diff options
Diffstat (limited to 'target-alpha/op_helper.c')
| -rw-r--r-- | target-alpha/op_helper.c | 1379 |
1 files changed, 0 insertions, 1379 deletions
diff --git a/target-alpha/op_helper.c b/target-alpha/op_helper.c deleted file mode 100644 index c77f009b79..0000000000 --- a/target-alpha/op_helper.c +++ /dev/null @@ -1,1379 +0,0 @@ -/* - * Alpha emulation cpu micro-operations helpers for qemu. - * - * Copyright (c) 2007 Jocelyn Mayer - * - * This library is free software; you can redistribute it and/or - * modify it under the terms of the GNU Lesser General Public - * License as published by the Free Software Foundation; either - * version 2 of the License, or (at your option) any later version. - * - * This library is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU - * Lesser General Public License for more details. - * - * You should have received a copy of the GNU Lesser General Public - * License along with this library; if not, see <http://www.gnu.org/licenses/>. - */ - -#include "cpu.h" -#include "dyngen-exec.h" -#include "host-utils.h" -#include "softfloat.h" -#include "helper.h" -#include "sysemu.h" -#include "qemu-timer.h" - -#define FP_STATUS (env->fp_status) - -/*****************************************************************************/ -/* Exceptions processing helpers */ - -/* This should only be called from translate, via gen_excp. - We expect that ENV->PC has already been updated. */ -void QEMU_NORETURN helper_excp(int excp, int error) -{ - env->exception_index = excp; - env->error_code = error; - cpu_loop_exit(env); -} - -static void do_restore_state(void *retaddr) -{ - unsigned long pc = (unsigned long)retaddr; - - if (pc) { - TranslationBlock *tb = tb_find_pc(pc); - if (tb) { - cpu_restore_state(tb, env, pc); - } - } -} - -/* This may be called from any of the helpers to set up EXCEPTION_INDEX. */ -static void QEMU_NORETURN dynamic_excp(int excp, int error) -{ - env->exception_index = excp; - env->error_code = error; - do_restore_state(GETPC()); - cpu_loop_exit(env); -} - -static void QEMU_NORETURN arith_excp(int exc, uint64_t mask) -{ - env->trap_arg0 = exc; - env->trap_arg1 = mask; - dynamic_excp(EXCP_ARITH, 0); -} - -uint64_t helper_load_pcc (void) -{ -#ifndef CONFIG_USER_ONLY - /* In system mode we have access to a decent high-resolution clock. - In order to make OS-level time accounting work with the RPCC, - present it with a well-timed clock fixed at 250MHz. */ - return (((uint64_t)env->pcc_ofs << 32) - | (uint32_t)(qemu_get_clock_ns(vm_clock) >> 2)); -#else - /* In user-mode, vm_clock doesn't exist. Just pass through the host cpu - clock ticks. Also, don't bother taking PCC_OFS into account. */ - return (uint32_t)cpu_get_real_ticks(); -#endif -} - -uint64_t helper_load_fpcr (void) -{ - return cpu_alpha_load_fpcr (env); -} - -void helper_store_fpcr (uint64_t val) -{ - cpu_alpha_store_fpcr (env, val); -} - -uint64_t helper_addqv (uint64_t op1, uint64_t op2) -{ - uint64_t tmp = op1; - op1 += op2; - if (unlikely((tmp ^ op2 ^ (-1ULL)) & (tmp ^ op1) & (1ULL << 63))) { - arith_excp(EXC_M_IOV, 0); - } - return op1; -} - -uint64_t helper_addlv (uint64_t op1, uint64_t op2) -{ - uint64_t tmp = op1; - op1 = (uint32_t)(op1 + op2); - if (unlikely((tmp ^ op2 ^ (-1UL)) & (tmp ^ op1) & (1UL << 31))) { - arith_excp(EXC_M_IOV, 0); - } - return op1; -} - -uint64_t helper_subqv (uint64_t op1, uint64_t op2) -{ - uint64_t res; - res = op1 - op2; - if (unlikely((op1 ^ op2) & (res ^ op1) & (1ULL << 63))) { - arith_excp(EXC_M_IOV, 0); - } - return res; -} - -uint64_t helper_sublv (uint64_t op1, uint64_t op2) -{ - uint32_t res; - res = op1 - op2; - if (unlikely((op1 ^ op2) & (res ^ op1) & (1UL << 31))) { - arith_excp(EXC_M_IOV, 0); - } - return res; -} - -uint64_t helper_mullv (uint64_t op1, uint64_t op2) -{ - int64_t res = (int64_t)op1 * (int64_t)op2; - - if (unlikely((int32_t)res != res)) { - arith_excp(EXC_M_IOV, 0); - } - return (int64_t)((int32_t)res); -} - -uint64_t helper_mulqv (uint64_t op1, uint64_t op2) -{ - uint64_t tl, th; - - muls64(&tl, &th, op1, op2); - /* If th != 0 && th != -1, then we had an overflow */ - if (unlikely((th + 1) > 1)) { - arith_excp(EXC_M_IOV, 0); - } - return tl; -} - -uint64_t helper_umulh (uint64_t op1, uint64_t op2) -{ - uint64_t tl, th; - - mulu64(&tl, &th, op1, op2); - return th; -} - -uint64_t helper_ctpop (uint64_t arg) -{ - return ctpop64(arg); -} - -uint64_t helper_ctlz (uint64_t arg) -{ - return clz64(arg); -} - -uint64_t helper_cttz (uint64_t arg) -{ - return ctz64(arg); -} - -static inline uint64_t byte_zap(uint64_t op, uint8_t mskb) -{ - uint64_t mask; - - mask = 0; - mask |= ((mskb >> 0) & 1) * 0x00000000000000FFULL; - mask |= ((mskb >> 1) & 1) * 0x000000000000FF00ULL; - mask |= ((mskb >> 2) & 1) * 0x0000000000FF0000ULL; - mask |= ((mskb >> 3) & 1) * 0x00000000FF000000ULL; - mask |= ((mskb >> 4) & 1) * 0x000000FF00000000ULL; - mask |= ((mskb >> 5) & 1) * 0x0000FF0000000000ULL; - mask |= ((mskb >> 6) & 1) * 0x00FF000000000000ULL; - mask |= ((mskb >> 7) & 1) * 0xFF00000000000000ULL; - - return op & ~mask; -} - -uint64_t helper_zap(uint64_t val, uint64_t mask) -{ - return byte_zap(val, mask); -} - -uint64_t helper_zapnot(uint64_t val, uint64_t mask) -{ - return byte_zap(val, ~mask); -} - -uint64_t helper_cmpbge (uint64_t op1, uint64_t op2) -{ - uint8_t opa, opb, res; - int i; - - res = 0; - for (i = 0; i < 8; i++) { - opa = op1 >> (i * 8); - opb = op2 >> (i * 8); - if (opa >= opb) - res |= 1 << i; - } - return res; -} - -uint64_t helper_minub8 (uint64_t op1, uint64_t op2) -{ - uint64_t res = 0; - uint8_t opa, opb, opr; - int i; - - for (i = 0; i < 8; ++i) { - opa = op1 >> (i * 8); - opb = op2 >> (i * 8); - opr = opa < opb ? opa : opb; - res |= (uint64_t)opr << (i * 8); - } - return res; -} - -uint64_t helper_minsb8 (uint64_t op1, uint64_t op2) -{ - uint64_t res = 0; - int8_t opa, opb; - uint8_t opr; - int i; - - for (i = 0; i < 8; ++i) { - opa = op1 >> (i * 8); - opb = op2 >> (i * 8); - opr = opa < opb ? opa : opb; - res |= (uint64_t)opr << (i * 8); - } - return res; -} - -uint64_t helper_minuw4 (uint64_t op1, uint64_t op2) -{ - uint64_t res = 0; - uint16_t opa, opb, opr; - int i; - - for (i = 0; i < 4; ++i) { - opa = op1 >> (i * 16); - opb = op2 >> (i * 16); - opr = opa < opb ? opa : opb; - res |= (uint64_t)opr << (i * 16); - } - return res; -} - -uint64_t helper_minsw4 (uint64_t op1, uint64_t op2) -{ - uint64_t res = 0; - int16_t opa, opb; - uint16_t opr; - int i; - - for (i = 0; i < 4; ++i) { - opa = op1 >> (i * 16); - opb = op2 >> (i * 16); - opr = opa < opb ? opa : opb; - res |= (uint64_t)opr << (i * 16); - } - return res; -} - -uint64_t helper_maxub8 (uint64_t op1, uint64_t op2) -{ - uint64_t res = 0; - uint8_t opa, opb, opr; - int i; - - for (i = 0; i < 8; ++i) { - opa = op1 >> (i * 8); - opb = op2 >> (i * 8); - opr = opa > opb ? opa : opb; - res |= (uint64_t)opr << (i * 8); - } - return res; -} - -uint64_t helper_maxsb8 (uint64_t op1, uint64_t op2) -{ - uint64_t res = 0; - int8_t opa, opb; - uint8_t opr; - int i; - - for (i = 0; i < 8; ++i) { - opa = op1 >> (i * 8); - opb = op2 >> (i * 8); - opr = opa > opb ? opa : opb; - res |= (uint64_t)opr << (i * 8); - } - return res; -} - -uint64_t helper_maxuw4 (uint64_t op1, uint64_t op2) -{ - uint64_t res = 0; - uint16_t opa, opb, opr; - int i; - - for (i = 0; i < 4; ++i) { - opa = op1 >> (i * 16); - opb = op2 >> (i * 16); - opr = opa > opb ? opa : opb; - res |= (uint64_t)opr << (i * 16); - } - return res; -} - -uint64_t helper_maxsw4 (uint64_t op1, uint64_t op2) -{ - uint64_t res = 0; - int16_t opa, opb; - uint16_t opr; - int i; - - for (i = 0; i < 4; ++i) { - opa = op1 >> (i * 16); - opb = op2 >> (i * 16); - opr = opa > opb ? opa : opb; - res |= (uint64_t)opr << (i * 16); - } - return res; -} - -uint64_t helper_perr (uint64_t op1, uint64_t op2) -{ - uint64_t res = 0; - uint8_t opa, opb, opr; - int i; - - for (i = 0; i < 8; ++i) { - opa = op1 >> (i * 8); - opb = op2 >> (i * 8); - if (opa >= opb) - opr = opa - opb; - else - opr = opb - opa; - res += opr; - } - return res; -} - -uint64_t helper_pklb (uint64_t op1) -{ - return (op1 & 0xff) | ((op1 >> 24) & 0xff00); -} - -uint64_t helper_pkwb (uint64_t op1) -{ - return ((op1 & 0xff) - | ((op1 >> 8) & 0xff00) - | ((op1 >> 16) & 0xff0000) - | ((op1 >> 24) & 0xff000000)); -} - -uint64_t helper_unpkbl (uint64_t op1) -{ - return (op1 & 0xff) | ((op1 & 0xff00) << 24); -} - -uint64_t helper_unpkbw (uint64_t op1) -{ - return ((op1 & 0xff) - | ((op1 & 0xff00) << 8) - | ((op1 & 0xff0000) << 16) - | ((op1 & 0xff000000) << 24)); -} - -/* Floating point helpers */ - -void helper_setroundmode (uint32_t val) -{ - set_float_rounding_mode(val, &FP_STATUS); -} - -void helper_setflushzero (uint32_t val) -{ - set_flush_to_zero(val, &FP_STATUS); -} - -void helper_fp_exc_clear (void) -{ - set_float_exception_flags(0, &FP_STATUS); -} - -uint32_t helper_fp_exc_get (void) -{ - return get_float_exception_flags(&FP_STATUS); -} - -/* Raise exceptions for ieee fp insns without software completion. - In that case there are no exceptions that don't trap; the mask - doesn't apply. */ -void helper_fp_exc_raise(uint32_t exc, uint32_t regno) -{ - if (exc) { - uint32_t hw_exc = 0; - - if (exc & float_flag_invalid) { - hw_exc |= EXC_M_INV; - } - if (exc & float_flag_divbyzero) { - hw_exc |= EXC_M_DZE; - } - if (exc & float_flag_overflow) { - hw_exc |= EXC_M_FOV; - } - if (exc & float_flag_underflow) { - hw_exc |= EXC_M_UNF; - } - if (exc & float_flag_inexact) { - hw_exc |= EXC_M_INE; - } - - arith_excp(hw_exc, 1ull << regno); - } -} - -/* Raise exceptions for ieee fp insns with software completion. */ -void helper_fp_exc_raise_s(uint32_t exc, uint32_t regno) -{ - if (exc) { - env->fpcr_exc_status |= exc; - - exc &= ~env->fpcr_exc_mask; - if (exc) { - helper_fp_exc_raise(exc, regno); - } - } -} - -/* Input remapping without software completion. Handle denormal-map-to-zero - and trap for all other non-finite numbers. */ -uint64_t helper_ieee_input(uint64_t val) -{ - uint32_t exp = (uint32_t)(val >> 52) & 0x7ff; - uint64_t frac = val & 0xfffffffffffffull; - - if (exp == 0) { - if (frac != 0) { - /* If DNZ is set flush denormals to zero on input. */ - if (env->fpcr_dnz) { - val &= 1ull << 63; - } else { - arith_excp(EXC_M_UNF, 0); - } - } - } else if (exp == 0x7ff) { - /* Infinity or NaN. */ - /* ??? I'm not sure these exception bit flags are correct. I do - know that the Linux kernel, at least, doesn't rely on them and - just emulates the insn to figure out what exception to use. */ - arith_excp(frac ? EXC_M_INV : EXC_M_FOV, 0); - } - return val; -} - -/* Similar, but does not trap for infinities. Used for comparisons. */ -uint64_t helper_ieee_input_cmp(uint64_t val) -{ - uint32_t exp = (uint32_t)(val >> 52) & 0x7ff; - uint64_t frac = val & 0xfffffffffffffull; - - if (exp == 0) { - if (frac != 0) { - /* If DNZ is set flush denormals to zero on input. */ - if (env->fpcr_dnz) { - val &= 1ull << 63; - } else { - arith_excp(EXC_M_UNF, 0); - } - } - } else if (exp == 0x7ff && frac) { - /* NaN. */ - arith_excp(EXC_M_INV, 0); - } - return val; -} - -/* Input remapping with software completion enabled. All we have to do - is handle denormal-map-to-zero; all other inputs get exceptions as - needed from the actual operation. */ -uint64_t helper_ieee_input_s(uint64_t val) -{ - if (env->fpcr_dnz) { - uint32_t exp = (uint32_t)(val >> 52) & 0x7ff; - if (exp == 0) { - val &= 1ull << 63; - } - } - return val; -} - -/* F floating (VAX) */ -static inline uint64_t float32_to_f(float32 fa) -{ - uint64_t r, exp, mant, sig; - CPU_FloatU a; - - a.f = fa; - sig = ((uint64_t)a.l & 0x80000000) << 32; - exp = (a.l >> 23) & 0xff; - mant = ((uint64_t)a.l & 0x007fffff) << 29; - - if (exp == 255) { - /* NaN or infinity */ - r = 1; /* VAX dirty zero */ - } else if (exp == 0) { - if (mant == 0) { - /* Zero */ - r = 0; - } else { - /* Denormalized */ - r = sig | ((exp + 1) << 52) | mant; - } - } else { - if (exp >= 253) { - /* Overflow */ - r = 1; /* VAX dirty zero */ - } else { - r = sig | ((exp + 2) << 52); - } - } - - return r; -} - -static inline float32 f_to_float32(uint64_t a) -{ - uint32_t exp, mant_sig; - CPU_FloatU r; - - exp = ((a >> 55) & 0x80) | ((a >> 52) & 0x7f); - mant_sig = ((a >> 32) & 0x80000000) | ((a >> 29) & 0x007fffff); - - if (unlikely(!exp && mant_sig)) { - /* Reserved operands / Dirty zero */ - dynamic_excp(EXCP_OPCDEC, 0); - } - - if (exp < 3) { - /* Underflow */ - r.l = 0; - } else { - r.l = ((exp - 2) << 23) | mant_sig; - } - - return r.f; -} - -uint32_t helper_f_to_memory (uint64_t a) -{ - uint32_t r; - r = (a & 0x00001fffe0000000ull) >> 13; - r |= (a & 0x07ffe00000000000ull) >> 45; - r |= (a & 0xc000000000000000ull) >> 48; - return r; -} - -uint64_t helper_memory_to_f (uint32_t a) -{ - uint64_t r; - r = ((uint64_t)(a & 0x0000c000)) << 48; - r |= ((uint64_t)(a & 0x003fffff)) << 45; - r |= ((uint64_t)(a & 0xffff0000)) << 13; - if (!(a & 0x00004000)) - r |= 0x7ll << 59; - return r; -} - -/* ??? Emulating VAX arithmetic with IEEE arithmetic is wrong. We should - either implement VAX arithmetic properly or just signal invalid opcode. */ - -uint64_t helper_addf (uint64_t a, uint64_t b) -{ - float32 fa, fb, fr; - - fa = f_to_float32(a); - fb = f_to_float32(b); - fr = float32_add(fa, fb, &FP_STATUS); - return float32_to_f(fr); -} - -uint64_t helper_subf (uint64_t a, uint64_t b) -{ - float32 fa, fb, fr; - - fa = f_to_float32(a); - fb = f_to_float32(b); - fr = float32_sub(fa, fb, &FP_STATUS); - return float32_to_f(fr); -} - -uint64_t helper_mulf (uint64_t a, uint64_t b) -{ - float32 fa, fb, fr; - - fa = f_to_float32(a); - fb = f_to_float32(b); - fr = float32_mul(fa, fb, &FP_STATUS); - return float32_to_f(fr); -} - -uint64_t helper_divf (uint64_t a, uint64_t b) -{ - float32 fa, fb, fr; - - fa = f_to_float32(a); - fb = f_to_float32(b); - fr = float32_div(fa, fb, &FP_STATUS); - return float32_to_f(fr); -} - -uint64_t helper_sqrtf (uint64_t t) -{ - float32 ft, fr; - - ft = f_to_float32(t); - fr = float32_sqrt(ft, &FP_STATUS); - return float32_to_f(fr); -} - - -/* G floating (VAX) */ -static inline uint64_t float64_to_g(float64 fa) -{ - uint64_t r, exp, mant, sig; - CPU_DoubleU a; - - a.d = fa; - sig = a.ll & 0x8000000000000000ull; - exp = (a.ll >> 52) & 0x7ff; - mant = a.ll & 0x000fffffffffffffull; - - if (exp == 2047) { - /* NaN or infinity */ - r = 1; /* VAX dirty zero */ - } else if (exp == 0) { - if (mant == 0) { - /* Zero */ - r = 0; - } else { - /* Denormalized */ - r = sig | ((exp + 1) << 52) | mant; - } - } else { - if (exp >= 2045) { - /* Overflow */ - r = 1; /* VAX dirty zero */ - } else { - r = sig | ((exp + 2) << 52); - } - } - - return r; -} - -static inline float64 g_to_float64(uint64_t a) -{ - uint64_t exp, mant_sig; - CPU_DoubleU r; - - exp = (a >> 52) & 0x7ff; - mant_sig = a & 0x800fffffffffffffull; - - if (!exp && mant_sig) { - /* Reserved operands / Dirty zero */ - dynamic_excp(EXCP_OPCDEC, 0); - } - - if (exp < 3) { - /* Underflow */ - r.ll = 0; - } else { - r.ll = ((exp - 2) << 52) | mant_sig; - } - - return r.d; -} - -uint64_t helper_g_to_memory (uint64_t a) -{ - uint64_t r; - r = (a & 0x000000000000ffffull) << 48; - r |= (a & 0x00000000ffff0000ull) << 16; - r |= (a & 0x0000ffff00000000ull) >> 16; - r |= (a & 0xffff000000000000ull) >> 48; - return r; -} - -uint64_t helper_memory_to_g (uint64_t a) -{ - uint64_t r; - r = (a & 0x000000000000ffffull) << 48; - r |= (a & 0x00000000ffff0000ull) << 16; - r |= (a & 0x0000ffff00000000ull) >> 16; - r |= (a & 0xffff000000000000ull) >> 48; - return r; -} - -uint64_t helper_addg (uint64_t a, uint64_t b) -{ - float64 fa, fb, fr; - - fa = g_to_float64(a); - fb = g_to_float64(b); - fr = float64_add(fa, fb, &FP_STATUS); - return float64_to_g(fr); -} - -uint64_t helper_subg (uint64_t a, uint64_t b) -{ - float64 fa, fb, fr; - - fa = g_to_float64(a); - fb = g_to_float64(b); - fr = float64_sub(fa, fb, &FP_STATUS); - return float64_to_g(fr); -} - -uint64_t helper_mulg (uint64_t a, uint64_t b) -{ - float64 fa, fb, fr; - - fa = g_to_float64(a); - fb = g_to_float64(b); - fr = float64_mul(fa, fb, &FP_STATUS); - return float64_to_g(fr); -} - -uint64_t helper_divg (uint64_t a, uint64_t b) -{ - float64 fa, fb, fr; - - fa = g_to_float64(a); - fb = g_to_float64(b); - fr = float64_div(fa, fb, &FP_STATUS); - return float64_to_g(fr); -} - -uint64_t helper_sqrtg (uint64_t a) -{ - float64 fa, fr; - - fa = g_to_float64(a); - fr = float64_sqrt(fa, &FP_STATUS); - return float64_to_g(fr); -} - - -/* S floating (single) */ - -/* Taken from linux/arch/alpha/kernel/traps.c, s_mem_to_reg. */ -static inline uint64_t float32_to_s_int(uint32_t fi) -{ - uint32_t frac = fi & 0x7fffff; - uint32_t sign = fi >> 31; - uint32_t exp_msb = (fi >> 30) & 1; - uint32_t exp_low = (fi >> 23) & 0x7f; - uint32_t exp; - - exp = (exp_msb << 10) | exp_low; - if (exp_msb) { - if (exp_low == 0x7f) - exp = 0x7ff; - } else { - if (exp_low != 0x00) - exp |= 0x380; - } - - return (((uint64_t)sign << 63) - | ((uint64_t)exp << 52) - | ((uint64_t)frac << 29)); -} - -static inline uint64_t float32_to_s(float32 fa) -{ - CPU_FloatU a; - a.f = fa; - return float32_to_s_int(a.l); -} - -static inline uint32_t s_to_float32_int(uint64_t a) -{ - return ((a >> 32) & 0xc0000000) | ((a >> 29) & 0x3fffffff); -} - -static inline float32 s_to_float32(uint64_t a) -{ - CPU_FloatU r; - r.l = s_to_float32_int(a); - return r.f; -} - -uint32_t helper_s_to_memory (uint64_t a) -{ - return s_to_float32_int(a); -} - -uint64_t helper_memory_to_s (uint32_t a) -{ - return float32_to_s_int(a); -} - -uint64_t helper_adds (uint64_t a, uint64_t b) -{ - float32 fa, fb, fr; - - fa = s_to_float32(a); - fb = s_to_float32(b); - fr = float32_add(fa, fb, &FP_STATUS); - return float32_to_s(fr); -} - -uint64_t helper_subs (uint64_t a, uint64_t b) -{ - float32 fa, fb, fr; - - fa = s_to_float32(a); - fb = s_to_float32(b); - fr = float32_sub(fa, fb, &FP_STATUS); - return float32_to_s(fr); -} - -uint64_t helper_muls (uint64_t a, uint64_t b) -{ - float32 fa, fb, fr; - - fa = s_to_float32(a); - fb = s_to_float32(b); - fr = float32_mul(fa, fb, &FP_STATUS); - return float32_to_s(fr); -} - -uint64_t helper_divs (uint64_t a, uint64_t b) -{ - float32 fa, fb, fr; - - fa = s_to_float32(a); - fb = s_to_float32(b); - fr = float32_div(fa, fb, &FP_STATUS); - return float32_to_s(fr); -} - -uint64_t helper_sqrts (uint64_t a) -{ - float32 fa, fr; - - fa = s_to_float32(a); - fr = float32_sqrt(fa, &FP_STATUS); - return float32_to_s(fr); -} - - -/* T floating (double) */ -static inline float64 t_to_float64(uint64_t a) -{ - /* Memory format is the same as float64 */ - CPU_DoubleU r; - r.ll = a; - return r.d; -} - -static inline uint64_t float64_to_t(float64 fa) -{ - /* Memory format is the same as float64 */ - CPU_DoubleU r; - r.d = fa; - return r.ll; -} - -uint64_t helper_addt (uint64_t a, uint64_t b) -{ - float64 fa, fb, fr; - - fa = t_to_float64(a); - fb = t_to_float64(b); - fr = float64_add(fa, fb, &FP_STATUS); - return float64_to_t(fr); -} - -uint64_t helper_subt (uint64_t a, uint64_t b) -{ - float64 fa, fb, fr; - - fa = t_to_float64(a); - fb = t_to_float64(b); - fr = float64_sub(fa, fb, &FP_STATUS); - return float64_to_t(fr); -} - -uint64_t helper_mult (uint64_t a, uint64_t b) -{ - float64 fa, fb, fr; - - fa = t_to_float64(a); - fb = t_to_float64(b); - fr = float64_mul(fa, fb, &FP_STATUS); - return float64_to_t(fr); -} - -uint64_t helper_divt (uint64_t a, uint64_t b) -{ - float64 fa, fb, fr; - - fa = t_to_float64(a); - fb = t_to_float64(b); - fr = float64_div(fa, fb, &FP_STATUS); - return float64_to_t(fr); -} - -uint64_t helper_sqrtt (uint64_t a) -{ - float64 fa, fr; - - fa = t_to_float64(a); - fr = float64_sqrt(fa, &FP_STATUS); - return float64_to_t(fr); -} - -/* Comparisons */ -uint64_t helper_cmptun (uint64_t a, uint64_t b) -{ - float64 fa, fb; - - fa = t_to_float64(a); - fb = t_to_float64(b); - - if (float64_unordered_quiet(fa, fb, &FP_STATUS)) { - return 0x4000000000000000ULL; - } else { - return 0; - } -} - -uint64_t helper_cmpteq(uint64_t a, uint64_t b) -{ - float64 fa, fb; - - fa = t_to_float64(a); - fb = t_to_float64(b); - - if (float64_eq_quiet(fa, fb, &FP_STATUS)) - return 0x4000000000000000ULL; - else - return 0; -} - -uint64_t helper_cmptle(uint64_t a, uint64_t b) -{ - float64 fa, fb; - - fa = t_to_float64(a); - fb = t_to_float64(b); - - if (float64_le(fa, fb, &FP_STATUS)) - return 0x4000000000000000ULL; - else - return 0; -} - -uint64_t helper_cmptlt(uint64_t a, uint64_t b) -{ - float64 fa, fb; - - fa = t_to_float64(a); - fb = t_to_float64(b); - - if (float64_lt(fa, fb, &FP_STATUS)) - return 0x4000000000000000ULL; - else - return 0; -} - -uint64_t helper_cmpgeq(uint64_t a, uint64_t b) -{ - float64 fa, fb; - - fa = g_to_float64(a); - fb = g_to_float64(b); - - if (float64_eq_quiet(fa, fb, &FP_STATUS)) - return 0x4000000000000000ULL; - else - return 0; -} - -uint64_t helper_cmpgle(uint64_t a, uint64_t b) -{ - float64 fa, fb; - - fa = g_to_float64(a); - fb = g_to_float64(b); - - if (float64_le(fa, fb, &FP_STATUS)) - return 0x4000000000000000ULL; - else - return 0; -} - -uint64_t helper_cmpglt(uint64_t a, uint64_t b) -{ - float64 fa, fb; - - fa = g_to_float64(a); - fb = g_to_float64(b); - - if (float64_lt(fa, fb, &FP_STATUS)) - return 0x4000000000000000ULL; - else - return 0; -} - -/* Floating point format conversion */ -uint64_t helper_cvtts (uint64_t a) -{ - float64 fa; - float32 fr; - - fa = t_to_float64(a); - fr = float64_to_float32(fa, &FP_STATUS); - return float32_to_s(fr); -} - -uint64_t helper_cvtst (uint64_t a) -{ - float32 fa; - float64 fr; - - fa = s_to_float32(a); - fr = float32_to_float64(fa, &FP_STATUS); - return float64_to_t(fr); -} - -uint64_t helper_cvtqs (uint64_t a) -{ - float32 fr = int64_to_float32(a, &FP_STATUS); - return float32_to_s(fr); -} - -/* Implement float64 to uint64 conversion without saturation -- we must - supply the truncated result. This behaviour is used by the compiler - to get unsigned conversion for free with the same instruction. - - The VI flag is set when overflow or inexact exceptions should be raised. */ - -static inline uint64_t helper_cvttq_internal(uint64_t a, int roundmode, int VI) -{ - uint64_t frac, ret = 0; - uint32_t exp, sign, exc = 0; - int shift; - - sign = (a >> 63); - exp = (uint32_t)(a >> 52) & 0x7ff; - frac = a & 0xfffffffffffffull; - - if (exp == 0) { - if (unlikely(frac != 0)) { - goto do_underflow; - } - } else if (exp == 0x7ff) { - exc = (frac ? float_flag_invalid : VI ? float_flag_overflow : 0); - } else { - /* Restore implicit bit. */ - frac |= 0x10000000000000ull; - - shift = exp - 1023 - 52; - if (shift >= 0) { - /* In this case the number is so large that we must shift - the fraction left. There is no rounding to do. */ - if (shift < 63) { - ret = frac << shift; - if (VI && (ret >> shift) != frac) { - exc = float_flag_overflow; - } - } - } else { - uint64_t round; - - /* In this case the number is smaller than the fraction as - represented by the 52 bit number. Here we must think - about rounding the result. Handle this by shifting the - fractional part of the number into the high bits of ROUND. - This will let us efficiently handle round-to-nearest. */ - shift = -shift; - if (shift < 63) { - ret = frac >> shift; - round = frac << (64 - shift); - } else { - /* The exponent is so small we shift out everything. - Leave a sticky bit for proper rounding below. */ - do_underflow: - round = 1; - } - - if (round) { - exc = (VI ? float_flag_inexact : 0); - switch (roundmode) { - case float_round_nearest_even: - if (round == (1ull << 63)) { - /* Fraction is exactly 0.5; round to even. */ - ret += (ret & 1); - } else if (round > (1ull << 63)) { - ret += 1; - } - break; - case float_round_to_zero: - break; - case float_round_up: - ret += 1 - sign; - break; - case float_round_down: - ret += sign; - break; - } - } - } - if (sign) { - ret = -ret; - } - } - if (unlikely(exc)) { - float_raise(exc, &FP_STATUS); - } - - return ret; -} - -uint64_t helper_cvttq(uint64_t a) -{ - return helper_cvttq_internal(a, FP_STATUS.float_rounding_mode, 1); -} - -uint64_t helper_cvttq_c(uint64_t a) -{ - return helper_cvttq_internal(a, float_round_to_zero, 0); -} - -uint64_t helper_cvttq_svic(uint64_t a) -{ - return helper_cvttq_internal(a, float_round_to_zero, 1); -} - -uint64_t helper_cvtqt (uint64_t a) -{ - float64 fr = int64_to_float64(a, &FP_STATUS); - return float64_to_t(fr); -} - -uint64_t helper_cvtqf (uint64_t a) -{ - float32 fr = int64_to_float32(a, &FP_STATUS); - return float32_to_f(fr); -} - -uint64_t helper_cvtgf (uint64_t a) -{ - float64 fa; - float32 fr; - - fa = g_to_float64(a); - fr = float64_to_float32(fa, &FP_STATUS); - return float32_to_f(fr); -} - -uint64_t helper_cvtgq (uint64_t a) -{ - float64 fa = g_to_float64(a); - return float64_to_int64_round_to_zero(fa, &FP_STATUS); -} - -uint64_t helper_cvtqg (uint64_t a) -{ - float64 fr; - fr = int64_to_float64(a, &FP_STATUS); - return float64_to_g(fr); -} - -/* PALcode support special instructions */ -#if !defined (CONFIG_USER_ONLY) -void helper_hw_ret (uint64_t a) -{ - env->pc = a & ~3; - env->intr_flag = 0; - env->lock_addr = -1; - if ((a & 1) == 0) { - env->pal_mode = 0; - swap_shadow_regs(env); - } -} - -void helper_tbia(void) -{ - tlb_flush(env, 1); -} - -void helper_tbis(uint64_t p) -{ - tlb_flush_page(env, p); -} - -void helper_halt(uint64_t restart) -{ - if (restart) { - qemu_system_reset_request(); - } else { - qemu_system_shutdown_request(); - } -} - -uint64_t helper_get_time(void) -{ - return qemu_get_clock_ns(rtc_clock); -} - -void helper_set_alarm(uint64_t expire) -{ - if (expire) { - env->alarm_expire = expire; - qemu_mod_timer(env->alarm_timer, expire); - } else { - qemu_del_timer(env->alarm_timer); - } -} -#endif - -/*****************************************************************************/ -/* Softmmu support */ -#if !defined (CONFIG_USER_ONLY) -uint64_t helper_ldl_phys(uint64_t p) -{ - return (int32_t)ldl_phys(p); -} - -uint64_t helper_ldq_phys(uint64_t p) -{ - return ldq_phys(p); -} - -uint64_t helper_ldl_l_phys(uint64_t p) -{ - env->lock_addr = p; - return env->lock_value = (int32_t)ldl_phys(p); -} - -uint64_t helper_ldq_l_phys(uint64_t p) -{ - env->lock_addr = p; - return env->lock_value = ldl_phys(p); -} - -void helper_stl_phys(uint64_t p, uint64_t v) -{ - stl_phys(p, v); -} - -void helper_stq_phys(uint64_t p, uint64_t v) -{ - stq_phys(p, v); -} - -uint64_t helper_stl_c_phys(uint64_t p, uint64_t v) -{ - uint64_t ret = 0; - - if (p == env->lock_addr) { - int32_t old = ldl_phys(p); - if (old == (int32_t)env->lock_value) { - stl_phys(p, v); - ret = 1; - } - } - env->lock_addr = -1; - - return ret; -} - -uint64_t helper_stq_c_phys(uint64_t p, uint64_t v) -{ - uint64_t ret = 0; - - if (p == env->lock_addr) { - uint64_t old = ldq_phys(p); - if (old == env->lock_value) { - stq_phys(p, v); - ret = 1; - } - } - env->lock_addr = -1; - - return ret; -} - -static void QEMU_NORETURN do_unaligned_access(target_ulong addr, int is_write, - int is_user, void *retaddr) -{ - uint64_t pc; - uint32_t insn; - - do_restore_state(retaddr); - - pc = env->pc; - insn = ldl_code(pc); - - env->trap_arg0 = addr; - env->trap_arg1 = insn >> 26; /* opcode */ - env->trap_arg2 = (insn >> 21) & 31; /* dest regno */ - helper_excp(EXCP_UNALIGN, 0); -} - -void QEMU_NORETURN cpu_unassigned_access(CPUAlphaState *env1, - target_phys_addr_t addr, int is_write, - int is_exec, int unused, int size) -{ - env = env1; - env->trap_arg0 = addr; - env->trap_arg1 = is_write; - dynamic_excp(EXCP_MCHK, 0); -} - -#include "softmmu_exec.h" - -#define MMUSUFFIX _mmu -#define ALIGNED_ONLY - -#define SHIFT 0 -#include "softmmu_template.h" - -#define SHIFT 1 -#include "softmmu_template.h" - -#define SHIFT 2 -#include "softmmu_template.h" - -#define SHIFT 3 -#include "softmmu_template.h" - -/* try to fill the TLB and return an exception if error. If retaddr is - NULL, it means that the function was called in C code (i.e. not - from generated code or from helper.c) */ -/* XXX: fix it to restore all registers */ -void tlb_fill(CPUAlphaState *env1, target_ulong addr, int is_write, int mmu_idx, - void *retaddr) -{ - CPUAlphaState *saved_env; - int ret; - - saved_env = env; - env = env1; - ret = cpu_alpha_handle_mmu_fault(env, addr, is_write, mmu_idx); - if (unlikely(ret != 0)) { - do_restore_state(retaddr); - /* Exception index and error code are already set */ - cpu_loop_exit(env); - } - env = saved_env; -} -#endif |