summary refs log tree commit diff stats
path: root/target-alpha/op_helper.c
diff options
context:
space:
mode:
Diffstat (limited to 'target-alpha/op_helper.c')
-rw-r--r--target-alpha/op_helper.c1379
1 files changed, 0 insertions, 1379 deletions
diff --git a/target-alpha/op_helper.c b/target-alpha/op_helper.c
deleted file mode 100644
index c77f009b79..0000000000
--- a/target-alpha/op_helper.c
+++ /dev/null
@@ -1,1379 +0,0 @@
-/*
- *  Alpha emulation cpu micro-operations helpers for qemu.
- *
- *  Copyright (c) 2007 Jocelyn Mayer
- *
- * This library is free software; you can redistribute it and/or
- * modify it under the terms of the GNU Lesser General Public
- * License as published by the Free Software Foundation; either
- * version 2 of the License, or (at your option) any later version.
- *
- * This library is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
- * Lesser General Public License for more details.
- *
- * You should have received a copy of the GNU Lesser General Public
- * License along with this library; if not, see <http://www.gnu.org/licenses/>.
- */
-
-#include "cpu.h"
-#include "dyngen-exec.h"
-#include "host-utils.h"
-#include "softfloat.h"
-#include "helper.h"
-#include "sysemu.h"
-#include "qemu-timer.h"
-
-#define FP_STATUS (env->fp_status)
-
-/*****************************************************************************/
-/* Exceptions processing helpers */
-
-/* This should only be called from translate, via gen_excp.
-   We expect that ENV->PC has already been updated.  */
-void QEMU_NORETURN helper_excp(int excp, int error)
-{
-    env->exception_index = excp;
-    env->error_code = error;
-    cpu_loop_exit(env);
-}
-
-static void do_restore_state(void *retaddr)
-{
-    unsigned long pc = (unsigned long)retaddr;
-
-    if (pc) {
-        TranslationBlock *tb = tb_find_pc(pc);
-        if (tb) {
-            cpu_restore_state(tb, env, pc);
-        }
-    }
-}
-
-/* This may be called from any of the helpers to set up EXCEPTION_INDEX.  */
-static void QEMU_NORETURN dynamic_excp(int excp, int error)
-{
-    env->exception_index = excp;
-    env->error_code = error;
-    do_restore_state(GETPC());
-    cpu_loop_exit(env);
-}
-
-static void QEMU_NORETURN arith_excp(int exc, uint64_t mask)
-{
-    env->trap_arg0 = exc;
-    env->trap_arg1 = mask;
-    dynamic_excp(EXCP_ARITH, 0);
-}
-
-uint64_t helper_load_pcc (void)
-{
-#ifndef CONFIG_USER_ONLY
-    /* In system mode we have access to a decent high-resolution clock.
-       In order to make OS-level time accounting work with the RPCC,
-       present it with a well-timed clock fixed at 250MHz.  */
-    return (((uint64_t)env->pcc_ofs << 32)
-            | (uint32_t)(qemu_get_clock_ns(vm_clock) >> 2));
-#else
-    /* In user-mode, vm_clock doesn't exist.  Just pass through the host cpu
-       clock ticks.  Also, don't bother taking PCC_OFS into account.  */
-    return (uint32_t)cpu_get_real_ticks();
-#endif
-}
-
-uint64_t helper_load_fpcr (void)
-{
-    return cpu_alpha_load_fpcr (env);
-}
-
-void helper_store_fpcr (uint64_t val)
-{
-    cpu_alpha_store_fpcr (env, val);
-}
-
-uint64_t helper_addqv (uint64_t op1, uint64_t op2)
-{
-    uint64_t tmp = op1;
-    op1 += op2;
-    if (unlikely((tmp ^ op2 ^ (-1ULL)) & (tmp ^ op1) & (1ULL << 63))) {
-        arith_excp(EXC_M_IOV, 0);
-    }
-    return op1;
-}
-
-uint64_t helper_addlv (uint64_t op1, uint64_t op2)
-{
-    uint64_t tmp = op1;
-    op1 = (uint32_t)(op1 + op2);
-    if (unlikely((tmp ^ op2 ^ (-1UL)) & (tmp ^ op1) & (1UL << 31))) {
-        arith_excp(EXC_M_IOV, 0);
-    }
-    return op1;
-}
-
-uint64_t helper_subqv (uint64_t op1, uint64_t op2)
-{
-    uint64_t res;
-    res = op1 - op2;
-    if (unlikely((op1 ^ op2) & (res ^ op1) & (1ULL << 63))) {
-        arith_excp(EXC_M_IOV, 0);
-    }
-    return res;
-}
-
-uint64_t helper_sublv (uint64_t op1, uint64_t op2)
-{
-    uint32_t res;
-    res = op1 - op2;
-    if (unlikely((op1 ^ op2) & (res ^ op1) & (1UL << 31))) {
-        arith_excp(EXC_M_IOV, 0);
-    }
-    return res;
-}
-
-uint64_t helper_mullv (uint64_t op1, uint64_t op2)
-{
-    int64_t res = (int64_t)op1 * (int64_t)op2;
-
-    if (unlikely((int32_t)res != res)) {
-        arith_excp(EXC_M_IOV, 0);
-    }
-    return (int64_t)((int32_t)res);
-}
-
-uint64_t helper_mulqv (uint64_t op1, uint64_t op2)
-{
-    uint64_t tl, th;
-
-    muls64(&tl, &th, op1, op2);
-    /* If th != 0 && th != -1, then we had an overflow */
-    if (unlikely((th + 1) > 1)) {
-        arith_excp(EXC_M_IOV, 0);
-    }
-    return tl;
-}
-
-uint64_t helper_umulh (uint64_t op1, uint64_t op2)
-{
-    uint64_t tl, th;
-
-    mulu64(&tl, &th, op1, op2);
-    return th;
-}
-
-uint64_t helper_ctpop (uint64_t arg)
-{
-    return ctpop64(arg);
-}
-
-uint64_t helper_ctlz (uint64_t arg)
-{
-    return clz64(arg);
-}
-
-uint64_t helper_cttz (uint64_t arg)
-{
-    return ctz64(arg);
-}
-
-static inline uint64_t byte_zap(uint64_t op, uint8_t mskb)
-{
-    uint64_t mask;
-
-    mask = 0;
-    mask |= ((mskb >> 0) & 1) * 0x00000000000000FFULL;
-    mask |= ((mskb >> 1) & 1) * 0x000000000000FF00ULL;
-    mask |= ((mskb >> 2) & 1) * 0x0000000000FF0000ULL;
-    mask |= ((mskb >> 3) & 1) * 0x00000000FF000000ULL;
-    mask |= ((mskb >> 4) & 1) * 0x000000FF00000000ULL;
-    mask |= ((mskb >> 5) & 1) * 0x0000FF0000000000ULL;
-    mask |= ((mskb >> 6) & 1) * 0x00FF000000000000ULL;
-    mask |= ((mskb >> 7) & 1) * 0xFF00000000000000ULL;
-
-    return op & ~mask;
-}
-
-uint64_t helper_zap(uint64_t val, uint64_t mask)
-{
-    return byte_zap(val, mask);
-}
-
-uint64_t helper_zapnot(uint64_t val, uint64_t mask)
-{
-    return byte_zap(val, ~mask);
-}
-
-uint64_t helper_cmpbge (uint64_t op1, uint64_t op2)
-{
-    uint8_t opa, opb, res;
-    int i;
-
-    res = 0;
-    for (i = 0; i < 8; i++) {
-        opa = op1 >> (i * 8);
-        opb = op2 >> (i * 8);
-        if (opa >= opb)
-            res |= 1 << i;
-    }
-    return res;
-}
-
-uint64_t helper_minub8 (uint64_t op1, uint64_t op2)
-{
-    uint64_t res = 0;
-    uint8_t opa, opb, opr;
-    int i;
-
-    for (i = 0; i < 8; ++i) {
-        opa = op1 >> (i * 8);
-        opb = op2 >> (i * 8);
-        opr = opa < opb ? opa : opb;
-        res |= (uint64_t)opr << (i * 8);
-    }
-    return res;
-}
-
-uint64_t helper_minsb8 (uint64_t op1, uint64_t op2)
-{
-    uint64_t res = 0;
-    int8_t opa, opb;
-    uint8_t opr;
-    int i;
-
-    for (i = 0; i < 8; ++i) {
-        opa = op1 >> (i * 8);
-        opb = op2 >> (i * 8);
-        opr = opa < opb ? opa : opb;
-        res |= (uint64_t)opr << (i * 8);
-    }
-    return res;
-}
-
-uint64_t helper_minuw4 (uint64_t op1, uint64_t op2)
-{
-    uint64_t res = 0;
-    uint16_t opa, opb, opr;
-    int i;
-
-    for (i = 0; i < 4; ++i) {
-        opa = op1 >> (i * 16);
-        opb = op2 >> (i * 16);
-        opr = opa < opb ? opa : opb;
-        res |= (uint64_t)opr << (i * 16);
-    }
-    return res;
-}
-
-uint64_t helper_minsw4 (uint64_t op1, uint64_t op2)
-{
-    uint64_t res = 0;
-    int16_t opa, opb;
-    uint16_t opr;
-    int i;
-
-    for (i = 0; i < 4; ++i) {
-        opa = op1 >> (i * 16);
-        opb = op2 >> (i * 16);
-        opr = opa < opb ? opa : opb;
-        res |= (uint64_t)opr << (i * 16);
-    }
-    return res;
-}
-
-uint64_t helper_maxub8 (uint64_t op1, uint64_t op2)
-{
-    uint64_t res = 0;
-    uint8_t opa, opb, opr;
-    int i;
-
-    for (i = 0; i < 8; ++i) {
-        opa = op1 >> (i * 8);
-        opb = op2 >> (i * 8);
-        opr = opa > opb ? opa : opb;
-        res |= (uint64_t)opr << (i * 8);
-    }
-    return res;
-}
-
-uint64_t helper_maxsb8 (uint64_t op1, uint64_t op2)
-{
-    uint64_t res = 0;
-    int8_t opa, opb;
-    uint8_t opr;
-    int i;
-
-    for (i = 0; i < 8; ++i) {
-        opa = op1 >> (i * 8);
-        opb = op2 >> (i * 8);
-        opr = opa > opb ? opa : opb;
-        res |= (uint64_t)opr << (i * 8);
-    }
-    return res;
-}
-
-uint64_t helper_maxuw4 (uint64_t op1, uint64_t op2)
-{
-    uint64_t res = 0;
-    uint16_t opa, opb, opr;
-    int i;
-
-    for (i = 0; i < 4; ++i) {
-        opa = op1 >> (i * 16);
-        opb = op2 >> (i * 16);
-        opr = opa > opb ? opa : opb;
-        res |= (uint64_t)opr << (i * 16);
-    }
-    return res;
-}
-
-uint64_t helper_maxsw4 (uint64_t op1, uint64_t op2)
-{
-    uint64_t res = 0;
-    int16_t opa, opb;
-    uint16_t opr;
-    int i;
-
-    for (i = 0; i < 4; ++i) {
-        opa = op1 >> (i * 16);
-        opb = op2 >> (i * 16);
-        opr = opa > opb ? opa : opb;
-        res |= (uint64_t)opr << (i * 16);
-    }
-    return res;
-}
-
-uint64_t helper_perr (uint64_t op1, uint64_t op2)
-{
-    uint64_t res = 0;
-    uint8_t opa, opb, opr;
-    int i;
-
-    for (i = 0; i < 8; ++i) {
-        opa = op1 >> (i * 8);
-        opb = op2 >> (i * 8);
-        if (opa >= opb)
-            opr = opa - opb;
-        else
-            opr = opb - opa;
-        res += opr;
-    }
-    return res;
-}
-
-uint64_t helper_pklb (uint64_t op1)
-{
-    return (op1 & 0xff) | ((op1 >> 24) & 0xff00);
-}
-
-uint64_t helper_pkwb (uint64_t op1)
-{
-    return ((op1 & 0xff)
-            | ((op1 >> 8) & 0xff00)
-            | ((op1 >> 16) & 0xff0000)
-            | ((op1 >> 24) & 0xff000000));
-}
-
-uint64_t helper_unpkbl (uint64_t op1)
-{
-    return (op1 & 0xff) | ((op1 & 0xff00) << 24);
-}
-
-uint64_t helper_unpkbw (uint64_t op1)
-{
-    return ((op1 & 0xff)
-            | ((op1 & 0xff00) << 8)
-            | ((op1 & 0xff0000) << 16)
-            | ((op1 & 0xff000000) << 24));
-}
-
-/* Floating point helpers */
-
-void helper_setroundmode (uint32_t val)
-{
-    set_float_rounding_mode(val, &FP_STATUS);
-}
-
-void helper_setflushzero (uint32_t val)
-{
-    set_flush_to_zero(val, &FP_STATUS);
-}
-
-void helper_fp_exc_clear (void)
-{
-    set_float_exception_flags(0, &FP_STATUS);
-}
-
-uint32_t helper_fp_exc_get (void)
-{
-    return get_float_exception_flags(&FP_STATUS);
-}
-
-/* Raise exceptions for ieee fp insns without software completion.
-   In that case there are no exceptions that don't trap; the mask
-   doesn't apply.  */
-void helper_fp_exc_raise(uint32_t exc, uint32_t regno)
-{
-    if (exc) {
-        uint32_t hw_exc = 0;
-
-        if (exc & float_flag_invalid) {
-            hw_exc |= EXC_M_INV;
-        }
-        if (exc & float_flag_divbyzero) {
-            hw_exc |= EXC_M_DZE;
-        }
-        if (exc & float_flag_overflow) {
-            hw_exc |= EXC_M_FOV;
-        }
-        if (exc & float_flag_underflow) {
-            hw_exc |= EXC_M_UNF;
-        }
-        if (exc & float_flag_inexact) {
-            hw_exc |= EXC_M_INE;
-        }
-
-        arith_excp(hw_exc, 1ull << regno);
-    }
-}
-
-/* Raise exceptions for ieee fp insns with software completion.  */
-void helper_fp_exc_raise_s(uint32_t exc, uint32_t regno)
-{
-    if (exc) {
-        env->fpcr_exc_status |= exc;
-
-        exc &= ~env->fpcr_exc_mask;
-        if (exc) {
-            helper_fp_exc_raise(exc, regno);
-        }
-    }
-}
-
-/* Input remapping without software completion.  Handle denormal-map-to-zero
-   and trap for all other non-finite numbers.  */
-uint64_t helper_ieee_input(uint64_t val)
-{
-    uint32_t exp = (uint32_t)(val >> 52) & 0x7ff;
-    uint64_t frac = val & 0xfffffffffffffull;
-
-    if (exp == 0) {
-        if (frac != 0) {
-            /* If DNZ is set flush denormals to zero on input.  */
-            if (env->fpcr_dnz) {
-                val &= 1ull << 63;
-            } else {
-                arith_excp(EXC_M_UNF, 0);
-            }
-        }
-    } else if (exp == 0x7ff) {
-        /* Infinity or NaN.  */
-        /* ??? I'm not sure these exception bit flags are correct.  I do
-           know that the Linux kernel, at least, doesn't rely on them and
-           just emulates the insn to figure out what exception to use.  */
-        arith_excp(frac ? EXC_M_INV : EXC_M_FOV, 0);
-    }
-    return val;
-}
-
-/* Similar, but does not trap for infinities.  Used for comparisons.  */
-uint64_t helper_ieee_input_cmp(uint64_t val)
-{
-    uint32_t exp = (uint32_t)(val >> 52) & 0x7ff;
-    uint64_t frac = val & 0xfffffffffffffull;
-
-    if (exp == 0) {
-        if (frac != 0) {
-            /* If DNZ is set flush denormals to zero on input.  */
-            if (env->fpcr_dnz) {
-                val &= 1ull << 63;
-            } else {
-                arith_excp(EXC_M_UNF, 0);
-            }
-        }
-    } else if (exp == 0x7ff && frac) {
-        /* NaN.  */
-        arith_excp(EXC_M_INV, 0);
-    }
-    return val;
-}
-
-/* Input remapping with software completion enabled.  All we have to do
-   is handle denormal-map-to-zero; all other inputs get exceptions as
-   needed from the actual operation.  */
-uint64_t helper_ieee_input_s(uint64_t val)
-{
-    if (env->fpcr_dnz) {
-        uint32_t exp = (uint32_t)(val >> 52) & 0x7ff;
-        if (exp == 0) {
-            val &= 1ull << 63;
-        }
-    }
-    return val;
-}
-
-/* F floating (VAX) */
-static inline uint64_t float32_to_f(float32 fa)
-{
-    uint64_t r, exp, mant, sig;
-    CPU_FloatU a;
-
-    a.f = fa;
-    sig = ((uint64_t)a.l & 0x80000000) << 32;
-    exp = (a.l >> 23) & 0xff;
-    mant = ((uint64_t)a.l & 0x007fffff) << 29;
-
-    if (exp == 255) {
-        /* NaN or infinity */
-        r = 1; /* VAX dirty zero */
-    } else if (exp == 0) {
-        if (mant == 0) {
-            /* Zero */
-            r = 0;
-        } else {
-            /* Denormalized */
-            r = sig | ((exp + 1) << 52) | mant;
-        }
-    } else {
-        if (exp >= 253) {
-            /* Overflow */
-            r = 1; /* VAX dirty zero */
-        } else {
-            r = sig | ((exp + 2) << 52);
-        }
-    }
-
-    return r;
-}
-
-static inline float32 f_to_float32(uint64_t a)
-{
-    uint32_t exp, mant_sig;
-    CPU_FloatU r;
-
-    exp = ((a >> 55) & 0x80) | ((a >> 52) & 0x7f);
-    mant_sig = ((a >> 32) & 0x80000000) | ((a >> 29) & 0x007fffff);
-
-    if (unlikely(!exp && mant_sig)) {
-        /* Reserved operands / Dirty zero */
-        dynamic_excp(EXCP_OPCDEC, 0);
-    }
-
-    if (exp < 3) {
-        /* Underflow */
-        r.l = 0;
-    } else {
-        r.l = ((exp - 2) << 23) | mant_sig;
-    }
-
-    return r.f;
-}
-
-uint32_t helper_f_to_memory (uint64_t a)
-{
-    uint32_t r;
-    r =  (a & 0x00001fffe0000000ull) >> 13;
-    r |= (a & 0x07ffe00000000000ull) >> 45;
-    r |= (a & 0xc000000000000000ull) >> 48;
-    return r;
-}
-
-uint64_t helper_memory_to_f (uint32_t a)
-{
-    uint64_t r;
-    r =  ((uint64_t)(a & 0x0000c000)) << 48;
-    r |= ((uint64_t)(a & 0x003fffff)) << 45;
-    r |= ((uint64_t)(a & 0xffff0000)) << 13;
-    if (!(a & 0x00004000))
-        r |= 0x7ll << 59;
-    return r;
-}
-
-/* ??? Emulating VAX arithmetic with IEEE arithmetic is wrong.  We should
-   either implement VAX arithmetic properly or just signal invalid opcode.  */
-
-uint64_t helper_addf (uint64_t a, uint64_t b)
-{
-    float32 fa, fb, fr;
-
-    fa = f_to_float32(a);
-    fb = f_to_float32(b);
-    fr = float32_add(fa, fb, &FP_STATUS);
-    return float32_to_f(fr);
-}
-
-uint64_t helper_subf (uint64_t a, uint64_t b)
-{
-    float32 fa, fb, fr;
-
-    fa = f_to_float32(a);
-    fb = f_to_float32(b);
-    fr = float32_sub(fa, fb, &FP_STATUS);
-    return float32_to_f(fr);
-}
-
-uint64_t helper_mulf (uint64_t a, uint64_t b)
-{
-    float32 fa, fb, fr;
-
-    fa = f_to_float32(a);
-    fb = f_to_float32(b);
-    fr = float32_mul(fa, fb, &FP_STATUS);
-    return float32_to_f(fr);
-}
-
-uint64_t helper_divf (uint64_t a, uint64_t b)
-{
-    float32 fa, fb, fr;
-
-    fa = f_to_float32(a);
-    fb = f_to_float32(b);
-    fr = float32_div(fa, fb, &FP_STATUS);
-    return float32_to_f(fr);
-}
-
-uint64_t helper_sqrtf (uint64_t t)
-{
-    float32 ft, fr;
-
-    ft = f_to_float32(t);
-    fr = float32_sqrt(ft, &FP_STATUS);
-    return float32_to_f(fr);
-}
-
-
-/* G floating (VAX) */
-static inline uint64_t float64_to_g(float64 fa)
-{
-    uint64_t r, exp, mant, sig;
-    CPU_DoubleU a;
-
-    a.d = fa;
-    sig = a.ll & 0x8000000000000000ull;
-    exp = (a.ll >> 52) & 0x7ff;
-    mant = a.ll & 0x000fffffffffffffull;
-
-    if (exp == 2047) {
-        /* NaN or infinity */
-        r = 1; /* VAX dirty zero */
-    } else if (exp == 0) {
-        if (mant == 0) {
-            /* Zero */
-            r = 0;
-        } else {
-            /* Denormalized */
-            r = sig | ((exp + 1) << 52) | mant;
-        }
-    } else {
-        if (exp >= 2045) {
-            /* Overflow */
-            r = 1; /* VAX dirty zero */
-        } else {
-            r = sig | ((exp + 2) << 52);
-        }
-    }
-
-    return r;
-}
-
-static inline float64 g_to_float64(uint64_t a)
-{
-    uint64_t exp, mant_sig;
-    CPU_DoubleU r;
-
-    exp = (a >> 52) & 0x7ff;
-    mant_sig = a & 0x800fffffffffffffull;
-
-    if (!exp && mant_sig) {
-        /* Reserved operands / Dirty zero */
-        dynamic_excp(EXCP_OPCDEC, 0);
-    }
-
-    if (exp < 3) {
-        /* Underflow */
-        r.ll = 0;
-    } else {
-        r.ll = ((exp - 2) << 52) | mant_sig;
-    }
-
-    return r.d;
-}
-
-uint64_t helper_g_to_memory (uint64_t a)
-{
-    uint64_t r;
-    r =  (a & 0x000000000000ffffull) << 48;
-    r |= (a & 0x00000000ffff0000ull) << 16;
-    r |= (a & 0x0000ffff00000000ull) >> 16;
-    r |= (a & 0xffff000000000000ull) >> 48;
-    return r;
-}
-
-uint64_t helper_memory_to_g (uint64_t a)
-{
-    uint64_t r;
-    r =  (a & 0x000000000000ffffull) << 48;
-    r |= (a & 0x00000000ffff0000ull) << 16;
-    r |= (a & 0x0000ffff00000000ull) >> 16;
-    r |= (a & 0xffff000000000000ull) >> 48;
-    return r;
-}
-
-uint64_t helper_addg (uint64_t a, uint64_t b)
-{
-    float64 fa, fb, fr;
-
-    fa = g_to_float64(a);
-    fb = g_to_float64(b);
-    fr = float64_add(fa, fb, &FP_STATUS);
-    return float64_to_g(fr);
-}
-
-uint64_t helper_subg (uint64_t a, uint64_t b)
-{
-    float64 fa, fb, fr;
-
-    fa = g_to_float64(a);
-    fb = g_to_float64(b);
-    fr = float64_sub(fa, fb, &FP_STATUS);
-    return float64_to_g(fr);
-}
-
-uint64_t helper_mulg (uint64_t a, uint64_t b)
-{
-    float64 fa, fb, fr;
-
-    fa = g_to_float64(a);
-    fb = g_to_float64(b);
-    fr = float64_mul(fa, fb, &FP_STATUS);
-    return float64_to_g(fr);
-}
-
-uint64_t helper_divg (uint64_t a, uint64_t b)
-{
-    float64 fa, fb, fr;
-
-    fa = g_to_float64(a);
-    fb = g_to_float64(b);
-    fr = float64_div(fa, fb, &FP_STATUS);
-    return float64_to_g(fr);
-}
-
-uint64_t helper_sqrtg (uint64_t a)
-{
-    float64 fa, fr;
-
-    fa = g_to_float64(a);
-    fr = float64_sqrt(fa, &FP_STATUS);
-    return float64_to_g(fr);
-}
-
-
-/* S floating (single) */
-
-/* Taken from linux/arch/alpha/kernel/traps.c, s_mem_to_reg.  */
-static inline uint64_t float32_to_s_int(uint32_t fi)
-{
-    uint32_t frac = fi & 0x7fffff;
-    uint32_t sign = fi >> 31;
-    uint32_t exp_msb = (fi >> 30) & 1;
-    uint32_t exp_low = (fi >> 23) & 0x7f;
-    uint32_t exp;
-
-    exp = (exp_msb << 10) | exp_low;
-    if (exp_msb) {
-        if (exp_low == 0x7f)
-            exp = 0x7ff;
-    } else {
-        if (exp_low != 0x00)
-            exp |= 0x380;
-    }
-
-    return (((uint64_t)sign << 63)
-            | ((uint64_t)exp << 52)
-            | ((uint64_t)frac << 29));
-}
-
-static inline uint64_t float32_to_s(float32 fa)
-{
-    CPU_FloatU a;
-    a.f = fa;
-    return float32_to_s_int(a.l);
-}
-
-static inline uint32_t s_to_float32_int(uint64_t a)
-{
-    return ((a >> 32) & 0xc0000000) | ((a >> 29) & 0x3fffffff);
-}
-
-static inline float32 s_to_float32(uint64_t a)
-{
-    CPU_FloatU r;
-    r.l = s_to_float32_int(a);
-    return r.f;
-}
-
-uint32_t helper_s_to_memory (uint64_t a)
-{
-    return s_to_float32_int(a);
-}
-
-uint64_t helper_memory_to_s (uint32_t a)
-{
-    return float32_to_s_int(a);
-}
-
-uint64_t helper_adds (uint64_t a, uint64_t b)
-{
-    float32 fa, fb, fr;
-
-    fa = s_to_float32(a);
-    fb = s_to_float32(b);
-    fr = float32_add(fa, fb, &FP_STATUS);
-    return float32_to_s(fr);
-}
-
-uint64_t helper_subs (uint64_t a, uint64_t b)
-{
-    float32 fa, fb, fr;
-
-    fa = s_to_float32(a);
-    fb = s_to_float32(b);
-    fr = float32_sub(fa, fb, &FP_STATUS);
-    return float32_to_s(fr);
-}
-
-uint64_t helper_muls (uint64_t a, uint64_t b)
-{
-    float32 fa, fb, fr;
-
-    fa = s_to_float32(a);
-    fb = s_to_float32(b);
-    fr = float32_mul(fa, fb, &FP_STATUS);
-    return float32_to_s(fr);
-}
-
-uint64_t helper_divs (uint64_t a, uint64_t b)
-{
-    float32 fa, fb, fr;
-
-    fa = s_to_float32(a);
-    fb = s_to_float32(b);
-    fr = float32_div(fa, fb, &FP_STATUS);
-    return float32_to_s(fr);
-}
-
-uint64_t helper_sqrts (uint64_t a)
-{
-    float32 fa, fr;
-
-    fa = s_to_float32(a);
-    fr = float32_sqrt(fa, &FP_STATUS);
-    return float32_to_s(fr);
-}
-
-
-/* T floating (double) */
-static inline float64 t_to_float64(uint64_t a)
-{
-    /* Memory format is the same as float64 */
-    CPU_DoubleU r;
-    r.ll = a;
-    return r.d;
-}
-
-static inline uint64_t float64_to_t(float64 fa)
-{
-    /* Memory format is the same as float64 */
-    CPU_DoubleU r;
-    r.d = fa;
-    return r.ll;
-}
-
-uint64_t helper_addt (uint64_t a, uint64_t b)
-{
-    float64 fa, fb, fr;
-
-    fa = t_to_float64(a);
-    fb = t_to_float64(b);
-    fr = float64_add(fa, fb, &FP_STATUS);
-    return float64_to_t(fr);
-}
-
-uint64_t helper_subt (uint64_t a, uint64_t b)
-{
-    float64 fa, fb, fr;
-
-    fa = t_to_float64(a);
-    fb = t_to_float64(b);
-    fr = float64_sub(fa, fb, &FP_STATUS);
-    return float64_to_t(fr);
-}
-
-uint64_t helper_mult (uint64_t a, uint64_t b)
-{
-    float64 fa, fb, fr;
-
-    fa = t_to_float64(a);
-    fb = t_to_float64(b);
-    fr = float64_mul(fa, fb, &FP_STATUS);
-    return float64_to_t(fr);
-}
-
-uint64_t helper_divt (uint64_t a, uint64_t b)
-{
-    float64 fa, fb, fr;
-
-    fa = t_to_float64(a);
-    fb = t_to_float64(b);
-    fr = float64_div(fa, fb, &FP_STATUS);
-    return float64_to_t(fr);
-}
-
-uint64_t helper_sqrtt (uint64_t a)
-{
-    float64 fa, fr;
-
-    fa = t_to_float64(a);
-    fr = float64_sqrt(fa, &FP_STATUS);
-    return float64_to_t(fr);
-}
-
-/* Comparisons */
-uint64_t helper_cmptun (uint64_t a, uint64_t b)
-{
-    float64 fa, fb;
-
-    fa = t_to_float64(a);
-    fb = t_to_float64(b);
-
-    if (float64_unordered_quiet(fa, fb, &FP_STATUS)) {
-        return 0x4000000000000000ULL;
-    } else {
-        return 0;
-    }
-}
-
-uint64_t helper_cmpteq(uint64_t a, uint64_t b)
-{
-    float64 fa, fb;
-
-    fa = t_to_float64(a);
-    fb = t_to_float64(b);
-
-    if (float64_eq_quiet(fa, fb, &FP_STATUS))
-        return 0x4000000000000000ULL;
-    else
-        return 0;
-}
-
-uint64_t helper_cmptle(uint64_t a, uint64_t b)
-{
-    float64 fa, fb;
-
-    fa = t_to_float64(a);
-    fb = t_to_float64(b);
-
-    if (float64_le(fa, fb, &FP_STATUS))
-        return 0x4000000000000000ULL;
-    else
-        return 0;
-}
-
-uint64_t helper_cmptlt(uint64_t a, uint64_t b)
-{
-    float64 fa, fb;
-
-    fa = t_to_float64(a);
-    fb = t_to_float64(b);
-
-    if (float64_lt(fa, fb, &FP_STATUS))
-        return 0x4000000000000000ULL;
-    else
-        return 0;
-}
-
-uint64_t helper_cmpgeq(uint64_t a, uint64_t b)
-{
-    float64 fa, fb;
-
-    fa = g_to_float64(a);
-    fb = g_to_float64(b);
-
-    if (float64_eq_quiet(fa, fb, &FP_STATUS))
-        return 0x4000000000000000ULL;
-    else
-        return 0;
-}
-
-uint64_t helper_cmpgle(uint64_t a, uint64_t b)
-{
-    float64 fa, fb;
-
-    fa = g_to_float64(a);
-    fb = g_to_float64(b);
-
-    if (float64_le(fa, fb, &FP_STATUS))
-        return 0x4000000000000000ULL;
-    else
-        return 0;
-}
-
-uint64_t helper_cmpglt(uint64_t a, uint64_t b)
-{
-    float64 fa, fb;
-
-    fa = g_to_float64(a);
-    fb = g_to_float64(b);
-
-    if (float64_lt(fa, fb, &FP_STATUS))
-        return 0x4000000000000000ULL;
-    else
-        return 0;
-}
-
-/* Floating point format conversion */
-uint64_t helper_cvtts (uint64_t a)
-{
-    float64 fa;
-    float32 fr;
-
-    fa = t_to_float64(a);
-    fr = float64_to_float32(fa, &FP_STATUS);
-    return float32_to_s(fr);
-}
-
-uint64_t helper_cvtst (uint64_t a)
-{
-    float32 fa;
-    float64 fr;
-
-    fa = s_to_float32(a);
-    fr = float32_to_float64(fa, &FP_STATUS);
-    return float64_to_t(fr);
-}
-
-uint64_t helper_cvtqs (uint64_t a)
-{
-    float32 fr = int64_to_float32(a, &FP_STATUS);
-    return float32_to_s(fr);
-}
-
-/* Implement float64 to uint64 conversion without saturation -- we must
-   supply the truncated result.  This behaviour is used by the compiler
-   to get unsigned conversion for free with the same instruction.
-
-   The VI flag is set when overflow or inexact exceptions should be raised.  */
-
-static inline uint64_t helper_cvttq_internal(uint64_t a, int roundmode, int VI)
-{
-    uint64_t frac, ret = 0;
-    uint32_t exp, sign, exc = 0;
-    int shift;
-
-    sign = (a >> 63);
-    exp = (uint32_t)(a >> 52) & 0x7ff;
-    frac = a & 0xfffffffffffffull;
-
-    if (exp == 0) {
-        if (unlikely(frac != 0)) {
-            goto do_underflow;
-        }
-    } else if (exp == 0x7ff) {
-        exc = (frac ? float_flag_invalid : VI ? float_flag_overflow : 0);
-    } else {
-        /* Restore implicit bit.  */
-        frac |= 0x10000000000000ull;
-
-        shift = exp - 1023 - 52;
-        if (shift >= 0) {
-            /* In this case the number is so large that we must shift
-               the fraction left.  There is no rounding to do.  */
-            if (shift < 63) {
-                ret = frac << shift;
-                if (VI && (ret >> shift) != frac) {
-                    exc = float_flag_overflow;
-                }
-            }
-        } else {
-            uint64_t round;
-
-            /* In this case the number is smaller than the fraction as
-               represented by the 52 bit number.  Here we must think
-               about rounding the result.  Handle this by shifting the
-               fractional part of the number into the high bits of ROUND.
-               This will let us efficiently handle round-to-nearest.  */
-            shift = -shift;
-            if (shift < 63) {
-                ret = frac >> shift;
-                round = frac << (64 - shift);
-            } else {
-                /* The exponent is so small we shift out everything.
-                   Leave a sticky bit for proper rounding below.  */
-            do_underflow:
-                round = 1;
-            }
-
-            if (round) {
-                exc = (VI ? float_flag_inexact : 0);
-                switch (roundmode) {
-                case float_round_nearest_even:
-                    if (round == (1ull << 63)) {
-                        /* Fraction is exactly 0.5; round to even.  */
-                        ret += (ret & 1);
-                    } else if (round > (1ull << 63)) {
-                        ret += 1;
-                    }
-                    break;
-                case float_round_to_zero:
-                    break;
-                case float_round_up:
-                    ret += 1 - sign;
-                    break;
-                case float_round_down:
-                    ret += sign;
-                    break;
-                }
-            }
-        }
-        if (sign) {
-            ret = -ret;
-        }
-    }
-    if (unlikely(exc)) {
-        float_raise(exc, &FP_STATUS);
-    }
-
-    return ret;
-}
-
-uint64_t helper_cvttq(uint64_t a)
-{
-    return helper_cvttq_internal(a, FP_STATUS.float_rounding_mode, 1);
-}
-
-uint64_t helper_cvttq_c(uint64_t a)
-{
-    return helper_cvttq_internal(a, float_round_to_zero, 0);
-}
-
-uint64_t helper_cvttq_svic(uint64_t a)
-{
-    return helper_cvttq_internal(a, float_round_to_zero, 1);
-}
-
-uint64_t helper_cvtqt (uint64_t a)
-{
-    float64 fr = int64_to_float64(a, &FP_STATUS);
-    return float64_to_t(fr);
-}
-
-uint64_t helper_cvtqf (uint64_t a)
-{
-    float32 fr = int64_to_float32(a, &FP_STATUS);
-    return float32_to_f(fr);
-}
-
-uint64_t helper_cvtgf (uint64_t a)
-{
-    float64 fa;
-    float32 fr;
-
-    fa = g_to_float64(a);
-    fr = float64_to_float32(fa, &FP_STATUS);
-    return float32_to_f(fr);
-}
-
-uint64_t helper_cvtgq (uint64_t a)
-{
-    float64 fa = g_to_float64(a);
-    return float64_to_int64_round_to_zero(fa, &FP_STATUS);
-}
-
-uint64_t helper_cvtqg (uint64_t a)
-{
-    float64 fr;
-    fr = int64_to_float64(a, &FP_STATUS);
-    return float64_to_g(fr);
-}
-
-/* PALcode support special instructions */
-#if !defined (CONFIG_USER_ONLY)
-void helper_hw_ret (uint64_t a)
-{
-    env->pc = a & ~3;
-    env->intr_flag = 0;
-    env->lock_addr = -1;
-    if ((a & 1) == 0) {
-        env->pal_mode = 0;
-        swap_shadow_regs(env);
-    }
-}
-
-void helper_tbia(void)
-{
-    tlb_flush(env, 1);
-}
-
-void helper_tbis(uint64_t p)
-{
-    tlb_flush_page(env, p);
-}
-
-void helper_halt(uint64_t restart)
-{
-    if (restart) {
-        qemu_system_reset_request();
-    } else {
-        qemu_system_shutdown_request();
-    }
-}
-
-uint64_t helper_get_time(void)
-{
-    return qemu_get_clock_ns(rtc_clock);
-}
-
-void helper_set_alarm(uint64_t expire)
-{
-    if (expire) {
-        env->alarm_expire = expire;
-        qemu_mod_timer(env->alarm_timer, expire);
-    } else {
-        qemu_del_timer(env->alarm_timer);
-    }
-}
-#endif
-
-/*****************************************************************************/
-/* Softmmu support */
-#if !defined (CONFIG_USER_ONLY)
-uint64_t helper_ldl_phys(uint64_t p)
-{
-    return (int32_t)ldl_phys(p);
-}
-
-uint64_t helper_ldq_phys(uint64_t p)
-{
-    return ldq_phys(p);
-}
-
-uint64_t helper_ldl_l_phys(uint64_t p)
-{
-    env->lock_addr = p;
-    return env->lock_value = (int32_t)ldl_phys(p);
-}
-
-uint64_t helper_ldq_l_phys(uint64_t p)
-{
-    env->lock_addr = p;
-    return env->lock_value = ldl_phys(p);
-}
-
-void helper_stl_phys(uint64_t p, uint64_t v)
-{
-    stl_phys(p, v);
-}
-
-void helper_stq_phys(uint64_t p, uint64_t v)
-{
-    stq_phys(p, v);
-}
-
-uint64_t helper_stl_c_phys(uint64_t p, uint64_t v)
-{
-    uint64_t ret = 0;
-
-    if (p == env->lock_addr) {
-        int32_t old = ldl_phys(p);
-        if (old == (int32_t)env->lock_value) {
-            stl_phys(p, v);
-            ret = 1;
-        }
-    }
-    env->lock_addr = -1;
-
-    return ret;
-}
-
-uint64_t helper_stq_c_phys(uint64_t p, uint64_t v)
-{
-    uint64_t ret = 0;
-
-    if (p == env->lock_addr) {
-        uint64_t old = ldq_phys(p);
-        if (old == env->lock_value) {
-            stq_phys(p, v);
-            ret = 1;
-        }
-    }
-    env->lock_addr = -1;
-
-    return ret;
-}
-
-static void QEMU_NORETURN do_unaligned_access(target_ulong addr, int is_write,
-                                              int is_user, void *retaddr)
-{
-    uint64_t pc;
-    uint32_t insn;
-
-    do_restore_state(retaddr);
-
-    pc = env->pc;
-    insn = ldl_code(pc);
-
-    env->trap_arg0 = addr;
-    env->trap_arg1 = insn >> 26;                /* opcode */
-    env->trap_arg2 = (insn >> 21) & 31;         /* dest regno */
-    helper_excp(EXCP_UNALIGN, 0);
-}
-
-void QEMU_NORETURN cpu_unassigned_access(CPUAlphaState *env1,
-                                         target_phys_addr_t addr, int is_write,
-                                         int is_exec, int unused, int size)
-{
-    env = env1;
-    env->trap_arg0 = addr;
-    env->trap_arg1 = is_write;
-    dynamic_excp(EXCP_MCHK, 0);
-}
-
-#include "softmmu_exec.h"
-
-#define MMUSUFFIX _mmu
-#define ALIGNED_ONLY
-
-#define SHIFT 0
-#include "softmmu_template.h"
-
-#define SHIFT 1
-#include "softmmu_template.h"
-
-#define SHIFT 2
-#include "softmmu_template.h"
-
-#define SHIFT 3
-#include "softmmu_template.h"
-
-/* try to fill the TLB and return an exception if error. If retaddr is
-   NULL, it means that the function was called in C code (i.e. not
-   from generated code or from helper.c) */
-/* XXX: fix it to restore all registers */
-void tlb_fill(CPUAlphaState *env1, target_ulong addr, int is_write, int mmu_idx,
-              void *retaddr)
-{
-    CPUAlphaState *saved_env;
-    int ret;
-
-    saved_env = env;
-    env = env1;
-    ret = cpu_alpha_handle_mmu_fault(env, addr, is_write, mmu_idx);
-    if (unlikely(ret != 0)) {
-        do_restore_state(retaddr);
-        /* Exception index and error code are already set */
-        cpu_loop_exit(env);
-    }
-    env = saved_env;
-}
-#endif