summary refs log tree commit diff stats
path: root/rust/hw/char/pl011/src/lib.rs
diff options
context:
space:
mode:
Diffstat (limited to 'rust/hw/char/pl011/src/lib.rs')
-rw-r--r--rust/hw/char/pl011/src/lib.rs586
1 files changed, 586 insertions, 0 deletions
diff --git a/rust/hw/char/pl011/src/lib.rs b/rust/hw/char/pl011/src/lib.rs
new file mode 100644
index 0000000000..2939ee50c9
--- /dev/null
+++ b/rust/hw/char/pl011/src/lib.rs
@@ -0,0 +1,586 @@
+// Copyright 2024, Linaro Limited
+// Author(s): Manos Pitsidianakis <manos.pitsidianakis@linaro.org>
+// SPDX-License-Identifier: GPL-2.0-or-later
+//
+// PL011 QEMU Device Model
+//
+// This library implements a device model for the PrimeCell® UART (PL011)
+// device in QEMU.
+//
+#![doc = include_str!("../README.md")]
+//! # Library crate
+//!
+//! See [`PL011State`](crate::device::PL011State) for the device model type and
+//! the [`registers`] module for register types.
+
+#![deny(
+    rustdoc::broken_intra_doc_links,
+    rustdoc::redundant_explicit_links,
+    clippy::correctness,
+    clippy::suspicious,
+    clippy::complexity,
+    clippy::perf,
+    clippy::cargo,
+    clippy::nursery,
+    clippy::style,
+    // restriction group
+    clippy::dbg_macro,
+    clippy::as_underscore,
+    clippy::assertions_on_result_states,
+    // pedantic group
+    clippy::doc_markdown,
+    clippy::borrow_as_ptr,
+    clippy::cast_lossless,
+    clippy::option_if_let_else,
+    clippy::missing_const_for_fn,
+    clippy::cognitive_complexity,
+    clippy::missing_safety_doc,
+    )]
+
+extern crate bilge;
+extern crate bilge_impl;
+extern crate qemu_api;
+
+pub mod device;
+pub mod device_class;
+pub mod memory_ops;
+
+pub const TYPE_PL011: &::core::ffi::CStr = c"pl011";
+
+/// Offset of each register from the base memory address of the device.
+///
+/// # Source
+/// ARM DDI 0183G, Table 3-1 p.3-3
+#[doc(alias = "offset")]
+#[allow(non_camel_case_types)]
+#[repr(u64)]
+#[derive(Debug)]
+pub enum RegisterOffset {
+    /// Data Register
+    ///
+    /// A write to this register initiates the actual data transmission
+    #[doc(alias = "UARTDR")]
+    DR = 0x000,
+    /// Receive Status Register or Error Clear Register
+    #[doc(alias = "UARTRSR")]
+    #[doc(alias = "UARTECR")]
+    RSR = 0x004,
+    /// Flag Register
+    ///
+    /// A read of this register shows if transmission is complete
+    #[doc(alias = "UARTFR")]
+    FR = 0x018,
+    /// Fractional Baud Rate Register
+    ///
+    /// responsible for baud rate speed
+    #[doc(alias = "UARTFBRD")]
+    FBRD = 0x028,
+    /// `IrDA` Low-Power Counter Register
+    #[doc(alias = "UARTILPR")]
+    ILPR = 0x020,
+    /// Integer Baud Rate Register
+    ///
+    /// Responsible for baud rate speed
+    #[doc(alias = "UARTIBRD")]
+    IBRD = 0x024,
+    /// line control register (data frame format)
+    #[doc(alias = "UARTLCR_H")]
+    LCR_H = 0x02C,
+    /// Toggle UART, transmission or reception
+    #[doc(alias = "UARTCR")]
+    CR = 0x030,
+    /// Interrupt FIFO Level Select Register
+    #[doc(alias = "UARTIFLS")]
+    FLS = 0x034,
+    /// Interrupt Mask Set/Clear Register
+    #[doc(alias = "UARTIMSC")]
+    IMSC = 0x038,
+    /// Raw Interrupt Status Register
+    #[doc(alias = "UARTRIS")]
+    RIS = 0x03C,
+    /// Masked Interrupt Status Register
+    #[doc(alias = "UARTMIS")]
+    MIS = 0x040,
+    /// Interrupt Clear Register
+    #[doc(alias = "UARTICR")]
+    ICR = 0x044,
+    /// DMA control Register
+    #[doc(alias = "UARTDMACR")]
+    DMACR = 0x048,
+    ///// Reserved, offsets `0x04C` to `0x07C`.
+    //Reserved = 0x04C,
+}
+
+impl core::convert::TryFrom<u64> for RegisterOffset {
+    type Error = u64;
+
+    fn try_from(value: u64) -> Result<Self, Self::Error> {
+        macro_rules! case {
+            ($($discriminant:ident),*$(,)*) => {
+                /* check that matching on all macro arguments compiles, which means we are not
+                 * missing any enum value; if the type definition ever changes this will stop
+                 * compiling.
+                 */
+                const fn _assert_exhaustive(val: RegisterOffset) {
+                    match val {
+                        $(RegisterOffset::$discriminant => (),)*
+                    }
+                }
+
+                match value {
+                    $(x if x == Self::$discriminant as u64 => Ok(Self::$discriminant),)*
+                     _ => Err(value),
+                }
+            }
+        }
+        case! { DR, RSR, FR, FBRD, ILPR, IBRD, LCR_H, CR, FLS, IMSC, RIS, MIS, ICR, DMACR }
+    }
+}
+
+pub mod registers {
+    //! Device registers exposed as typed structs which are backed by arbitrary
+    //! integer bitmaps. [`Data`], [`Control`], [`LineControl`], etc.
+    //!
+    //! All PL011 registers are essentially 32-bit wide, but are typed here as
+    //! bitmaps with only the necessary width. That is, if a struct bitmap
+    //! in this module is for example 16 bits long, it should be conceived
+    //! as a 32-bit register where the unmentioned higher bits are always
+    //! unused thus treated as zero when read or written.
+    use bilge::prelude::*;
+
+    // TODO: FIFO Mode has different semantics
+    /// Data Register, `UARTDR`
+    ///
+    /// The `UARTDR` register is the data register.
+    ///
+    /// For words to be transmitted:
+    ///
+    /// - if the FIFOs are enabled, data written to this location is pushed onto
+    ///   the transmit
+    /// FIFO
+    /// - if the FIFOs are not enabled, data is stored in the transmitter
+    ///   holding register (the
+    /// bottom word of the transmit FIFO).
+    ///
+    /// The write operation initiates transmission from the UART. The data is
+    /// prefixed with a start bit, appended with the appropriate parity bit
+    /// (if parity is enabled), and a stop bit. The resultant word is then
+    /// transmitted.
+    ///
+    /// For received words:
+    ///
+    /// - if the FIFOs are enabled, the data byte and the 4-bit status (break,
+    ///   frame, parity,
+    /// and overrun) is pushed onto the 12-bit wide receive FIFO
+    /// - if the FIFOs are not enabled, the data byte and status are stored in
+    ///   the receiving
+    /// holding register (the bottom word of the receive FIFO).
+    ///
+    /// The received data byte is read by performing reads from the `UARTDR`
+    /// register along with the corresponding status information. The status
+    /// information can also be read by a read of the `UARTRSR/UARTECR`
+    /// register.
+    ///
+    /// # Note
+    ///
+    /// You must disable the UART before any of the control registers are
+    /// reprogrammed. When the UART is disabled in the middle of
+    /// transmission or reception, it completes the current character before
+    /// stopping.
+    ///
+    /// # Source
+    /// ARM DDI 0183G 3.3.1 Data Register, UARTDR
+    #[bitsize(16)]
+    #[derive(Clone, Copy, DebugBits, FromBits)]
+    #[doc(alias = "UARTDR")]
+    pub struct Data {
+        _reserved: u4,
+        pub data: u8,
+        pub framing_error: bool,
+        pub parity_error: bool,
+        pub break_error: bool,
+        pub overrun_error: bool,
+    }
+
+    // TODO: FIFO Mode has different semantics
+    /// Receive Status Register / Error Clear Register, `UARTRSR/UARTECR`
+    ///
+    /// The UARTRSR/UARTECR register is the receive status register/error clear
+    /// register. Receive status can also be read from the `UARTRSR`
+    /// register. If the status is read from this register, then the status
+    /// information for break, framing and parity corresponds to the
+    /// data character read from the [Data register](Data), `UARTDR` prior to
+    /// reading the UARTRSR register. The status information for overrun is
+    /// set immediately when an overrun condition occurs.
+    ///
+    ///
+    /// # Note
+    /// The received data character must be read first from the [Data
+    /// Register](Data), `UARTDR` before reading the error status associated
+    /// with that data character from the `UARTRSR` register. This read
+    /// sequence cannot be reversed, because the `UARTRSR` register is
+    /// updated only when a read occurs from the `UARTDR` register. However,
+    /// the status information can also be obtained by reading the `UARTDR`
+    /// register
+    ///
+    /// # Source
+    /// ARM DDI 0183G 3.3.2 Receive Status Register/Error Clear Register,
+    /// UARTRSR/UARTECR
+    #[bitsize(8)]
+    #[derive(Clone, Copy, DebugBits, FromBits)]
+    pub struct ReceiveStatusErrorClear {
+        pub framing_error: bool,
+        pub parity_error: bool,
+        pub break_error: bool,
+        pub overrun_error: bool,
+        _reserved_unpredictable: u4,
+    }
+
+    impl ReceiveStatusErrorClear {
+        pub fn reset(&mut self) {
+            // All the bits are cleared to 0 on reset.
+            *self = 0.into();
+        }
+    }
+
+    impl Default for ReceiveStatusErrorClear {
+        fn default() -> Self {
+            0.into()
+        }
+    }
+
+    #[bitsize(16)]
+    #[derive(Clone, Copy, DebugBits, FromBits)]
+    /// Flag Register, `UARTFR`
+    #[doc(alias = "UARTFR")]
+    pub struct Flags {
+        /// CTS Clear to send. This bit is the complement of the UART clear to
+        /// send, `nUARTCTS`, modem status input. That is, the bit is 1
+        /// when `nUARTCTS` is LOW.
+        pub clear_to_send: bool,
+        /// DSR Data set ready. This bit is the complement of the UART data set
+        /// ready, `nUARTDSR`, modem status input. That is, the bit is 1 when
+        /// `nUARTDSR` is LOW.
+        pub data_set_ready: bool,
+        /// DCD Data carrier detect. This bit is the complement of the UART data
+        /// carrier detect, `nUARTDCD`, modem status input. That is, the bit is
+        /// 1 when `nUARTDCD` is LOW.
+        pub data_carrier_detect: bool,
+        /// BUSY UART busy. If this bit is set to 1, the UART is busy
+        /// transmitting data. This bit remains set until the complete
+        /// byte, including all the stop bits, has been sent from the
+        /// shift register. This bit is set as soon as the transmit FIFO
+        /// becomes non-empty, regardless of whether the UART is enabled
+        /// or not.
+        pub busy: bool,
+        /// RXFE Receive FIFO empty. The meaning of this bit depends on the
+        /// state of the FEN bit in the UARTLCR_H register. If the FIFO
+        /// is disabled, this bit is set when the receive holding
+        /// register is empty. If the FIFO is enabled, the RXFE bit is
+        /// set when the receive FIFO is empty.
+        pub receive_fifo_empty: bool,
+        /// TXFF Transmit FIFO full. The meaning of this bit depends on the
+        /// state of the FEN bit in the UARTLCR_H register. If the FIFO
+        /// is disabled, this bit is set when the transmit holding
+        /// register is full. If the FIFO is enabled, the TXFF bit is
+        /// set when the transmit FIFO is full.
+        pub transmit_fifo_full: bool,
+        /// RXFF Receive FIFO full. The meaning of this bit depends on the state
+        /// of the FEN bit in the UARTLCR_H register. If the FIFO is
+        /// disabled, this bit is set when the receive holding register
+        /// is full. If the FIFO is enabled, the RXFF bit is set when
+        /// the receive FIFO is full.
+        pub receive_fifo_full: bool,
+        /// Transmit FIFO empty. The meaning of this bit depends on the state of
+        /// the FEN bit in the [Line Control register](LineControl),
+        /// `UARTLCR_H`. If the FIFO is disabled, this bit is set when the
+        /// transmit holding register is empty. If the FIFO is enabled,
+        /// the TXFE bit is set when the transmit FIFO is empty. This
+        /// bit does not indicate if there is data in the transmit shift
+        /// register.
+        pub transmit_fifo_empty: bool,
+        /// `RI`, is `true` when `nUARTRI` is `LOW`.
+        pub ring_indicator: bool,
+        _reserved_zero_no_modify: u7,
+    }
+
+    impl Flags {
+        pub fn reset(&mut self) {
+            // After reset TXFF, RXFF, and BUSY are 0, and TXFE and RXFE are 1
+            self.set_receive_fifo_full(false);
+            self.set_transmit_fifo_full(false);
+            self.set_busy(false);
+            self.set_receive_fifo_empty(true);
+            self.set_transmit_fifo_empty(true);
+        }
+    }
+
+    impl Default for Flags {
+        fn default() -> Self {
+            let mut ret: Self = 0.into();
+            ret.reset();
+            ret
+        }
+    }
+
+    #[bitsize(16)]
+    #[derive(Clone, Copy, DebugBits, FromBits)]
+    /// Line Control Register, `UARTLCR_H`
+    #[doc(alias = "UARTLCR_H")]
+    pub struct LineControl {
+        /// 15:8 - Reserved, do not modify, read as zero.
+        _reserved_zero_no_modify: u8,
+        /// 7 SPS Stick parity select.
+        /// 0 = stick parity is disabled
+        /// 1 = either:
+        /// • if the EPS bit is 0 then the parity bit is transmitted and checked
+        /// as a 1 • if the EPS bit is 1 then the parity bit is
+        /// transmitted and checked as a 0. This bit has no effect when
+        /// the PEN bit disables parity checking and generation. See Table 3-11
+        /// on page 3-14 for the parity truth table.
+        pub sticky_parity: bool,
+        /// WLEN Word length. These bits indicate the number of data bits
+        /// transmitted or received in a frame as follows: b11 = 8 bits
+        /// b10 = 7 bits
+        /// b01 = 6 bits
+        /// b00 = 5 bits.
+        pub word_length: WordLength,
+        /// FEN Enable FIFOs:
+        /// 0 = FIFOs are disabled (character mode) that is, the FIFOs become
+        /// 1-byte-deep holding registers 1 = transmit and receive FIFO
+        /// buffers are enabled (FIFO mode).
+        pub fifos_enabled: Mode,
+        /// 3 STP2 Two stop bits select. If this bit is set to 1, two stop bits
+        /// are transmitted at the end of the frame. The receive
+        /// logic does not check for two stop bits being received.
+        pub two_stops_bits: bool,
+        /// EPS Even parity select. Controls the type of parity the UART uses
+        /// during transmission and reception:
+        /// - 0 = odd parity. The UART generates or checks for an odd number of
+        ///   1s in the data and parity bits.
+        /// - 1 = even parity. The UART generates or checks for an even number
+        ///   of 1s in the data and parity bits.
+        /// This bit has no effect when the `PEN` bit disables parity checking
+        /// and generation. See Table 3-11 on page 3-14 for the parity
+        /// truth table.
+        pub parity: Parity,
+        /// 1 PEN Parity enable:
+        ///
+        /// - 0 = parity is disabled and no parity bit added to the data frame
+        /// - 1 = parity checking and generation is enabled.
+        ///
+        /// See Table 3-11 on page 3-14 for the parity truth table.
+        pub parity_enabled: bool,
+        /// BRK Send break.
+        ///
+        /// If this bit is set to `1`, a low-level is continually output on the
+        /// `UARTTXD` output, after completing transmission of the
+        /// current character. For the proper execution of the break command,
+        /// the software must set this bit for at least two complete
+        /// frames. For normal use, this bit must be cleared to `0`.
+        pub send_break: bool,
+    }
+
+    impl LineControl {
+        pub fn reset(&mut self) {
+            // All the bits are cleared to 0 when reset.
+            *self = 0.into();
+        }
+    }
+
+    impl Default for LineControl {
+        fn default() -> Self {
+            0.into()
+        }
+    }
+
+    #[bitsize(1)]
+    #[derive(Clone, Copy, Debug, Eq, FromBits, PartialEq)]
+    /// `EPS` "Even parity select", field of [Line Control
+    /// register](LineControl).
+    pub enum Parity {
+        /// - 0 = odd parity. The UART generates or checks for an odd number of
+        ///   1s in the data and parity bits.
+        Odd = 0,
+        /// - 1 = even parity. The UART generates or checks for an even number
+        ///   of 1s in the data and parity bits.
+        Even = 1,
+    }
+
+    #[bitsize(1)]
+    #[derive(Clone, Copy, Debug, Eq, FromBits, PartialEq)]
+    /// `FEN` "Enable FIFOs" or Device mode, field of [Line Control
+    /// register](LineControl).
+    pub enum Mode {
+        /// 0 = FIFOs are disabled (character mode) that is, the FIFOs become
+        /// 1-byte-deep holding registers
+        Character = 0,
+        /// 1 = transmit and receive FIFO buffers are enabled (FIFO mode).
+        FIFO = 1,
+    }
+
+    impl From<Mode> for bool {
+        fn from(val: Mode) -> Self {
+            matches!(val, Mode::FIFO)
+        }
+    }
+
+    #[bitsize(2)]
+    #[derive(Clone, Copy, Debug, Eq, FromBits, PartialEq)]
+    /// `WLEN` Word length, field of [Line Control register](LineControl).
+    ///
+    /// These bits indicate the number of data bits transmitted or received in a
+    /// frame as follows:
+    pub enum WordLength {
+        /// b11 = 8 bits
+        _8Bits = 0b11,
+        /// b10 = 7 bits
+        _7Bits = 0b10,
+        /// b01 = 6 bits
+        _6Bits = 0b01,
+        /// b00 = 5 bits.
+        _5Bits = 0b00,
+    }
+
+    /// Control Register, `UARTCR`
+    ///
+    /// The `UARTCR` register is the control register. All the bits are cleared
+    /// to `0` on reset except for bits `9` and `8` that are set to `1`.
+    ///
+    /// # Source
+    /// ARM DDI 0183G, 3.3.8 Control Register, `UARTCR`, Table 3-12
+    #[bitsize(16)]
+    #[doc(alias = "UARTCR")]
+    #[derive(Clone, Copy, DebugBits, FromBits)]
+    pub struct Control {
+        /// `UARTEN` UART enable: 0 = UART is disabled. If the UART is disabled
+        /// in the middle of transmission or reception, it completes the current
+        /// character before stopping. 1 = the UART is enabled. Data
+        /// transmission and reception occurs for either UART signals or SIR
+        /// signals depending on the setting of the SIREN bit.
+        pub enable_uart: bool,
+        /// `SIREN` `SIR` enable: 0 = IrDA SIR ENDEC is disabled. `nSIROUT`
+        /// remains LOW (no light pulse generated), and signal transitions on
+        /// SIRIN have no effect. 1 = IrDA SIR ENDEC is enabled. Data is
+        /// transmitted and received on nSIROUT and SIRIN. UARTTXD remains HIGH,
+        /// in the marking state. Signal transitions on UARTRXD or modem status
+        /// inputs have no effect. This bit has no effect if the UARTEN bit
+        /// disables the UART.
+        pub enable_sir: bool,
+        /// `SIRLP` SIR low-power IrDA mode. This bit selects the IrDA encoding
+        /// mode. If this bit is cleared to 0, low-level bits are transmitted as
+        /// an active high pulse with a width of 3/ 16th of the bit period. If
+        /// this bit is set to 1, low-level bits are transmitted with a pulse
+        /// width that is 3 times the period of the IrLPBaud16 input signal,
+        /// regardless of the selected bit rate. Setting this bit uses less
+        /// power, but might reduce transmission distances.
+        pub sir_lowpower_irda_mode: u1,
+        /// Reserved, do not modify, read as zero.
+        _reserved_zero_no_modify: u4,
+        /// `LBE` Loopback enable. If this bit is set to 1 and the SIREN bit is
+        /// set to 1 and the SIRTEST bit in the Test Control register, UARTTCR
+        /// on page 4-5 is set to 1, then the nSIROUT path is inverted, and fed
+        /// through to the SIRIN path. The SIRTEST bit in the test register must
+        /// be set to 1 to override the normal half-duplex SIR operation. This
+        /// must be the requirement for accessing the test registers during
+        /// normal operation, and SIRTEST must be cleared to 0 when loopback
+        /// testing is finished. This feature reduces the amount of external
+        /// coupling required during system test. If this bit is set to 1, and
+        /// the SIRTEST bit is set to 0, the UARTTXD path is fed through to the
+        /// UARTRXD path. In either SIR mode or UART mode, when this bit is set,
+        /// the modem outputs are also fed through to the modem inputs. This bit
+        /// is cleared to 0 on reset, to disable loopback.
+        pub enable_loopback: bool,
+        /// `TXE` Transmit enable. If this bit is set to 1, the transmit section
+        /// of the UART is enabled. Data transmission occurs for either UART
+        /// signals, or SIR signals depending on the setting of the SIREN bit.
+        /// When the UART is disabled in the middle of transmission, it
+        /// completes the current character before stopping.
+        pub enable_transmit: bool,
+        /// `RXE` Receive enable. If this bit is set to 1, the receive section
+        /// of the UART is enabled. Data reception occurs for either UART
+        /// signals or SIR signals depending on the setting of the SIREN bit.
+        /// When the UART is disabled in the middle of reception, it completes
+        /// the current character before stopping.
+        pub enable_receive: bool,
+        /// `DTR` Data transmit ready. This bit is the complement of the UART
+        /// data transmit ready, `nUARTDTR`, modem status output. That is, when
+        /// the bit is programmed to a 1 then `nUARTDTR` is LOW.
+        pub data_transmit_ready: bool,
+        /// `RTS` Request to send. This bit is the complement of the UART
+        /// request to send, `nUARTRTS`, modem status output. That is, when the
+        /// bit is programmed to a 1 then `nUARTRTS` is LOW.
+        pub request_to_send: bool,
+        /// `Out1` This bit is the complement of the UART Out1 (`nUARTOut1`)
+        /// modem status output. That is, when the bit is programmed to a 1 the
+        /// output is 0. For DTE this can be used as Data Carrier Detect (DCD).
+        pub out_1: bool,
+        /// `Out2` This bit is the complement of the UART Out2 (`nUARTOut2`)
+        /// modem status output. That is, when the bit is programmed to a 1, the
+        /// output is 0. For DTE this can be used as Ring Indicator (RI).
+        pub out_2: bool,
+        /// `RTSEn` RTS hardware flow control enable. If this bit is set to 1,
+        /// RTS hardware flow control is enabled. Data is only requested when
+        /// there is space in the receive FIFO for it to be received.
+        pub rts_hardware_flow_control_enable: bool,
+        /// `CTSEn` CTS hardware flow control enable. If this bit is set to 1,
+        /// CTS hardware flow control is enabled. Data is only transmitted when
+        /// the `nUARTCTS` signal is asserted.
+        pub cts_hardware_flow_control_enable: bool,
+    }
+
+    impl Control {
+        pub fn reset(&mut self) {
+            *self = 0.into();
+            self.set_enable_receive(true);
+            self.set_enable_transmit(true);
+        }
+    }
+
+    impl Default for Control {
+        fn default() -> Self {
+            let mut ret: Self = 0.into();
+            ret.reset();
+            ret
+        }
+    }
+
+    /// Interrupt status bits in UARTRIS, UARTMIS, UARTIMSC
+    pub const INT_OE: u32 = 1 << 10;
+    pub const INT_BE: u32 = 1 << 9;
+    pub const INT_PE: u32 = 1 << 8;
+    pub const INT_FE: u32 = 1 << 7;
+    pub const INT_RT: u32 = 1 << 6;
+    pub const INT_TX: u32 = 1 << 5;
+    pub const INT_RX: u32 = 1 << 4;
+    pub const INT_DSR: u32 = 1 << 3;
+    pub const INT_DCD: u32 = 1 << 2;
+    pub const INT_CTS: u32 = 1 << 1;
+    pub const INT_RI: u32 = 1 << 0;
+    pub const INT_E: u32 = INT_OE | INT_BE | INT_PE | INT_FE;
+    pub const INT_MS: u32 = INT_RI | INT_DSR | INT_DCD | INT_CTS;
+
+    #[repr(u32)]
+    pub enum Interrupt {
+        OE = 1 << 10,
+        BE = 1 << 9,
+        PE = 1 << 8,
+        FE = 1 << 7,
+        RT = 1 << 6,
+        TX = 1 << 5,
+        RX = 1 << 4,
+        DSR = 1 << 3,
+        DCD = 1 << 2,
+        CTS = 1 << 1,
+        RI = 1 << 0,
+    }
+
+    impl Interrupt {
+        pub const E: u32 = INT_OE | INT_BE | INT_PE | INT_FE;
+        pub const MS: u32 = INT_RI | INT_DSR | INT_DCD | INT_CTS;
+    }
+}
+
+// TODO: You must disable the UART before any of the control registers are
+// reprogrammed. When the UART is disabled in the middle of transmission or
+// reception, it completes the current character before stopping