(NeXTState *s, hwaddr addr, uint32_t value)
+{
+    switch (addr) {
+    case 0x14108:
+        DPRINTF("FDCSR Write: %x\n", value);
+
+        if (value == 0x0) {
+            /* qemu_irq_raise(s->fd_irq[0]); */
+        }
+        break;
+    case 0x14020: /* SCSI Control Register */
+        if (value & SCSICSR_FIFOFL) {
+            DPRINTF("SCSICSR FIFO Flush\n");
+            /* will have to add another irq to the esp if this is needed */
+            /* esp_puflush_fifo(esp_g); */
+            /* qemu_irq_pulse(s->scsi_dma); */
+        }
+
+        if (value & SCSICSR_ENABLE) {
+            DPRINTF("SCSICSR Enable\n");
+            /*
+             * qemu_irq_raise(s->scsi_dma);
+             * s->scsi_csr_1 = 0xc0;
+             * s->scsi_csr_1 |= 0x1;
+             * qemu_irq_pulse(s->scsi_dma);
+             */
+        }
+        /*
+         * else
+         *     s->scsi_csr_1 &= ~SCSICSR_ENABLE;
+         */
+
+        if (value & SCSICSR_RESET) {
+            DPRINTF("SCSICSR Reset\n");
+            /* I think this should set DMADIR. CPUDMA and INTMASK to 0 */
+            /* qemu_irq_raise(s->scsi_reset); */
+            /* s->scsi_csr_1 &= ~(SCSICSR_INTMASK |0x80|0x1); */
+
+        }
+        if (value & SCSICSR_DMADIR) {
+            DPRINTF("SCSICSR DMAdir\n");
+        }
+        if (value & SCSICSR_CPUDMA) {
+            DPRINTF("SCSICSR CPUDMA\n");
+            /* qemu_irq_raise(s->scsi_dma); */
+
+            s->int_status |= 0x4000000;
+        } else {
+            s->int_status &= ~(0x4000000);
+        }
+        if (value & SCSICSR_INTMASK) {
+            DPRINTF("SCSICSR INTMASK\n");
+            /*
+             * int_mask &= ~0x1000;
+             * s->scsi_csr_1 |= value;
+             * s->scsi_csr_1 &= ~SCSICSR_INTMASK;
+             * if (s->scsi_queued) {
+             *     s->scsi_queued = 0;
+             *     next_irq(s, NEXT_SCSI_I, level);
+             * }
+             */
+        } else {
+            /* int_mask |= 0x1000; */
+        }
+        if (value & 0x80) {
+            /* int_mask |= 0x1000; */
+            /* s->scsi_csr_1 |= 0x80; */
+        }
+        DPRINTF("SCSICSR Write: %x\n", value);
+        /* s->scsi_csr_1 = value; */
+        return;
+    /* Hardware timer latch - not implemented yet */
+    case 0x1a000:
+    default:
+        DPRINTF("BMAP Write B @ %x with %x\n", (unsigned int)addr, value);
+    }
+}
+
+static void scr_writew(NeXTState *s, hwaddr addr, uint32_t value)
+{
+    DPRINTF("BMAP Write W @ %x with %x\n", (unsigned int)addr, value);
+}
+
+static void scr_writel(NeXTState *s, hwaddr addr, uint32_t value)
+{
+    DPRINTF("BMAP Write L @ %x with %x\n", (unsigned int)addr, value);
+}
+
+static uint64_t scr_readfn(void *opaque, hwaddr addr, unsigned size)
+{
+    NeXTState *ns = NEXT_MACHINE(opaque);
+
+    switch (size) {
+    case 1:
+        return scr_readb(ns, addr);
+    case 2:
+        return scr_readw(ns, addr);
+    case 4:
+        return scr_readl(ns, addr);
+    default:
+        g_assert_not_reached();
+    }
+}
+
+static void scr_writefn(void *opaque, hwaddr addr, uint64_t value,
+                        unsigned size)
+{
+    NeXTState *ns = NEXT_MACHINE(opaque);
+
+    switch (size) {
+    case 1:
+        scr_writeb(ns, addr, value);
+        break;
+    case 2:
+        scr_writew(ns, addr, value);
+        break;
+    case 4:
+        scr_writel(ns, addr, value);
+        break;
+    default:
+        g_assert_not_reached();
+    }
+}
+
+static const MemoryRegionOps scr_ops = {
+    .read = scr_readfn,
+    .write = scr_writefn,
+    .valid.min_access_size = 1,
+    .valid.max_access_size = 4,
+    .endianness = DEVICE_NATIVE_ENDIAN,
+};
+
+#define NEXTDMA_SCSI(x)      (0x10 + x)
+#define NEXTDMA_FD(x)        (0x10 + x)
+#define NEXTDMA_ENTX(x)      (0x110 + x)
+#define NEXTDMA_ENRX(x)      (0x150 + x)
+#define NEXTDMA_CSR          0x0
+#define NEXTDMA_NEXT         0x4000
+#define NEXTDMA_LIMIT        0x4004
+#define NEXTDMA_START        0x4008
+#define NEXTDMA_STOP         0x400c
+#define NEXTDMA_NEXT_INIT    0x4200
+#define NEXTDMA_SIZE         0x4204
+
+static void dma_writel(void *opaque, hwaddr addr, uint64_t value,
+                       unsigned int size)
+{
+    NeXTState *next_state = NEXT_MACHINE(opaque);
+
+    switch (addr) {
+    case NEXTDMA_ENRX(NEXTDMA_CSR):
+        if (value & DMA_DEV2M) {
+            next_state->dma[NEXTDMA_ENRX].csr |= DMA_DEV2M;
+        }
+
+        if (value & DMA_SETENABLE) {
+            /* DPRINTF("SCSI DMA ENABLE\n"); */
+            next_state->dma[NEXTDMA_ENRX].csr |= DMA_ENABLE;
+        }
+        if (value & DMA_SETSUPDATE) {
+            next_state->dma[NEXTDMA_ENRX].csr |= DMA_SUPDATE;
+        }
+        if (value & DMA_CLRCOMPLETE) {
+            next_state->dma[NEXTDMA_ENRX].csr &= ~DMA_COMPLETE;
+        }
+
+        if (value & DMA_RESET) {
+            next_state->dma[NEXTDMA_ENRX].csr &= ~(DMA_COMPLETE | DMA_SUPDATE |
+                                                  DMA_ENABLE | DMA_DEV2M);
+        }
+        /* DPRINTF("RXCSR \tWrite: %x\n",value); */
+        break;
+    case NEXTDMA_ENRX(NEXTDMA_NEXT_INIT):
+        next_state->dma[NEXTDMA_ENRX].next_initbuf = value;
+        break;
+    case NEXTDMA_ENRX(NEXTDMA_NEXT):
+        next_state->dma[NEXTDMA_ENRX].next = value;
+        break;
+    case NEXTDMA_ENRX(NEXTDMA_LIMIT):
+        next_state->dma[NEXTDMA_ENRX].limit = value;
+        break;
+    case NEXTDMA_SCSI(NEXTDMA_CSR):
+        if (value & DMA_DEV2M) {
+            next_state->dma[NEXTDMA_SCSI].csr |= DMA_DEV2M;
+        }
+        if (value & DMA_SETENABLE) {
+            /* DPRINTF("SCSI DMA ENABLE\n"); */
+            next_state->dma[NEXTDMA_SCSI].csr |= DMA_ENABLE;
+        }
+        if (value & DMA_SETSUPDATE) {
+            next_state->dma[NEXTDMA_SCSI].csr |= DMA_SUPDATE;
+        }
+        if (value & DMA_CLRCOMPLETE) {
+            next_state->dma[NEXTDMA_SCSI].csr &= ~DMA_COMPLETE;
+        }
+
+        if (value & DMA_RESET) {
+            next_state->dma[NEXTDMA_SCSI].csr &= ~(DMA_COMPLETE | DMA_SUPDATE |
+                                                  DMA_ENABLE | DMA_DEV2M);
+            /* DPRINTF("SCSI DMA RESET\n"); */
+        }
+        /* DPRINTF("RXCSR \tWrite: %x\n",value); */
+        break;
+
+    case NEXTDMA_SCSI(NEXTDMA_NEXT):
+        next_state->dma[NEXTDMA_SCSI].next = value;
+        break;
+
+    case NEXTDMA_SCSI(NEXTDMA_LIMIT):
+        next_state->dma[NEXTDMA_SCSI].limit = value;
+        break;
+
+    case NEXTDMA_SCSI(NEXTDMA_START):
+        next_state->dma[NEXTDMA_SCSI].start = value;
+        break;
+
+    case NEXTDMA_SCSI(NEXTDMA_STOP):
+        next_state->dma[NEXTDMA_SCSI].stop = value;
+        break;
+
+    case NEXTDMA_SCSI(NEXTDMA_NEXT_INIT):
+        next_state->dma[NEXTDMA_SCSI].next_initbuf = value;
+        break;
+
+    default:
+        DPRINTF("DMA write @ %x w/ %x\n", (unsigned)addr, (unsigned)value);
+    }
+}
+
+static uint64_t dma_readl(void *opaque, hwaddr addr, unsigned int size)
+{
+    NeXTState *next_state = NEXT_MACHINE(opaque);
+
+    switch (addr) {
+    case NEXTDMA_SCSI(NEXTDMA_CSR):
+        DPRINTF("SCSI DMA CSR READ\n");
+        return next_state->dma[NEXTDMA_SCSI].csr;
+    case NEXTDMA_ENRX(NEXTDMA_CSR):
+        return next_state->dma[NEXTDMA_ENRX].csr;
+    case NEXTDMA_ENRX(NEXTDMA_NEXT_INIT):
+        return next_state->dma[NEXTDMA_ENRX].next_initbuf;
+    case NEXTDMA_ENRX(NEXTDMA_NEXT):
+        return next_state->dma[NEXTDMA_ENRX].next;
+    case NEXTDMA_ENRX(NEXTDMA_LIMIT):
+        return next_state->dma[NEXTDMA_ENRX].limit;
+
+    case NEXTDMA_SCSI(NEXTDMA_NEXT):
+        return next_state->dma[NEXTDMA_SCSI].next;
+    case NEXTDMA_SCSI(NEXTDMA_NEXT_INIT):
+        return next_state->dma[NEXTDMA_SCSI].next_initbuf;
+    case NEXTDMA_SCSI(NEXTDMA_LIMIT):
+        return next_state->dma[NEXTDMA_SCSI].limit;
+    case NEXTDMA_SCSI(NEXTDMA_START):
+        return next_state->dma[NEXTDMA_SCSI].start;
+    case NEXTDMA_SCSI(NEXTDMA_STOP):
+        return next_state->dma[NEXTDMA_SCSI].stop;
+
+    default:
+        DPRINTF("DMA read @ %x\n", (unsigned int)addr);
+        return 0;
+    }
+
+    /*
+     * once the csr's are done, subtract 0x3FEC from the addr, and that will
+     * normalize the upper registers
+     */
+}
+
+static const MemoryRegionOps dma_ops = {
+    .read = dma_readl,
+    .write = dma_writel,
+    .impl.min_access_size = 4,
+    .valid.min_access_size = 4,
+    .valid.max_access_size = 4,
+    .endianness = DEVICE_NATIVE_ENDIAN,
+};
+
+/*
+ * TODO: set the shift numbers as values in the enum, so the first switch
+ * will not be needed
+ */
+void next_irq(void *opaque, int number, int level)
+{
+    M68kCPU *cpu = opaque;
+    int shift = 0;
+    NeXTState *ns = NEXT_MACHINE(qdev_get_machine());
+
+    /* first switch sets interupt status */
+    /* DPRINTF("IRQ %i\n",number); */
+    switch (number) {
+    /* level 3 - floppy, kbd/mouse, power, ether rx/tx, scsi, clock */
+    case NEXT_FD_I:
+        shift = 7;;
+        break;
+    case NEXT_KBD_I:
+        shift = 3;
+        break;
+    case NEXT_PWR_I:
+        shift = 2;
+        break;
+    case NEXT_ENRX_I:
+        shift = 9;
+        break;
+    case NEXT_ENTX_I:
+        shift = 10;
+        break;
+    case NEXT_SCSI_I:
+        shift = 12;
+        break;
+    case NEXT_CLK_I:
+        shift = 5;
+        break;
+
+    /* level 5 - scc (serial) */
+    case NEXT_SCC_I:
+        shift = 17;
+        break;
+
+    /* level 6 - audio etherrx/tx dma */
+    case NEXT_ENTX_DMA_I:
+        shift = 28;
+        break;
+    case NEXT_ENRX_DMA_I:
+        shift = 27;
+        break;
+    case NEXT_SCSI_DMA_I:
+        shift = 26;
+        break;
+    case NEXT_SND_I:
+        shift = 23;
+        break;
+    case NEXT_SCC_DMA_I:
+        shift = 21;
+        break;
+
+    }
+    /*
+     * this HAS to be wrong, the interrupt handlers in mach and together
+     * int_status and int_mask and return if there is a hit
+     */
+    if (ns->int_mask & (1 << shift)) {
+        DPRINTF("%x interrupt masked @ %x\n", 1 << shift, cpu->env.pc);
+        /* return; */
+    }
+
+    /* second switch triggers the correct interrupt */
+    if (level) {
+        ns->int_status |= 1 << shift;
+
+        switch (number) {
+        /* level 3 - floppy, kbd/mouse, power, ether rx/tx, scsi, clock */
+        case NEXT_FD_I:
+        case NEXT_KBD_I:
+        case NEXT_PWR_I:
+        case NEXT_ENRX_I:
+        case NEXT_ENTX_I:
+        case NEXT_SCSI_I:
+        case NEXT_CLK_I:
+            m68k_set_irq_level(cpu, 3, 27);
+            break;
+
+        /* level 5 - scc (serial) */
+        case NEXT_SCC_I:
+            m68k_set_irq_level(cpu, 5, 29);
+            break;
+
+        /* level 6 - audio etherrx/tx dma */
+        case NEXT_ENTX_DMA_I:
+        case NEXT_ENRX_DMA_I:
+        case NEXT_SCSI_DMA_I:
+        case NEXT_SND_I:
+        case NEXT_SCC_DMA_I:
+            m68k_set_irq_level(cpu, 6, 30);
+            break;
+        }
+    } else {
+        ns->int_status &= ~(1 << shift);
+        cpu_reset_interrupt(CPU(cpu), CPU_INTERRUPT_HARD);
+    }
+}
+
+static void next_cube_init(MachineState *machine)
+{
+    M68kCPU *cpu;
+    CPUM68KState *env;
+    MemoryRegion *ram = g_new(MemoryRegion, 1);
+    MemoryRegion *rom = g_new(MemoryRegion, 1);
+    MemoryRegion *mmiomem = g_new(MemoryRegion, 1);
+    MemoryRegion *scrmem = g_new(MemoryRegion, 1);
+    MemoryRegion *dmamem = g_new(MemoryRegion, 1);
+    MemoryRegion *bmapm1 = g_new(MemoryRegion, 1);
+    MemoryRegion *bmapm2 = g_new(MemoryRegion, 1);
+    MemoryRegion *sysmem = get_system_memory();
+    NeXTState *ns = NEXT_MACHINE(machine);
+    DeviceState *dev;
+
+    /* Initialize the cpu core */
+    cpu = M68K_CPU(cpu_create(machine->cpu_type));
+    if (!cpu) {
+        error_report("Unable to find m68k CPU definition");
+        exit(1);
+    }
+    env = &cpu->env;
+
+    /* Initialize CPU registers.  */
+    env->vbr = 0;
+    env->sr  = 0x2700;
+
+    /* Set internal registers to initial values */
+    /*     0x0000XX00 << vital bits */
+    ns->scr1 = 0x00011102;
+    ns->scr2 = 0x00ff0c80;
+
+    /* Load RTC RAM - TODO: provide possibility to load contents from file */
+    memcpy(ns->rtc_ram, rtc_ram2, 32);
+
+    /* 64MB RAM starting at 0x04000000  */
+    memory_region_allocate_system_memory(ram, NULL, "next.ram", ram_size);
+    memory_region_add_subregion(sysmem, 0x04000000, ram);
+
+    /* Framebuffer */
+    dev = qdev_create(NULL, TYPE_NEXTFB);
+    qdev_init_nofail(dev);
+    sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, 0x0B000000);
+
+    /* MMIO */
+    memory_region_init_io(mmiomem, NULL, &mmio_ops, machine, "next.mmio",
+                          0xD0000);
+    memory_region_add_subregion(sysmem, 0x02000000, mmiomem);
+
+    /* BMAP memory */
+    memory_region_init_ram_shared_nomigrate(bmapm1, NULL, "next.bmapmem", 64,
+                                            true, &error_fatal);
+    memory_region_add_subregion(sysmem, 0x020c0000, bmapm1);
+    /* The Rev_2.5_v66.bin firmware accesses it at 0x820c0020, too */
+    memory_region_init_alias(bmapm2, NULL, "next.bmapmem2", bmapm1, 0x0, 64);
+    memory_region_add_subregion(sysmem, 0x820c0000, bmapm2);
+
+    /* BMAP IO - acts as a catch-all for now */
+    memory_region_init_io(scrmem, NULL, &scr_ops, machine, "next.scr",
+                          0x20000);
+    memory_region_add_subregion(sysmem, 0x02100000, scrmem);
+
+    /* KBD */
+    dev = qdev_create(NULL, TYPE_NEXTKBD);
+    qdev_init_nofail(dev);
+    sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, 0x0200e000);
+
+    /* Load ROM here */
+    if (bios_name == NULL) {
+        bios_name = ROM_FILE;
+    }
+    /* still not sure if the rom should also be mapped at 0x0*/
+    memory_region_init_rom(rom, NULL, "next.rom", 0x20000, &error_fatal);
+    memory_region_add_subregion(sysmem, 0x01000000, rom);
+    if (load_image_targphys(bios_name, 0x01000000, 0x20000) < 8) {
+        if (!qtest_enabled()) {
+            error_report("Failed to load firmware '%s'.", bios_name);
+        }
+    } else {
+        uint8_t *ptr;
+        /* Initial PC is always at offset 4 in firmware binaries */
+        ptr = rom_ptr(0x01000004, 4);
+        g_assert(ptr != NULL);
+        env->pc = ldl_p(ptr);
+        if (env->pc >= 0x01020000) {
+            error_report("'%s' does not seem to be a valid firmware image.",
+                         bios_name);
+            exit(1);
+        }
+    }
+
+    /* TODO: */
+    /* Serial */
+    /* Network */
+    /* SCSI */
+
+    /* DMA */
+    memory_region_init_io(dmamem, NULL, &dma_ops, machine, "next.dma", 0x5000);
+    memory_region_add_subregion(sysmem, 0x02000000, dmamem);
+}
+
+static void next_machine_class_init(ObjectClass *oc, void *data)
+{
+    MachineClass *mc = MACHINE_CLASS(oc);
+
+    mc->desc = "NeXT Cube";
+    mc->init = next_cube_init;
+    mc->default_ram_size = RAM_SIZE;
+    mc->default_cpu_type = M68K_CPU_TYPE_NAME("m68040");
+}
+
+static const TypeInfo next_typeinfo = {
+    .name = TYPE_NEXT_MACHINE,
+    .parent = TYPE_MACHINE,
+    .class_init = next_machine_class_init,
+    .instance_size = sizeof(NeXTState),
+};
+
+static void next_register_type(void)
+{
+    type_register_static(&next_typeinfo);
+}
+
+type_init(next_register_type)