summary refs log tree commit diff stats
path: root/target-arm/helper.c
diff options
context:
space:
mode:
Diffstat (limited to 'target-arm/helper.c')
-rw-r--r--target-arm/helper.c332
1 files changed, 270 insertions, 62 deletions
diff --git a/target-arm/helper.c b/target-arm/helper.c
index f0a1fd48e6..55077ed1b6 100644
--- a/target-arm/helper.c
+++ b/target-arm/helper.c
@@ -1983,6 +1983,7 @@ void register_cp_regs_for_features(ARMCPU *cpu)
         ARMCPRegInfo pmcr = {
             .name = "PMCR", .cp = 15, .crn = 9, .crm = 12, .opc1 = 0, .opc2 = 0,
             .access = PL0_RW, .resetvalue = cpu->midr & 0xff000000,
+            .type = ARM_CP_IO,
             .fieldoffset = offsetof(CPUARMState, cp15.c9_pmcr),
             .accessfn = pmreg_access, .writefn = pmcr_write,
             .raw_writefn = raw_write,
@@ -4519,16 +4520,21 @@ float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUARMState *env)
  * int->float conversions at run-time.  */
 #define float64_256 make_float64(0x4070000000000000LL)
 #define float64_512 make_float64(0x4080000000000000LL)
+#define float32_maxnorm make_float32(0x7f7fffff)
+#define float64_maxnorm make_float64(0x7fefffffffffffffLL)
 
-/* The algorithm that must be used to calculate the estimate
- * is specified by the ARM ARM.
+/* Reciprocal functions
+ *
+ * The algorithm that must be used to calculate the estimate
+ * is specified by the ARM ARM, see FPRecipEstimate()
  */
-static float64 recip_estimate(float64 a, CPUARMState *env)
+
+static float64 recip_estimate(float64 a, float_status *real_fp_status)
 {
     /* These calculations mustn't set any fp exception flags,
      * so we use a local copy of the fp_status.
      */
-    float_status dummy_status = env->vfp.standard_fp_status;
+    float_status dummy_status = *real_fp_status;
     float_status *s = &dummy_status;
     /* q = (int)(a * 512.0) */
     float64 q = float64_mul(float64_512, a, s);
@@ -4549,56 +4555,178 @@ static float64 recip_estimate(float64 a, CPUARMState *env)
     return float64_div(int64_to_float64(q_int, s), float64_256, s);
 }
 
-float32 HELPER(recpe_f32)(float32 a, CPUARMState *env)
+/* Common wrapper to call recip_estimate */
+static float64 call_recip_estimate(float64 num, int off, float_status *fpst)
 {
-    float_status *s = &env->vfp.standard_fp_status;
-    float64 f64;
-    uint32_t val32 = float32_val(a);
+    uint64_t val64 = float64_val(num);
+    uint64_t frac = extract64(val64, 0, 52);
+    int64_t exp = extract64(val64, 52, 11);
+    uint64_t sbit;
+    float64 scaled, estimate;
 
-    int result_exp;
-    int a_exp = (val32  & 0x7f800000) >> 23;
-    int sign = val32 & 0x80000000;
+    /* Generate the scaled number for the estimate function */
+    if (exp == 0) {
+        if (extract64(frac, 51, 1) == 0) {
+            exp = -1;
+            frac = extract64(frac, 0, 50) << 2;
+        } else {
+            frac = extract64(frac, 0, 51) << 1;
+        }
+    }
 
-    if (float32_is_any_nan(a)) {
-        if (float32_is_signaling_nan(a)) {
-            float_raise(float_flag_invalid, s);
+    /* scaled = '0' : '01111111110' : fraction<51:44> : Zeros(44); */
+    scaled = make_float64((0x3feULL << 52)
+                          | extract64(frac, 44, 8) << 44);
+
+    estimate = recip_estimate(scaled, fpst);
+
+    /* Build new result */
+    val64 = float64_val(estimate);
+    sbit = 0x8000000000000000ULL & val64;
+    exp = off - exp;
+    frac = extract64(val64, 0, 52);
+
+    if (exp == 0) {
+        frac = 1ULL << 51 | extract64(frac, 1, 51);
+    } else if (exp == -1) {
+        frac = 1ULL << 50 | extract64(frac, 2, 50);
+        exp = 0;
+    }
+
+    return make_float64(sbit | (exp << 52) | frac);
+}
+
+static bool round_to_inf(float_status *fpst, bool sign_bit)
+{
+    switch (fpst->float_rounding_mode) {
+    case float_round_nearest_even: /* Round to Nearest */
+        return true;
+    case float_round_up: /* Round to +Inf */
+        return !sign_bit;
+    case float_round_down: /* Round to -Inf */
+        return sign_bit;
+    case float_round_to_zero: /* Round to Zero */
+        return false;
+    }
+
+    g_assert_not_reached();
+}
+
+float32 HELPER(recpe_f32)(float32 input, void *fpstp)
+{
+    float_status *fpst = fpstp;
+    float32 f32 = float32_squash_input_denormal(input, fpst);
+    uint32_t f32_val = float32_val(f32);
+    uint32_t f32_sbit = 0x80000000ULL & f32_val;
+    int32_t f32_exp = extract32(f32_val, 23, 8);
+    uint32_t f32_frac = extract32(f32_val, 0, 23);
+    float64 f64, r64;
+    uint64_t r64_val;
+    int64_t r64_exp;
+    uint64_t r64_frac;
+
+    if (float32_is_any_nan(f32)) {
+        float32 nan = f32;
+        if (float32_is_signaling_nan(f32)) {
+            float_raise(float_flag_invalid, fpst);
+            nan = float32_maybe_silence_nan(f32);
         }
-        return float32_default_nan;
-    } else if (float32_is_infinity(a)) {
-        return float32_set_sign(float32_zero, float32_is_neg(a));
-    } else if (float32_is_zero_or_denormal(a)) {
-        if (!float32_is_zero(a)) {
-            float_raise(float_flag_input_denormal, s);
+        if (fpst->default_nan_mode) {
+            nan =  float32_default_nan;
         }
-        float_raise(float_flag_divbyzero, s);
-        return float32_set_sign(float32_infinity, float32_is_neg(a));
-    } else if (a_exp >= 253) {
-        float_raise(float_flag_underflow, s);
-        return float32_set_sign(float32_zero, float32_is_neg(a));
+        return nan;
+    } else if (float32_is_infinity(f32)) {
+        return float32_set_sign(float32_zero, float32_is_neg(f32));
+    } else if (float32_is_zero(f32)) {
+        float_raise(float_flag_divbyzero, fpst);
+        return float32_set_sign(float32_infinity, float32_is_neg(f32));
+    } else if ((f32_val & ~(1ULL << 31)) < (1ULL << 21)) {
+        /* Abs(value) < 2.0^-128 */
+        float_raise(float_flag_overflow | float_flag_inexact, fpst);
+        if (round_to_inf(fpst, f32_sbit)) {
+            return float32_set_sign(float32_infinity, float32_is_neg(f32));
+        } else {
+            return float32_set_sign(float32_maxnorm, float32_is_neg(f32));
+        }
+    } else if (f32_exp >= 253 && fpst->flush_to_zero) {
+        float_raise(float_flag_underflow, fpst);
+        return float32_set_sign(float32_zero, float32_is_neg(f32));
     }
 
-    f64 = make_float64((0x3feULL << 52)
-                       | ((int64_t)(val32 & 0x7fffff) << 29));
 
-    result_exp = 253 - a_exp;
+    f64 = make_float64(((int64_t)(f32_exp) << 52) | (int64_t)(f32_frac) << 29);
+    r64 = call_recip_estimate(f64, 253, fpst);
+    r64_val = float64_val(r64);
+    r64_exp = extract64(r64_val, 52, 11);
+    r64_frac = extract64(r64_val, 0, 52);
 
-    f64 = recip_estimate(f64, env);
+    /* result = sign : result_exp<7:0> : fraction<51:29>; */
+    return make_float32(f32_sbit |
+                        (r64_exp & 0xff) << 23 |
+                        extract64(r64_frac, 29, 24));
+}
 
-    val32 = sign
-        | ((result_exp & 0xff) << 23)
-        | ((float64_val(f64) >> 29) & 0x7fffff);
-    return make_float32(val32);
+float64 HELPER(recpe_f64)(float64 input, void *fpstp)
+{
+    float_status *fpst = fpstp;
+    float64 f64 = float64_squash_input_denormal(input, fpst);
+    uint64_t f64_val = float64_val(f64);
+    uint64_t f64_sbit = 0x8000000000000000ULL & f64_val;
+    int64_t f64_exp = extract64(f64_val, 52, 11);
+    float64 r64;
+    uint64_t r64_val;
+    int64_t r64_exp;
+    uint64_t r64_frac;
+
+    /* Deal with any special cases */
+    if (float64_is_any_nan(f64)) {
+        float64 nan = f64;
+        if (float64_is_signaling_nan(f64)) {
+            float_raise(float_flag_invalid, fpst);
+            nan = float64_maybe_silence_nan(f64);
+        }
+        if (fpst->default_nan_mode) {
+            nan =  float64_default_nan;
+        }
+        return nan;
+    } else if (float64_is_infinity(f64)) {
+        return float64_set_sign(float64_zero, float64_is_neg(f64));
+    } else if (float64_is_zero(f64)) {
+        float_raise(float_flag_divbyzero, fpst);
+        return float64_set_sign(float64_infinity, float64_is_neg(f64));
+    } else if ((f64_val & ~(1ULL << 63)) < (1ULL << 50)) {
+        /* Abs(value) < 2.0^-1024 */
+        float_raise(float_flag_overflow | float_flag_inexact, fpst);
+        if (round_to_inf(fpst, f64_sbit)) {
+            return float64_set_sign(float64_infinity, float64_is_neg(f64));
+        } else {
+            return float64_set_sign(float64_maxnorm, float64_is_neg(f64));
+        }
+    } else if (f64_exp >= 1023 && fpst->flush_to_zero) {
+        float_raise(float_flag_underflow, fpst);
+        return float64_set_sign(float64_zero, float64_is_neg(f64));
+    }
+
+    r64 = call_recip_estimate(f64, 2045, fpst);
+    r64_val = float64_val(r64);
+    r64_exp = extract64(r64_val, 52, 11);
+    r64_frac = extract64(r64_val, 0, 52);
+
+    /* result = sign : result_exp<10:0> : fraction<51:0> */
+    return make_float64(f64_sbit |
+                        ((r64_exp & 0x7ff) << 52) |
+                        r64_frac);
 }
 
 /* The algorithm that must be used to calculate the estimate
  * is specified by the ARM ARM.
  */
-static float64 recip_sqrt_estimate(float64 a, CPUARMState *env)
+static float64 recip_sqrt_estimate(float64 a, float_status *real_fp_status)
 {
     /* These calculations mustn't set any fp exception flags,
      * so we use a local copy of the fp_status.
      */
-    float_status dummy_status = env->vfp.standard_fp_status;
+    float_status dummy_status = *real_fp_status;
     float_status *s = &dummy_status;
     float64 q;
     int64_t q_int;
@@ -4645,49 +4773,64 @@ static float64 recip_sqrt_estimate(float64 a, CPUARMState *env)
     return float64_div(int64_to_float64(q_int, s), float64_256, s);
 }
 
-float32 HELPER(rsqrte_f32)(float32 a, CPUARMState *env)
+float32 HELPER(rsqrte_f32)(float32 input, void *fpstp)
 {
-    float_status *s = &env->vfp.standard_fp_status;
+    float_status *s = fpstp;
+    float32 f32 = float32_squash_input_denormal(input, s);
+    uint32_t val = float32_val(f32);
+    uint32_t f32_sbit = 0x80000000 & val;
+    int32_t f32_exp = extract32(val, 23, 8);
+    uint32_t f32_frac = extract32(val, 0, 23);
+    uint64_t f64_frac;
+    uint64_t val64;
     int result_exp;
     float64 f64;
-    uint32_t val;
-    uint64_t val64;
-
-    val = float32_val(a);
 
-    if (float32_is_any_nan(a)) {
-        if (float32_is_signaling_nan(a)) {
+    if (float32_is_any_nan(f32)) {
+        float32 nan = f32;
+        if (float32_is_signaling_nan(f32)) {
             float_raise(float_flag_invalid, s);
+            nan = float32_maybe_silence_nan(f32);
         }
-        return float32_default_nan;
-    } else if (float32_is_zero_or_denormal(a)) {
-        if (!float32_is_zero(a)) {
-            float_raise(float_flag_input_denormal, s);
+        if (s->default_nan_mode) {
+            nan =  float32_default_nan;
         }
+        return nan;
+    } else if (float32_is_zero(f32)) {
         float_raise(float_flag_divbyzero, s);
-        return float32_set_sign(float32_infinity, float32_is_neg(a));
-    } else if (float32_is_neg(a)) {
+        return float32_set_sign(float32_infinity, float32_is_neg(f32));
+    } else if (float32_is_neg(f32)) {
         float_raise(float_flag_invalid, s);
         return float32_default_nan;
-    } else if (float32_is_infinity(a)) {
+    } else if (float32_is_infinity(f32)) {
         return float32_zero;
     }
 
-    /* Normalize to a double-precision value between 0.25 and 1.0,
+    /* Scale and normalize to a double-precision value between 0.25 and 1.0,
      * preserving the parity of the exponent.  */
-    if ((val & 0x800000) == 0) {
-        f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
+
+    f64_frac = ((uint64_t) f32_frac) << 29;
+    if (f32_exp == 0) {
+        while (extract64(f64_frac, 51, 1) == 0) {
+            f64_frac = f64_frac << 1;
+            f32_exp = f32_exp-1;
+        }
+        f64_frac = extract64(f64_frac, 0, 51) << 1;
+    }
+
+    if (extract64(f32_exp, 0, 1) == 0) {
+        f64 = make_float64(((uint64_t) f32_sbit) << 32
                            | (0x3feULL << 52)
-                           | ((uint64_t)(val & 0x7fffff) << 29));
+                           | f64_frac);
     } else {
-        f64 = make_float64(((uint64_t)(val & 0x80000000) << 32)
+        f64 = make_float64(((uint64_t) f32_sbit) << 32
                            | (0x3fdULL << 52)
-                           | ((uint64_t)(val & 0x7fffff) << 29));
+                           | f64_frac);
     }
 
-    result_exp = (380 - ((val & 0x7f800000) >> 23)) / 2;
+    result_exp = (380 - f32_exp) / 2;
 
-    f64 = recip_sqrt_estimate(f64, env);
+    f64 = recip_sqrt_estimate(f64, s);
 
     val64 = float64_val(f64);
 
@@ -4696,8 +4839,72 @@ float32 HELPER(rsqrte_f32)(float32 a, CPUARMState *env)
     return make_float32(val);
 }
 
-uint32_t HELPER(recpe_u32)(uint32_t a, CPUARMState *env)
+float64 HELPER(rsqrte_f64)(float64 input, void *fpstp)
+{
+    float_status *s = fpstp;
+    float64 f64 = float64_squash_input_denormal(input, s);
+    uint64_t val = float64_val(f64);
+    uint64_t f64_sbit = 0x8000000000000000ULL & val;
+    int64_t f64_exp = extract64(val, 52, 11);
+    uint64_t f64_frac = extract64(val, 0, 52);
+    int64_t result_exp;
+    uint64_t result_frac;
+
+    if (float64_is_any_nan(f64)) {
+        float64 nan = f64;
+        if (float64_is_signaling_nan(f64)) {
+            float_raise(float_flag_invalid, s);
+            nan = float64_maybe_silence_nan(f64);
+        }
+        if (s->default_nan_mode) {
+            nan =  float64_default_nan;
+        }
+        return nan;
+    } else if (float64_is_zero(f64)) {
+        float_raise(float_flag_divbyzero, s);
+        return float64_set_sign(float64_infinity, float64_is_neg(f64));
+    } else if (float64_is_neg(f64)) {
+        float_raise(float_flag_invalid, s);
+        return float64_default_nan;
+    } else if (float64_is_infinity(f64)) {
+        return float64_zero;
+    }
+
+    /* Scale and normalize to a double-precision value between 0.25 and 1.0,
+     * preserving the parity of the exponent.  */
+
+    if (f64_exp == 0) {
+        while (extract64(f64_frac, 51, 1) == 0) {
+            f64_frac = f64_frac << 1;
+            f64_exp = f64_exp - 1;
+        }
+        f64_frac = extract64(f64_frac, 0, 51) << 1;
+    }
+
+    if (extract64(f64_exp, 0, 1) == 0) {
+        f64 = make_float64(f64_sbit
+                           | (0x3feULL << 52)
+                           | f64_frac);
+    } else {
+        f64 = make_float64(f64_sbit
+                           | (0x3fdULL << 52)
+                           | f64_frac);
+    }
+
+    result_exp = (3068 - f64_exp) / 2;
+
+    f64 = recip_sqrt_estimate(f64, s);
+
+    result_frac = extract64(float64_val(f64), 0, 52);
+
+    return make_float64(f64_sbit |
+                        ((result_exp & 0x7ff) << 52) |
+                        result_frac);
+}
+
+uint32_t HELPER(recpe_u32)(uint32_t a, void *fpstp)
 {
+    float_status *s = fpstp;
     float64 f64;
 
     if ((a & 0x80000000) == 0) {
@@ -4707,13 +4914,14 @@ uint32_t HELPER(recpe_u32)(uint32_t a, CPUARMState *env)
     f64 = make_float64((0x3feULL << 52)
                        | ((int64_t)(a & 0x7fffffff) << 21));
 
-    f64 = recip_estimate (f64, env);
+    f64 = recip_estimate(f64, s);
 
     return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
 }
 
-uint32_t HELPER(rsqrte_u32)(uint32_t a, CPUARMState *env)
+uint32_t HELPER(rsqrte_u32)(uint32_t a, void *fpstp)
 {
+    float_status *fpst = fpstp;
     float64 f64;
 
     if ((a & 0xc0000000) == 0) {
@@ -4728,7 +4936,7 @@ uint32_t HELPER(rsqrte_u32)(uint32_t a, CPUARMState *env)
                            | ((uint64_t)(a & 0x3fffffff) << 22));
     }
 
-    f64 = recip_sqrt_estimate(f64, env);
+    f64 = recip_sqrt_estimate(f64, fpst);
 
     return 0x80000000 | ((float64_val(f64) >> 21) & 0x7fffffff);
 }