summary refs log tree commit diff stats
path: root/hw
diff options
context:
space:
mode:
Diffstat (limited to 'hw')
-rw-r--r--hw/ssi/pnv_spi.c1045
-rw-r--r--hw/ssi/trace-events15
2 files changed, 1060 insertions, 0 deletions
diff --git a/hw/ssi/pnv_spi.c b/hw/ssi/pnv_spi.c
index 468afdad07..cdff3f9621 100644
--- a/hw/ssi/pnv_spi.c
+++ b/hw/ssi/pnv_spi.c
@@ -17,6 +17,9 @@
 #include "hw/irq.h"
 #include "trace.h"
 
+#define PNV_SPI_OPCODE_LO_NIBBLE(x) (x & 0x0F)
+#define PNV_SPI_MASKED_OPCODE(x) (x & 0xF0)
+
 /*
  * Macro from include/hw/ppc/fdt.h
  * fdt.h cannot be included here as it contain ppc target specific dependency.
@@ -32,6 +35,1040 @@
         }                                                          \
     } while (0)
 
+/* PnvXferBuffer */
+typedef struct PnvXferBuffer {
+
+    uint32_t    len;
+    uint8_t    *data;
+
+} PnvXferBuffer;
+
+/* pnv_spi_xfer_buffer_methods */
+static PnvXferBuffer *pnv_spi_xfer_buffer_new(void)
+{
+    PnvXferBuffer *payload = g_malloc0(sizeof(*payload));
+
+    return payload;
+}
+
+static void pnv_spi_xfer_buffer_free(PnvXferBuffer *payload)
+{
+    free(payload->data);
+    free(payload);
+}
+
+static uint8_t *pnv_spi_xfer_buffer_write_ptr(PnvXferBuffer *payload,
+                uint32_t offset, uint32_t length)
+{
+    if (payload->len < (offset + length)) {
+        payload->len = offset + length;
+        payload->data = g_realloc(payload->data, payload->len);
+    }
+    return &payload->data[offset];
+}
+
+static bool does_rdr_match(PnvSpi *s)
+{
+    /*
+     * According to spec, the mask bits that are 0 are compared and the
+     * bits that are 1 are ignored.
+     */
+    uint16_t rdr_match_mask = GETFIELD(SPI_MM_RDR_MATCH_MASK,
+                                        s->regs[SPI_MM_REG]);
+    uint16_t rdr_match_val = GETFIELD(SPI_MM_RDR_MATCH_VAL,
+                                        s->regs[SPI_MM_REG]);
+
+    if ((~rdr_match_mask & rdr_match_val) == ((~rdr_match_mask) &
+            GETFIELD(PPC_BITMASK(48, 63), s->regs[SPI_RCV_DATA_REG]))) {
+        return true;
+    }
+    return false;
+}
+
+static uint8_t get_from_offset(PnvSpi *s, uint8_t offset)
+{
+    uint8_t byte;
+
+    /*
+     * Offset is an index between 0 and PNV_SPI_REG_SIZE - 1
+     * Check the offset before using it.
+     */
+    if (offset < PNV_SPI_REG_SIZE) {
+        byte = (s->regs[SPI_XMIT_DATA_REG] >> (56 - offset * 8)) & 0xFF;
+    } else {
+        /*
+         * Log an error and return a 0xFF since we have to assign something
+         * to byte before returning.
+         */
+        qemu_log_mask(LOG_GUEST_ERROR, "Invalid offset = %d used to get byte "
+                      "from TDR\n", offset);
+        byte = 0xff;
+    }
+    return byte;
+}
+
+static uint8_t read_from_frame(PnvSpi *s, uint8_t *read_buf, uint8_t nr_bytes,
+                uint8_t ecc_count, uint8_t shift_in_count)
+{
+    uint8_t byte;
+    int count = 0;
+
+    while (count < nr_bytes) {
+        shift_in_count++;
+        if ((ecc_count != 0) &&
+            (shift_in_count == (PNV_SPI_REG_SIZE + ecc_count))) {
+            shift_in_count = 0;
+        } else {
+            byte = read_buf[count];
+            trace_pnv_spi_shift_rx(byte, count);
+            s->regs[SPI_RCV_DATA_REG] = (s->regs[SPI_RCV_DATA_REG] << 8) | byte;
+        }
+        count++;
+    } /* end of while */
+    return shift_in_count;
+}
+
+static void spi_response(PnvSpi *s, int bits, PnvXferBuffer *rsp_payload)
+{
+    uint8_t ecc_count;
+    uint8_t shift_in_count;
+
+    /*
+     * Processing here must handle:
+     * - Which bytes in the payload we should move to the RDR
+     * - Explicit mode counter configuration settings
+     * - RDR full and RDR overrun status
+     */
+
+    /*
+     * First check that the response payload is the exact same
+     * number of bytes as the request payload was
+     */
+    if (rsp_payload->len != (s->N1_bytes + s->N2_bytes)) {
+        qemu_log_mask(LOG_GUEST_ERROR, "Invalid response payload size in "
+                       "bytes, expected %d, got %d\n",
+                       (s->N1_bytes + s->N2_bytes), rsp_payload->len);
+    } else {
+        uint8_t ecc_control;
+        trace_pnv_spi_rx_received(rsp_payload->len);
+        trace_pnv_spi_log_Ncounts(s->N1_bits, s->N1_bytes, s->N1_tx,
+                        s->N1_rx, s->N2_bits, s->N2_bytes, s->N2_tx, s->N2_rx);
+        /*
+         * Adding an ECC count let's us know when we have found a payload byte
+         * that was shifted in but cannot be loaded into RDR.  Bits 29-30 of
+         * clock_config_reset_control register equal to either 0b00 or 0b10
+         * indicate that we are taking in data with ECC and either applying
+         * the ECC or discarding it.
+         */
+        ecc_count = 0;
+        ecc_control = GETFIELD(SPI_CLK_CFG_ECC_CTRL, s->regs[SPI_CLK_CFG_REG]);
+        if (ecc_control == 0 || ecc_control == 2) {
+            ecc_count = 1;
+        }
+        /*
+         * Use the N1_rx and N2_rx counts to control shifting data from the
+         * payload into the RDR.  Keep an overall count of the number of bytes
+         * shifted into RDR so we can discard every 9th byte when ECC is
+         * enabled.
+         */
+        shift_in_count = 0;
+        /* Handle the N1 portion of the frame first */
+        if (s->N1_rx != 0) {
+            trace_pnv_spi_rx_read_N1frame();
+            shift_in_count = read_from_frame(s, &rsp_payload->data[0],
+                            s->N1_bytes, ecc_count, shift_in_count);
+        }
+        /* Handle the N2 portion of the frame */
+        if (s->N2_rx != 0) {
+            trace_pnv_spi_rx_read_N2frame();
+            shift_in_count = read_from_frame(s,
+                            &rsp_payload->data[s->N1_bytes], s->N2_bytes,
+                            ecc_count, shift_in_count);
+        }
+        if ((s->N1_rx + s->N2_rx) > 0) {
+            /*
+             * Data was received so handle RDR status.
+             * It is easier to handle RDR_full and RDR_overrun status here
+             * since the RDR register's shift_byte_in method is called
+             * multiple times in a row. Controlling RDR status is done here
+             * instead of in the RDR scoped methods for that reason.
+             */
+            if (GETFIELD(SPI_STS_RDR_FULL, s->status) == 1) {
+                /*
+                 * Data was shifted into the RDR before having been read
+                 * causing previous data to have been overrun.
+                 */
+                s->status = SETFIELD(SPI_STS_RDR_OVERRUN, s->status, 1);
+            } else {
+                /*
+                 * Set status to indicate that the received data register is
+                 * full. This flag is only cleared once the RDR is unloaded.
+                 */
+                s->status = SETFIELD(SPI_STS_RDR_FULL, s->status, 1);
+            }
+        }
+    } /* end of else */
+} /* end of spi_response() */
+
+static void transfer(PnvSpi *s, PnvXferBuffer *payload)
+{
+    uint32_t tx;
+    uint32_t rx;
+    PnvXferBuffer *rsp_payload = NULL;
+
+    rsp_payload = pnv_spi_xfer_buffer_new();
+    for (int offset = 0; offset < payload->len; offset += s->transfer_len) {
+        tx = 0;
+        for (int i = 0; i < s->transfer_len; i++) {
+            if ((offset + i) >= payload->len) {
+                tx <<= 8;
+            } else {
+                tx = (tx << 8) | payload->data[offset + i];
+            }
+        }
+        rx = ssi_transfer(s->ssi_bus, tx);
+        for (int i = 0; i < s->transfer_len; i++) {
+            if ((offset + i) >= payload->len) {
+                break;
+            }
+            *(pnv_spi_xfer_buffer_write_ptr(rsp_payload, rsp_payload->len, 1)) =
+                    (rx >> (8 * (s->transfer_len - 1) - i * 8)) & 0xFF;
+        }
+    }
+    if (rsp_payload != NULL) {
+        spi_response(s, s->N1_bits, rsp_payload);
+    }
+}
+
+static inline uint8_t get_seq_index(PnvSpi *s)
+{
+    return GETFIELD(SPI_STS_SEQ_INDEX, s->status);
+}
+
+static inline void next_sequencer_fsm(PnvSpi *s)
+{
+    uint8_t seq_index = get_seq_index(s);
+    s->status = SETFIELD(SPI_STS_SEQ_INDEX, s->status, (seq_index + 1));
+    s->status = SETFIELD(SPI_STS_SEQ_FSM, s->status, SEQ_STATE_INDEX_INCREMENT);
+}
+
+/*
+ * Calculate the N1 counters based on passed in opcode and
+ * internal register values.
+ * The method assumes that the opcode is a Shift_N1 opcode
+ * and doesn't test it.
+ * The counters returned are:
+ * N1 bits: Number of bits in the payload data that are significant
+ * to the responder.
+ * N1_bytes: Total count of payload bytes for the N1 (portion of the) frame.
+ * N1_tx: Total number of bytes taken from TDR for N1
+ * N1_rx: Total number of bytes taken from the payload for N1
+ */
+static void calculate_N1(PnvSpi *s, uint8_t opcode)
+{
+    /*
+     * Shift_N1 opcode form: 0x3M
+     * Implicit mode:
+     * If M != 0 the shift count is M bytes and M is the number of tx bytes.
+     * Forced Implicit mode:
+     * M is the shift count but tx and rx is determined by the count control
+     * register fields.  Note that we only check for forced Implicit mode when
+     * M != 0 since the mode doesn't make sense when M = 0.
+     * Explicit mode:
+     * If M == 0 then shift count is number of bits defined in the
+     * Counter Configuration Register's shift_count_N1 field.
+     */
+    if (PNV_SPI_OPCODE_LO_NIBBLE(opcode) == 0) {
+        /* Explicit mode */
+        s->N1_bits = GETFIELD(SPI_CTR_CFG_N1, s->regs[SPI_CTR_CFG_REG]);
+        s->N1_bytes = (s->N1_bits + 7) / 8;
+        s->N1_tx = 0;
+        s->N1_rx = 0;
+        /* If tx count control for N1 is set, load the tx value */
+        if (GETFIELD(SPI_CTR_CFG_N1_CTRL_B2, s->regs[SPI_CTR_CFG_REG]) == 1) {
+            s->N1_tx = s->N1_bytes;
+        }
+        /* If rx count control for N1 is set, load the rx value */
+        if (GETFIELD(SPI_CTR_CFG_N1_CTRL_B3, s->regs[SPI_CTR_CFG_REG]) == 1) {
+            s->N1_rx = s->N1_bytes;
+        }
+    } else {
+        /* Implicit mode/Forced Implicit mode, use M field from opcode */
+        s->N1_bytes = PNV_SPI_OPCODE_LO_NIBBLE(opcode);
+        s->N1_bits = s->N1_bytes * 8;
+        /*
+         * Assume that we are going to transmit the count
+         * (pure Implicit only)
+         */
+        s->N1_tx = s->N1_bytes;
+        s->N1_rx = 0;
+        /* Let Forced Implicit mode have an effect on the counts */
+        if (GETFIELD(SPI_CTR_CFG_N1_CTRL_B1, s->regs[SPI_CTR_CFG_REG]) == 1) {
+            /*
+             * If Forced Implicit mode and count control doesn't
+             * indicate transmit then reset the tx count to 0
+             */
+            if (GETFIELD(SPI_CTR_CFG_N1_CTRL_B2,
+                                    s->regs[SPI_CTR_CFG_REG]) == 0) {
+                s->N1_tx = 0;
+            }
+            /* If rx count control for N1 is set, load the rx value */
+            if (GETFIELD(SPI_CTR_CFG_N1_CTRL_B3,
+                                    s->regs[SPI_CTR_CFG_REG]) == 1) {
+                s->N1_rx = s->N1_bytes;
+            }
+        }
+    }
+    /*
+     * Enforce an upper limit on the size of N1 that is equal to the known size
+     * of the shift register, 64 bits or 72 bits if ECC is enabled.
+     * If the size exceeds 72 bits it is a user error so log an error,
+     * cap the size at a max of 64 bits or 72 bits and set the sequencer FSM
+     * error bit.
+     */
+    uint8_t ecc_control = GETFIELD(SPI_CLK_CFG_ECC_CTRL,
+                                   s->regs[SPI_CLK_CFG_REG]);
+    if (ecc_control == 0 || ecc_control == 2) {
+        if (s->N1_bytes > (PNV_SPI_REG_SIZE + 1)) {
+            qemu_log_mask(LOG_GUEST_ERROR, "Unsupported N1 shift size when "
+                          "ECC enabled, bytes = 0x%x, bits = 0x%x\n",
+                          s->N1_bytes, s->N1_bits);
+            s->N1_bytes = PNV_SPI_REG_SIZE + 1;
+            s->N1_bits = s->N1_bytes * 8;
+        }
+    } else if (s->N1_bytes > PNV_SPI_REG_SIZE) {
+        qemu_log_mask(LOG_GUEST_ERROR, "Unsupported N1 shift size, "
+                      "bytes = 0x%x, bits = 0x%x\n",
+                      s->N1_bytes, s->N1_bits);
+        s->N1_bytes = PNV_SPI_REG_SIZE;
+        s->N1_bits = s->N1_bytes * 8;
+    }
+} /* end of calculate_N1 */
+
+/*
+ * Shift_N1 operation handler method
+ */
+static bool operation_shiftn1(PnvSpi *s, uint8_t opcode,
+                       PnvXferBuffer **payload, bool send_n1_alone)
+{
+    uint8_t n1_count;
+    bool stop = false;
+
+    /*
+     * If there isn't a current payload left over from a stopped sequence
+     * create a new one.
+     */
+    if (*payload == NULL) {
+        *payload = pnv_spi_xfer_buffer_new();
+    }
+    /*
+     * Use a combination of N1 counters to build the N1 portion of the
+     * transmit payload.
+     * We only care about transmit at this time since the request payload
+     * only represents data going out on the controller output line.
+     * Leave mode specific considerations in the calculate function since
+     * all we really care about are counters that tell use exactly how
+     * many bytes are in the payload and how many of those bytes to
+     * include from the TDR into the payload.
+     */
+    calculate_N1(s, opcode);
+    trace_pnv_spi_log_Ncounts(s->N1_bits, s->N1_bytes, s->N1_tx,
+                    s->N1_rx, s->N2_bits, s->N2_bytes, s->N2_tx, s->N2_rx);
+    /*
+     * Zero out the N2 counters here in case there is no N2 operation following
+     * the N1 operation in the sequencer.  This keeps leftover N2 information
+     * from interfering with spi_response logic.
+     */
+    s->N2_bits = 0;
+    s->N2_bytes = 0;
+    s->N2_tx = 0;
+    s->N2_rx = 0;
+    /*
+     * N1_bytes is the overall size of the N1 portion of the frame regardless of
+     * whether N1 is used for tx, rx or both.  Loop over the size to build a
+     * payload that is N1_bytes long.
+     * N1_tx is the count of bytes to take from the TDR and "shift" into the
+     * frame which means append those bytes to the payload for the N1 portion
+     * of the frame.
+     * If N1_tx is 0 or if the count exceeds the size of the TDR append 0xFF to
+     * the frame until the overall N1 count is reached.
+     */
+    n1_count = 0;
+    while (n1_count < s->N1_bytes) {
+        /*
+         * Assuming that if N1_tx is not equal to 0 then it is the same as
+         * N1_bytes.
+         */
+        if ((s->N1_tx != 0) && (n1_count < PNV_SPI_REG_SIZE)) {
+
+            if (GETFIELD(SPI_STS_TDR_FULL, s->status) == 1) {
+                /*
+                 * Note that we are only appending to the payload IF the TDR
+                 * is full otherwise we don't touch the payload because we are
+                 * going to NOT send the payload and instead tell the sequencer
+                 * that called us to stop and wait for a TDR write so we have
+                 * data to load into the payload.
+                 */
+                uint8_t n1_byte = 0x00;
+                n1_byte = get_from_offset(s, n1_count);
+                trace_pnv_spi_tx_append("n1_byte", n1_byte, n1_count);
+                *(pnv_spi_xfer_buffer_write_ptr(*payload, (*payload)->len, 1)) =
+                        n1_byte;
+            } else {
+                /*
+                 * We hit a shift_n1 opcode TX but the TDR is empty, tell the
+                 * sequencer to stop and break this loop.
+                 */
+                trace_pnv_spi_sequencer_stop_requested("Shift N1"
+                                "set for transmit but TDR is empty");
+                stop = true;
+                break;
+            }
+        } else {
+            /*
+             * Cases here:
+             * - we are receiving during the N1 frame segment and the RDR
+             *   is full so we need to stop until the RDR is read
+             * - we are transmitting and we don't care about RDR status
+             *   since we won't be loading RDR during the frame segment.
+             * - we are receiving and the RDR is empty so we allow the operation
+             *   to proceed.
+             */
+            if ((s->N1_rx != 0) && (GETFIELD(SPI_STS_RDR_FULL,
+                                           s->status) == 1)) {
+                trace_pnv_spi_sequencer_stop_requested("shift N1"
+                                "set for receive but RDR is full");
+                stop = true;
+                break;
+            } else {
+                trace_pnv_spi_tx_append_FF("n1_byte");
+                *(pnv_spi_xfer_buffer_write_ptr(*payload, (*payload)->len, 1))
+                        = 0xff;
+            }
+        }
+        n1_count++;
+    } /* end of while */
+    /*
+     * If we are not stopping due to an empty TDR and we are doing an N1 TX
+     * and the TDR is full we need to clear the TDR_full status.
+     * Do this here instead of up in the loop above so we don't log the message
+     * in every loop iteration.
+     * Ignore the send_n1_alone flag, all that does is defer the TX until the N2
+     * operation, which was found immediately after the current opcode.  The TDR
+     * was unloaded and will be shifted so we have to clear the TDR_full status.
+     */
+    if (!stop && (s->N1_tx != 0) &&
+        (GETFIELD(SPI_STS_TDR_FULL, s->status) == 1)) {
+        s->status = SETFIELD(SPI_STS_TDR_FULL, s->status, 0);
+    }
+    /*
+     * There are other reasons why the shifter would stop, such as a TDR empty
+     * or RDR full condition with N1 set to receive.  If we haven't stopped due
+     * to either one of those conditions then check if the send_n1_alone flag is
+     * equal to False, indicating the next opcode is an N2 operation, AND if
+     * the N2 counter reload switch (bit 0 of the N2 count control field) is
+     * set.  This condition requires a pacing write to "kick" off the N2
+     * shift which includes the N1 shift as well when send_n1_alone is False.
+     */
+    if (!stop && !send_n1_alone &&
+       (GETFIELD(SPI_CTR_CFG_N2_CTRL_B0, s->regs[SPI_CTR_CFG_REG]) == 1)) {
+        trace_pnv_spi_sequencer_stop_requested("N2 counter reload "
+                        "active, stop N1 shift, TDR_underrun set to 1");
+        stop = true;
+        s->status = SETFIELD(SPI_STS_TDR_UNDERRUN, s->status, 1);
+    }
+    /*
+     * If send_n1_alone is set AND we have a full TDR then this is the first and
+     * last payload to send and we don't have an N2 frame segment to add to the
+     * payload.
+     */
+    if (send_n1_alone && !stop) {
+        /* We have a TX and a full TDR or an RX and an empty RDR */
+        trace_pnv_spi_tx_request("Shifting N1 frame", (*payload)->len);
+        transfer(s, *payload);
+        /* The N1 frame shift is complete so reset the N1 counters */
+        s->N2_bits = 0;
+        s->N2_bytes = 0;
+        s->N2_tx = 0;
+        s->N2_rx = 0;
+        pnv_spi_xfer_buffer_free(*payload);
+        *payload = NULL;
+    }
+    return stop;
+} /* end of operation_shiftn1() */
+
+/*
+ * Calculate the N2 counters based on passed in opcode and
+ * internal register values.
+ * The method assumes that the opcode is a Shift_N2 opcode
+ * and doesn't test it.
+ * The counters returned are:
+ * N2 bits: Number of bits in the payload data that are significant
+ * to the responder.
+ * N2_bytes: Total count of payload bytes for the N2 frame.
+ * N2_tx: Total number of bytes taken from TDR for N2
+ * N2_rx: Total number of bytes taken from the payload for N2
+ */
+static void calculate_N2(PnvSpi *s, uint8_t opcode)
+{
+    /*
+     * Shift_N2 opcode form: 0x4M
+     * Implicit mode:
+     * If M!=0 the shift count is M bytes and M is the number of rx bytes.
+     * Forced Implicit mode:
+     * M is the shift count but tx and rx is determined by the count control
+     * register fields.  Note that we only check for Forced Implicit mode when
+     * M != 0 since the mode doesn't make sense when M = 0.
+     * Explicit mode:
+     * If M==0 then shift count is number of bits defined in the
+     * Counter Configuration Register's shift_count_N1 field.
+     */
+    if (PNV_SPI_OPCODE_LO_NIBBLE(opcode) == 0) {
+        /* Explicit mode */
+        s->N2_bits = GETFIELD(SPI_CTR_CFG_N2, s->regs[SPI_CTR_CFG_REG]);
+        s->N2_bytes = (s->N2_bits + 7) / 8;
+        s->N2_tx = 0;
+        s->N2_rx = 0;
+        /* If tx count control for N2 is set, load the tx value */
+        if (GETFIELD(SPI_CTR_CFG_N2_CTRL_B2, s->regs[SPI_CTR_CFG_REG]) == 1) {
+            s->N2_tx = s->N2_bytes;
+        }
+        /* If rx count control for N2 is set, load the rx value */
+        if (GETFIELD(SPI_CTR_CFG_N2_CTRL_B3, s->regs[SPI_CTR_CFG_REG]) == 1) {
+            s->N2_rx = s->N2_bytes;
+        }
+    } else {
+        /* Implicit mode/Forced Implicit mode, use M field from opcode */
+        s->N2_bytes = PNV_SPI_OPCODE_LO_NIBBLE(opcode);
+        s->N2_bits = s->N2_bytes * 8;
+        /* Assume that we are going to receive the count */
+        s->N2_rx = s->N2_bytes;
+        s->N2_tx = 0;
+        /* Let Forced Implicit mode have an effect on the counts */
+        if (GETFIELD(SPI_CTR_CFG_N2_CTRL_B1, s->regs[SPI_CTR_CFG_REG]) == 1) {
+            /*
+             * If Forced Implicit mode and count control doesn't
+             * indicate a receive then reset the rx count to 0
+             */
+            if (GETFIELD(SPI_CTR_CFG_N2_CTRL_B3,
+                                    s->regs[SPI_CTR_CFG_REG]) == 0) {
+                s->N2_rx = 0;
+            }
+            /* If tx count control for N2 is set, load the tx value */
+            if (GETFIELD(SPI_CTR_CFG_N2_CTRL_B2,
+                                    s->regs[SPI_CTR_CFG_REG]) == 1) {
+                s->N2_tx = s->N2_bytes;
+            }
+        }
+    }
+    /*
+     * Enforce an upper limit on the size of N1 that is equal to the
+     * known size of the shift register, 64 bits or 72 bits if ECC
+     * is enabled.
+     * If the size exceeds 72 bits it is a user error so log an error,
+     * cap the size at a max of 64 bits or 72 bits and set the sequencer FSM
+     * error bit.
+     */
+    uint8_t ecc_control = GETFIELD(SPI_CLK_CFG_ECC_CTRL,
+                    s->regs[SPI_CLK_CFG_REG]);
+    if (ecc_control == 0 || ecc_control == 2) {
+        if (s->N2_bytes > (PNV_SPI_REG_SIZE + 1)) {
+            /* Unsupported N2 shift size when ECC enabled */
+            s->N2_bytes = PNV_SPI_REG_SIZE + 1;
+            s->N2_bits = s->N2_bytes * 8;
+        }
+    } else if (s->N2_bytes > PNV_SPI_REG_SIZE) {
+        /* Unsupported N2 shift size */
+        s->N2_bytes = PNV_SPI_REG_SIZE;
+        s->N2_bits = s->N2_bytes * 8;
+    }
+} /* end of calculate_N2 */
+
+/*
+ * Shift_N2 operation handler method
+ */
+
+static bool operation_shiftn2(PnvSpi *s, uint8_t opcode,
+                       PnvXferBuffer **payload)
+{
+    uint8_t n2_count;
+    bool stop = false;
+
+    /*
+     * If there isn't a current payload left over from a stopped sequence
+     * create a new one.
+     */
+    if (*payload == NULL) {
+        *payload = pnv_spi_xfer_buffer_new();
+    }
+    /*
+     * Use a combination of N2 counters to build the N2 portion of the
+     * transmit payload.
+     */
+    calculate_N2(s, opcode);
+    trace_pnv_spi_log_Ncounts(s->N1_bits, s->N1_bytes, s->N1_tx,
+                    s->N1_rx, s->N2_bits, s->N2_bytes, s->N2_tx, s->N2_rx);
+    /*
+     * The only difference between this code and the code for shift N1 is
+     * that this code has to account for the possible presence of N1 transmit
+     * bytes already taken from the TDR.
+     * If there are bytes to be transmitted for the N2 portion of the frame
+     * and there are still bytes in TDR that have not been copied into the
+     * TX data of the payload, this code will handle transmitting those
+     * remaining bytes.
+     * If for some reason the transmit count(s) add up to more than the size
+     * of the TDR we will just append 0xFF to the transmit payload data until
+     * the payload is N1 + N2 bytes long.
+     */
+    n2_count = 0;
+    while (n2_count < s->N2_bytes) {
+        /*
+         * If the RDR is full and we need to RX just bail out, letting the
+         * code continue will end up building the payload twice in the same
+         * buffer since RDR full causes a sequence stop and restart.
+         */
+        if ((s->N2_rx != 0) &&
+            (GETFIELD(SPI_STS_RDR_FULL, s->status) == 1)) {
+            trace_pnv_spi_sequencer_stop_requested("shift N2 set"
+                            "for receive but RDR is full");
+            stop = true;
+            break;
+        }
+        if ((s->N2_tx != 0) && ((s->N1_tx + n2_count) <
+                                PNV_SPI_REG_SIZE)) {
+            /* Always append data for the N2 segment if it is set for TX */
+            uint8_t n2_byte = 0x00;
+            n2_byte = get_from_offset(s, (s->N1_tx + n2_count));
+            trace_pnv_spi_tx_append("n2_byte", n2_byte, (s->N1_tx + n2_count));
+            *(pnv_spi_xfer_buffer_write_ptr(*payload, (*payload)->len, 1))
+                    = n2_byte;
+        } else {
+            /*
+             * Regardless of whether or not N2 is set for TX or RX, we need
+             * the number of bytes in the payload to match the overall length
+             * of the operation.
+             */
+            trace_pnv_spi_tx_append_FF("n2_byte");
+            *(pnv_spi_xfer_buffer_write_ptr(*payload, (*payload)->len, 1))
+                    = 0xff;
+        }
+        n2_count++;
+    } /* end of while */
+    if (!stop) {
+        /* We have a TX and a full TDR or an RX and an empty RDR */
+        trace_pnv_spi_tx_request("Shifting N2 frame", (*payload)->len);
+        transfer(s, *payload);
+        /*
+         * If we are doing an N2 TX and the TDR is full we need to clear the
+         * TDR_full status. Do this here instead of up in the loop above so we
+         * don't log the message in every loop iteration.
+         */
+        if ((s->N2_tx != 0) &&
+            (GETFIELD(SPI_STS_TDR_FULL, s->status) == 1)) {
+            s->status = SETFIELD(SPI_STS_TDR_FULL, s->status, 0);
+        }
+        /*
+         * The N2 frame shift is complete so reset the N2 counters.
+         * Reset the N1 counters also in case the frame was a combination of
+         * N1 and N2 segments.
+         */
+        s->N2_bits = 0;
+        s->N2_bytes = 0;
+        s->N2_tx = 0;
+        s->N2_rx = 0;
+        s->N1_bits = 0;
+        s->N1_bytes = 0;
+        s->N1_tx = 0;
+        s->N1_rx = 0;
+        pnv_spi_xfer_buffer_free(*payload);
+        *payload = NULL;
+    }
+    return stop;
+} /*  end of operation_shiftn2()*/
+
+static void operation_sequencer(PnvSpi *s)
+{
+    /*
+     * Loop through each sequencer operation ID and perform the requested
+     *  operations.
+     * Flag for indicating if we should send the N1 frame or wait to combine
+     * it with a preceding N2 frame.
+     */
+    bool send_n1_alone = true;
+    bool stop = false; /* Flag to stop the sequencer */
+    uint8_t opcode = 0;
+    uint8_t masked_opcode = 0;
+
+    /*
+     * PnvXferBuffer for containing the payload of the SPI frame.
+     * This is a static because there are cases where a sequence has to stop
+     * and wait for the target application to unload the RDR.  If this occurs
+     * during a sequence where N1 is not sent alone and instead combined with
+     * N2 since the N1 tx length + the N2 tx length is less than the size of
+     * the TDR.
+     */
+    static PnvXferBuffer *payload;
+
+    if (payload == NULL) {
+        payload = pnv_spi_xfer_buffer_new();
+    }
+    /*
+     * Clear the sequencer FSM error bit - general_SPI_status[3]
+     * before starting a sequence.
+     */
+    s->status = SETFIELD(SPI_STS_GEN_STATUS_B3, s->status, 0);
+    /*
+     * If the FSM is idle set the sequencer index to 0
+     * (new/restarted sequence)
+     */
+    if (GETFIELD(SPI_STS_SEQ_FSM, s->status) == SEQ_STATE_IDLE) {
+        s->status = SETFIELD(SPI_STS_SEQ_INDEX, s->status, 0);
+    }
+    /*
+     * There are only 8 possible operation IDs to iterate through though
+     * some operations may cause more than one frame to be sequenced.
+     */
+    while (get_seq_index(s) < NUM_SEQ_OPS) {
+        opcode = s->seq_op[get_seq_index(s)];
+        /* Set sequencer state to decode */
+        s->status = SETFIELD(SPI_STS_SEQ_FSM, s->status, SEQ_STATE_DECODE);
+        /*
+         * Only the upper nibble of the operation ID is needed to know what
+         * kind of operation is requested.
+         */
+        masked_opcode = PNV_SPI_MASKED_OPCODE(opcode);
+        switch (masked_opcode) {
+        /*
+         * Increment the operation index in each case instead of just
+         * once at the end in case an operation like the branch
+         * operation needs to change the index.
+         */
+        case SEQ_OP_STOP:
+            s->status = SETFIELD(SPI_STS_SEQ_FSM, s->status, SEQ_STATE_EXECUTE);
+            /* A stop operation in any position stops the sequencer */
+            trace_pnv_spi_sequencer_op("STOP", get_seq_index(s));
+
+            stop = true;
+            s->status = SETFIELD(SPI_STS_SHIFTER_FSM, s->status, FSM_IDLE);
+            s->loop_counter_1 = 0;
+            s->loop_counter_2 = 0;
+            s->status = SETFIELD(SPI_STS_SEQ_FSM, s->status, SEQ_STATE_IDLE);
+            break;
+
+        case SEQ_OP_SELECT_SLAVE:
+            s->status = SETFIELD(SPI_STS_SEQ_FSM, s->status, SEQ_STATE_EXECUTE);
+            trace_pnv_spi_sequencer_op("SELECT_SLAVE", get_seq_index(s));
+            /*
+             * This device currently only supports a single responder
+             * connection at position 0.  De-selecting a responder is fine
+             * and expected at the end of a sequence but selecting any
+             * responder other than 0 should cause an error.
+             */
+            s->responder_select = PNV_SPI_OPCODE_LO_NIBBLE(opcode);
+            if (s->responder_select == 0) {
+                trace_pnv_spi_shifter_done();
+                qemu_set_irq(s->cs_line[0], 1);
+                s->status = SETFIELD(SPI_STS_SEQ_INDEX, s->status,
+                                (get_seq_index(s) + 1));
+                s->status = SETFIELD(SPI_STS_SHIFTER_FSM, s->status, FSM_DONE);
+            } else if (s->responder_select != 1) {
+                qemu_log_mask(LOG_GUEST_ERROR, "Slave selection other than 1 "
+                              "not supported, select = 0x%x\n",
+                               s->responder_select);
+                trace_pnv_spi_sequencer_stop_requested("invalid "
+                                "responder select");
+                s->status = SETFIELD(SPI_STS_SHIFTER_FSM, s->status, FSM_IDLE);
+                stop = true;
+            } else {
+                /*
+                 * Only allow an FSM_START state when a responder is
+                 * selected
+                 */
+                s->status = SETFIELD(SPI_STS_SHIFTER_FSM, s->status, FSM_START);
+                trace_pnv_spi_shifter_stating();
+                qemu_set_irq(s->cs_line[0], 0);
+                /*
+                 * A Shift_N2 operation is only valid after a Shift_N1
+                 * according to the spec. The spec doesn't say if that means
+                 * immediately after or just after at any point. We will track
+                 * the occurrence of a Shift_N1 to enforce this requirement in
+                 * the most generic way possible by assuming that the rule
+                 * applies once a valid responder select has occurred.
+                 */
+                s->shift_n1_done = false;
+                next_sequencer_fsm(s);
+            }
+            break;
+
+        case SEQ_OP_SHIFT_N1:
+            s->status = SETFIELD(SPI_STS_SEQ_FSM, s->status, SEQ_STATE_EXECUTE);
+            trace_pnv_spi_sequencer_op("SHIFT_N1", get_seq_index(s));
+            /*
+             * Only allow a shift_n1 when the state is not IDLE or DONE.
+             * In either of those two cases the sequencer is not in a proper
+             * state to perform shift operations because the sequencer has:
+             * - processed a responder deselect (DONE)
+             * - processed a stop opcode (IDLE)
+             * - encountered an error (IDLE)
+             */
+            if ((GETFIELD(SPI_STS_SHIFTER_FSM, s->status) == FSM_IDLE) ||
+                (GETFIELD(SPI_STS_SHIFTER_FSM, s->status) == FSM_DONE)) {
+                qemu_log_mask(LOG_GUEST_ERROR, "Shift_N1 not allowed in "
+                              "shifter state = 0x%llx", GETFIELD(
+                        SPI_STS_SHIFTER_FSM, s->status));
+                /*
+                 * Set sequencer FSM error bit 3 (general_SPI_status[3])
+                 * in status reg.
+                 */
+                s->status = SETFIELD(SPI_STS_GEN_STATUS_B3, s->status, 1);
+                trace_pnv_spi_sequencer_stop_requested("invalid shifter state");
+                stop = true;
+            } else {
+                /*
+                 * Look for the special case where there is a shift_n1 set for
+                 * transmit and it is followed by a shift_n2 set for transmit
+                 * AND the combined transmit length of the two operations is
+                 * less than or equal to the size of the TDR register. In this
+                 * case we want to use both this current shift_n1 opcode and the
+                 * following shift_n2 opcode to assemble the frame for
+                 * transmission to the responder without requiring a refill of
+                 * the TDR between the two operations.
+                 */
+                if (PNV_SPI_MASKED_OPCODE(s->seq_op[get_seq_index(s) + 1])
+                                == SEQ_OP_SHIFT_N2) {
+                    send_n1_alone = false;
+                }
+                s->status = SETFIELD(SPI_STS_SHIFTER_FSM, s->status,
+                                FSM_SHIFT_N1);
+                stop = operation_shiftn1(s, opcode, &payload, send_n1_alone);
+                if (stop) {
+                    /*
+                     *  The operation code says to stop, this can occur if:
+                     * (1) RDR is full and the N1 shift is set for receive
+                     * (2) TDR was empty at the time of the N1 shift so we need
+                     * to wait for data.
+                     * (3) Neither 1 nor 2 are occurring and we aren't sending
+                     * N1 alone and N2 counter reload is set (bit 0 of the N2
+                     * counter reload field).  In this case TDR_underrun will
+                     * will be set and the Payload has been loaded so it is
+                     * ok to advance the sequencer.
+                     */
+                    if (GETFIELD(SPI_STS_TDR_UNDERRUN, s->status)) {
+                        s->shift_n1_done = true;
+                        s->status = SETFIELD(SPI_STS_SHIFTER_FSM, s->status,
+                                                  FSM_SHIFT_N2);
+                        s->status = SETFIELD(SPI_STS_SEQ_INDEX, s->status,
+                                        (get_seq_index(s) + 1));
+                    } else {
+                        /*
+                         * This is case (1) or (2) so the sequencer needs to
+                         * wait and NOT go to the next sequence yet.
+                         */
+                        s->status = SETFIELD(SPI_STS_SHIFTER_FSM, s->status,
+                                        FSM_WAIT);
+                    }
+                } else {
+                    /* Ok to move on to the next index */
+                    s->shift_n1_done = true;
+                    next_sequencer_fsm(s);
+                }
+            }
+            break;
+
+        case SEQ_OP_SHIFT_N2:
+            s->status = SETFIELD(SPI_STS_SEQ_FSM, s->status, SEQ_STATE_EXECUTE);
+            trace_pnv_spi_sequencer_op("SHIFT_N2", get_seq_index(s));
+            if (!s->shift_n1_done) {
+                qemu_log_mask(LOG_GUEST_ERROR, "Shift_N2 is not allowed if a "
+                              "Shift_N1 is not done, shifter state = 0x%llx",
+                              GETFIELD(SPI_STS_SHIFTER_FSM, s->status));
+                /*
+                 * In case the sequencer actually stops if an N2 shift is
+                 * requested before any N1 shift is done. Set sequencer FSM
+                 * error bit 3 (general_SPI_status[3]) in status reg.
+                 */
+                s->status = SETFIELD(SPI_STS_GEN_STATUS_B3, s->status, 1);
+                trace_pnv_spi_sequencer_stop_requested("shift_n2 "
+                                    "w/no shift_n1 done");
+                stop = true;
+            } else {
+                /* Ok to do a Shift_N2 */
+                s->status = SETFIELD(SPI_STS_SHIFTER_FSM, s->status,
+                                FSM_SHIFT_N2);
+                stop = operation_shiftn2(s, opcode, &payload);
+                /*
+                 * If the operation code says to stop set the shifter state to
+                 * wait and stop
+                 */
+                if (stop) {
+                    s->status = SETFIELD(SPI_STS_SHIFTER_FSM, s->status,
+                                    FSM_WAIT);
+                } else {
+                    /* Ok to move on to the next index */
+                    next_sequencer_fsm(s);
+                }
+            }
+            break;
+
+        case SEQ_OP_BRANCH_IFNEQ_RDR:
+            s->status = SETFIELD(SPI_STS_SEQ_FSM, s->status, SEQ_STATE_EXECUTE);
+            trace_pnv_spi_sequencer_op("BRANCH_IFNEQ_RDR", get_seq_index(s));
+            /*
+             * The memory mapping register RDR match value is compared against
+             * the 16 rightmost bytes of the RDR (potentially with masking).
+             * Since this comparison is performed against the contents of the
+             * RDR then a receive must have previously occurred otherwise
+             * there is no data to compare and the operation cannot be
+             * completed and will stop the sequencer until RDR full is set to
+             * 1.
+             */
+            if (GETFIELD(SPI_STS_RDR_FULL, s->status) == 1) {
+                bool rdr_matched = false;
+                rdr_matched = does_rdr_match(s);
+                if (rdr_matched) {
+                    trace_pnv_spi_RDR_match("success");
+                    /* A match occurred, increment the sequencer index. */
+                    next_sequencer_fsm(s);
+                } else {
+                    trace_pnv_spi_RDR_match("failed");
+                    /*
+                     * Branch the sequencer to the index coded into the op
+                     * code.
+                     */
+                    s->status = SETFIELD(SPI_STS_SEQ_INDEX, s->status,
+                                    PNV_SPI_OPCODE_LO_NIBBLE(opcode));
+                }
+                /*
+                 * Regardless of where the branch ended up we want the
+                 * sequencer to continue shifting so we have to clear
+                 * RDR_full.
+                 */
+                s->status = SETFIELD(SPI_STS_RDR_FULL, s->status, 0);
+            } else {
+                trace_pnv_spi_sequencer_stop_requested("RDR not"
+                                "full for 0x6x opcode");
+                stop = true;
+                s->status = SETFIELD(SPI_STS_SHIFTER_FSM, s->status, FSM_WAIT);
+            }
+            break;
+
+        case SEQ_OP_TRANSFER_TDR:
+            s->status = SETFIELD(SPI_STS_SEQ_FSM, s->status, SEQ_STATE_EXECUTE);
+            qemu_log_mask(LOG_GUEST_ERROR, "Transfer TDR is not supported\n");
+            next_sequencer_fsm(s);
+            break;
+
+        case SEQ_OP_BRANCH_IFNEQ_INC_1:
+            s->status = SETFIELD(SPI_STS_SEQ_FSM, s->status, SEQ_STATE_EXECUTE);
+            trace_pnv_spi_sequencer_op("BRANCH_IFNEQ_INC_1", get_seq_index(s));
+            /*
+             * The spec says the loop should execute count compare + 1 times.
+             * However we learned from engineering that we really only loop
+             * count_compare times, count compare = 0 makes this op code a
+             * no-op
+             */
+            if (s->loop_counter_1 !=
+                GETFIELD(SPI_CTR_CFG_CMP1, s->regs[SPI_CTR_CFG_REG])) {
+                /*
+                 * Next index is the lower nibble of the branch operation ID,
+                 * mask off all but the first three bits so we don't try to
+                 * access beyond the sequencer_operation_reg boundary.
+                 */
+                s->status = SETFIELD(SPI_STS_SEQ_INDEX, s->status,
+                                PNV_SPI_OPCODE_LO_NIBBLE(opcode));
+                s->loop_counter_1++;
+            } else {
+                /* Continue to next index if loop counter is reached */
+                next_sequencer_fsm(s);
+            }
+            break;
+
+        case SEQ_OP_BRANCH_IFNEQ_INC_2:
+            s->status = SETFIELD(SPI_STS_SEQ_FSM, s->status, SEQ_STATE_EXECUTE);
+            trace_pnv_spi_sequencer_op("BRANCH_IFNEQ_INC_2", get_seq_index(s));
+            uint8_t condition2 = GETFIELD(SPI_CTR_CFG_CMP2,
+                              s->regs[SPI_CTR_CFG_REG]);
+            /*
+             * The spec says the loop should execute count compare + 1 times.
+             * However we learned from engineering that we really only loop
+             * count_compare times, count compare = 0 makes this op code a
+             * no-op
+             */
+            if (s->loop_counter_2 != condition2) {
+                /*
+                 * Next index is the lower nibble of the branch operation ID,
+                 * mask off all but the first three bits so we don't try to
+                 * access beyond the sequencer_operation_reg boundary.
+                 */
+                s->status = SETFIELD(SPI_STS_SEQ_INDEX,
+                                s->status, PNV_SPI_OPCODE_LO_NIBBLE(opcode));
+                s->loop_counter_2++;
+            } else {
+                /* Continue to next index if loop counter is reached */
+                next_sequencer_fsm(s);
+            }
+            break;
+
+        default:
+            s->status = SETFIELD(SPI_STS_SEQ_FSM, s->status, SEQ_STATE_EXECUTE);
+            /* Ignore unsupported operations. */
+            next_sequencer_fsm(s);
+            break;
+        } /* end of switch */
+        /*
+         * If we used all 8 opcodes without seeing a 00 - STOP in the sequence
+         * we need to go ahead and end things as if there was a STOP at the
+         * end.
+         */
+        if (get_seq_index(s) == NUM_SEQ_OPS) {
+            /* All 8 opcodes completed, sequencer idling */
+            s->status = SETFIELD(SPI_STS_SHIFTER_FSM, s->status, FSM_IDLE);
+            s->status = SETFIELD(SPI_STS_SEQ_INDEX, s->status, 0);
+            s->loop_counter_1 = 0;
+            s->loop_counter_2 = 0;
+            s->status = SETFIELD(SPI_STS_SEQ_FSM, s->status, SEQ_STATE_IDLE);
+            break;
+        }
+        /* Break the loop if a stop was requested */
+        if (stop) {
+            break;
+        }
+    } /* end of while */
+    return;
+} /* end of operation_sequencer() */
+
+/*
+ * The SPIC engine and its internal sequencer can be interrupted and reset by
+ * a hardware signal, the sbe_spicst_hard_reset bits from Pervasive
+ * Miscellaneous Register of sbe_register_bo device.
+ * Reset immediately aborts any SPI transaction in progress and returns the
+ * sequencer and state machines to idle state.
+ * The configuration register values are not changed. The status register is
+ * not reset. The engine registers are not reset.
+ * The SPIC engine reset does not have any affect on the attached devices.
+ * Reset handling of any attached devices is beyond the scope of the engine.
+ */
+static void do_reset(DeviceState *dev)
+{
+    PnvSpi *s = PNV_SPI(dev);
+
+    trace_pnv_spi_reset();
+
+    /* Reset all N1 and N2 counters, and other constants */
+    s->N2_bits = 0;
+    s->N2_bytes = 0;
+    s->N2_tx = 0;
+    s->N2_rx = 0;
+    s->N1_bits = 0;
+    s->N1_bytes = 0;
+    s->N1_tx = 0;
+    s->N1_rx = 0;
+    s->loop_counter_1 = 0;
+    s->loop_counter_2 = 0;
+    /* Disconnected from responder */
+    qemu_set_irq(s->cs_line[0], 1);
+}
+
 static uint64_t pnv_spi_xscom_read(void *opaque, hwaddr addr, unsigned size)
 {
     PnvSpi *s = PNV_SPI(opaque);
@@ -51,6 +1088,10 @@ static uint64_t pnv_spi_xscom_read(void *opaque, hwaddr addr, unsigned size)
         val = s->regs[reg];
         trace_pnv_spi_read_RDR(val);
         s->status = SETFIELD(SPI_STS_RDR_FULL, s->status, 0);
+        if (GETFIELD(SPI_STS_SHIFTER_FSM, s->status) == FSM_WAIT) {
+            trace_pnv_spi_start_sequencer();
+            operation_sequencer(s);
+        }
         break;
     case SPI_SEQ_OP_REG:
         val = 0;
@@ -112,6 +1153,8 @@ static void pnv_spi_xscom_write(void *opaque, hwaddr addr,
         trace_pnv_spi_write_TDR(val);
         s->status = SETFIELD(SPI_STS_TDR_FULL, s->status, 1);
         s->status = SETFIELD(SPI_STS_TDR_UNDERRUN, s->status, 0);
+        trace_pnv_spi_start_sequencer();
+        operation_sequencer(s);
         break;
     case SPI_SEQ_OP_REG:
         for (int i = 0; i < PNV_SPI_REG_SIZE; i++) {
@@ -144,6 +1187,7 @@ static const MemoryRegionOps pnv_spi_xscom_ops = {
 
 static Property pnv_spi_properties[] = {
     DEFINE_PROP_UINT32("spic_num", PnvSpi, spic_num, 0),
+    DEFINE_PROP_UINT8("transfer_len", PnvSpi, transfer_len, 4),
     DEFINE_PROP_END_OF_LIST(),
 };
 
@@ -193,6 +1237,7 @@ static void pnv_spi_class_init(ObjectClass *klass, void *data)
 
     dc->desc = "PowerNV SPI";
     dc->realize = pnv_spi_realize;
+    dc->reset = do_reset;
     device_class_set_props(dc, pnv_spi_properties);
 }
 
diff --git a/hw/ssi/trace-events b/hw/ssi/trace-events
index 2cc29e1284..089d269994 100644
--- a/hw/ssi/trace-events
+++ b/hw/ssi/trace-events
@@ -38,3 +38,18 @@ pnv_spi_read(uint64_t addr, uint64_t val) "addr 0x%" PRIx64 " val 0x%" PRIx64
 pnv_spi_write(uint64_t addr, uint64_t val) "addr 0x%" PRIx64 " val 0x%" PRIx64
 pnv_spi_read_RDR(uint64_t val) "data extracted = 0x%" PRIx64
 pnv_spi_write_TDR(uint64_t val) "being written, data written = 0x%" PRIx64
+pnv_spi_start_sequencer(void) ""
+pnv_spi_reset(void) "spic engine sequencer configuration and spi communication"
+pnv_spi_sequencer_op(const char* op, uint8_t index) "%s at index = 0x%x"
+pnv_spi_shifter_stating(void) "pull CS line low"
+pnv_spi_shifter_done(void) "pull the CS line high"
+pnv_spi_log_Ncounts(uint8_t N1_bits, uint8_t N1_bytes, uint8_t N1_tx, uint8_t N1_rx, uint8_t N2_bits, uint8_t N2_bytes, uint8_t N2_tx, uint8_t N2_rx) "N1_bits = %d, N1_bytes = %d, N1_tx = %d, N1_rx = %d, N2_bits = %d, N2_bytes = %d, N2_tx = %d, N2_rx = %d"
+pnv_spi_tx_append(const char* frame, uint8_t byte, uint8_t tdr_index) "%s = 0x%2.2x to payload from TDR at index %d"
+pnv_spi_tx_append_FF(const char* frame) "%s to Payload"
+pnv_spi_tx_request(const char* frame, uint32_t payload_len) "%s, payload len = %d"
+pnv_spi_rx_received(uint32_t payload_len) "payload len = %d"
+pnv_spi_rx_read_N1frame(void) ""
+pnv_spi_rx_read_N2frame(void) ""
+pnv_spi_shift_rx(uint8_t byte, uint32_t index) "byte = 0x%2.2x into RDR from payload index %d"
+pnv_spi_sequencer_stop_requested(const char* reason) "due to %s"
+pnv_spi_RDR_match(const char* result) "%s"