diff options
Diffstat (limited to 'target/arm/cpu.h')
| -rw-r--r-- | target/arm/cpu.h | 97 |
1 files changed, 62 insertions, 35 deletions
diff --git a/target/arm/cpu.h b/target/arm/cpu.h index c2d2d99b46..6f6cf5c888 100644 --- a/target/arm/cpu.h +++ b/target/arm/cpu.h @@ -202,6 +202,61 @@ typedef struct ARMMMUFaultInfo ARMMMUFaultInfo; typedef struct NVICState NVICState; +/* + * Enum for indexing vfp.fp_status[]. + * + * FPST_A32: is the "normal" fp status for AArch32 insns + * FPST_A64: is the "normal" fp status for AArch64 insns + * FPST_A32_F16: used for AArch32 half-precision calculations + * FPST_A64_F16: used for AArch64 half-precision calculations + * FPST_STD: the ARM "Standard FPSCR Value" + * FPST_STD_F16: used for half-precision + * calculations with the ARM "Standard FPSCR Value" + * FPST_AH: used for the A64 insns which change behaviour + * when FPCR.AH == 1 (bfloat16 conversions and multiplies, + * and the reciprocal and square root estimate/step insns) + * FPST_AH_F16: used for the A64 insns which change behaviour + * when FPCR.AH == 1 (bfloat16 conversions and multiplies, + * and the reciprocal and square root estimate/step insns); + * for half-precision + * + * Half-precision operations are governed by a separate + * flush-to-zero control bit in FPSCR:FZ16. We pass a separate + * status structure to control this. + * + * The "Standard FPSCR", ie default-NaN, flush-to-zero, + * round-to-nearest and is used by any operations (generally + * Neon) which the architecture defines as controlled by the + * standard FPSCR value rather than the FPSCR. + * + * The "standard FPSCR but for fp16 ops" is needed because + * the "standard FPSCR" tracks the FPSCR.FZ16 bit rather than + * using a fixed value for it. + * + * FPST_AH is needed because some insns have different + * behaviour when FPCR.AH == 1: they don't update cumulative + * exception flags, they act like FPCR.{FZ,FIZ} = {1,1} and + * they ignore FPCR.RMode. But they don't ignore FPCR.FZ16, + * which means we need an FPST_AH_F16 as well. + * + * To avoid having to transfer exception bits around, we simply + * say that the FPSCR cumulative exception flags are the logical + * OR of the flags in the four fp statuses. This relies on the + * only thing which needs to read the exception flags being + * an explicit FPSCR read. + */ +typedef enum ARMFPStatusFlavour { + FPST_A32, + FPST_A64, + FPST_A32_F16, + FPST_A64_F16, + FPST_AH, + FPST_AH_F16, + FPST_STD, + FPST_STD_F16, +} ARMFPStatusFlavour; +#define FPST_COUNT 8 + typedef struct CPUArchState { /* Regs for current mode. */ uint32_t regs[16]; @@ -631,41 +686,8 @@ typedef struct CPUArchState { /* Scratch space for aa32 neon expansion. */ uint32_t scratch[8]; - /* There are a number of distinct float control structures: - * - * fp_status_a32: is the "normal" fp status for AArch32 insns - * fp_status_a64: is the "normal" fp status for AArch64 insns - * fp_status_fp16_a32: used for AArch32 half-precision calculations - * fp_status_fp16_a64: used for AArch64 half-precision calculations - * standard_fp_status : the ARM "Standard FPSCR Value" - * standard_fp_status_fp16 : used for half-precision - * calculations with the ARM "Standard FPSCR Value" - * - * Half-precision operations are governed by a separate - * flush-to-zero control bit in FPSCR:FZ16. We pass a separate - * status structure to control this. - * - * The "Standard FPSCR", ie default-NaN, flush-to-zero, - * round-to-nearest and is used by any operations (generally - * Neon) which the architecture defines as controlled by the - * standard FPSCR value rather than the FPSCR. - * - * The "standard FPSCR but for fp16 ops" is needed because - * the "standard FPSCR" tracks the FPSCR.FZ16 bit rather than - * using a fixed value for it. - * - * To avoid having to transfer exception bits around, we simply - * say that the FPSCR cumulative exception flags are the logical - * OR of the flags in the four fp statuses. This relies on the - * only thing which needs to read the exception flags being - * an explicit FPSCR read. - */ - float_status fp_status_a32; - float_status fp_status_a64; - float_status fp_status_f16_a32; - float_status fp_status_f16_a64; - float_status standard_fp_status; - float_status standard_fp_status_f16; + /* There are a number of distinct float control structures. */ + float_status fp_status[FPST_COUNT]; uint64_t zcr_el[4]; /* ZCR_EL[1-3] */ uint64_t smcr_el[4]; /* SMCR_EL[1-3] */ @@ -1714,6 +1736,9 @@ void vfp_set_fpscr(CPUARMState *env, uint32_t val); */ /* FPCR bits */ +#define FPCR_FIZ (1 << 0) /* Flush Inputs to Zero (FEAT_AFP) */ +#define FPCR_AH (1 << 1) /* Alternate Handling (FEAT_AFP) */ +#define FPCR_NEP (1 << 2) /* SIMD scalar ops preserve elts (FEAT_AFP) */ #define FPCR_IOE (1 << 8) /* Invalid Operation exception trap enable */ #define FPCR_DZE (1 << 9) /* Divide by Zero exception trap enable */ #define FPCR_OFE (1 << 10) /* Overflow exception trap enable */ @@ -3195,6 +3220,8 @@ FIELD(TBFLAG_A64, NV2, 34, 1) FIELD(TBFLAG_A64, NV2_MEM_E20, 35, 1) /* Set if FEAT_NV2 RAM accesses are big-endian */ FIELD(TBFLAG_A64, NV2_MEM_BE, 36, 1) +FIELD(TBFLAG_A64, AH, 37, 1) /* FPCR.AH */ +FIELD(TBFLAG_A64, NEP, 38, 1) /* FPCR.NEP */ /* * Helpers for using the above. Note that only the A64 accessors use |