summary refs log tree commit diff stats
path: root/target/arm/cpu.h
diff options
context:
space:
mode:
Diffstat (limited to 'target/arm/cpu.h')
-rw-r--r--target/arm/cpu.h2466
1 files changed, 2466 insertions, 0 deletions
diff --git a/target/arm/cpu.h b/target/arm/cpu.h
new file mode 100644
index 0000000000..ca5c849ed6
--- /dev/null
+++ b/target/arm/cpu.h
@@ -0,0 +1,2466 @@
+/*
+ * ARM virtual CPU header
+ *
+ *  Copyright (c) 2003 Fabrice Bellard
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, see <http://www.gnu.org/licenses/>.
+ */
+
+#ifndef ARM_CPU_H
+#define ARM_CPU_H
+
+#include "kvm-consts.h"
+
+#if defined(TARGET_AARCH64)
+  /* AArch64 definitions */
+#  define TARGET_LONG_BITS 64
+#else
+#  define TARGET_LONG_BITS 32
+#endif
+
+#define CPUArchState struct CPUARMState
+
+#include "qemu-common.h"
+#include "cpu-qom.h"
+#include "exec/cpu-defs.h"
+
+#include "fpu/softfloat.h"
+
+#define EXCP_UDEF            1   /* undefined instruction */
+#define EXCP_SWI             2   /* software interrupt */
+#define EXCP_PREFETCH_ABORT  3
+#define EXCP_DATA_ABORT      4
+#define EXCP_IRQ             5
+#define EXCP_FIQ             6
+#define EXCP_BKPT            7
+#define EXCP_EXCEPTION_EXIT  8   /* Return from v7M exception.  */
+#define EXCP_KERNEL_TRAP     9   /* Jumped to kernel code page.  */
+#define EXCP_HVC            11   /* HyperVisor Call */
+#define EXCP_HYP_TRAP       12
+#define EXCP_SMC            13   /* Secure Monitor Call */
+#define EXCP_VIRQ           14
+#define EXCP_VFIQ           15
+#define EXCP_SEMIHOST       16   /* semihosting call */
+
+#define ARMV7M_EXCP_RESET   1
+#define ARMV7M_EXCP_NMI     2
+#define ARMV7M_EXCP_HARD    3
+#define ARMV7M_EXCP_MEM     4
+#define ARMV7M_EXCP_BUS     5
+#define ARMV7M_EXCP_USAGE   6
+#define ARMV7M_EXCP_SVC     11
+#define ARMV7M_EXCP_DEBUG   12
+#define ARMV7M_EXCP_PENDSV  14
+#define ARMV7M_EXCP_SYSTICK 15
+
+/* ARM-specific interrupt pending bits.  */
+#define CPU_INTERRUPT_FIQ   CPU_INTERRUPT_TGT_EXT_1
+#define CPU_INTERRUPT_VIRQ  CPU_INTERRUPT_TGT_EXT_2
+#define CPU_INTERRUPT_VFIQ  CPU_INTERRUPT_TGT_EXT_3
+
+/* The usual mapping for an AArch64 system register to its AArch32
+ * counterpart is for the 32 bit world to have access to the lower
+ * half only (with writes leaving the upper half untouched). It's
+ * therefore useful to be able to pass TCG the offset of the least
+ * significant half of a uint64_t struct member.
+ */
+#ifdef HOST_WORDS_BIGENDIAN
+#define offsetoflow32(S, M) (offsetof(S, M) + sizeof(uint32_t))
+#define offsetofhigh32(S, M) offsetof(S, M)
+#else
+#define offsetoflow32(S, M) offsetof(S, M)
+#define offsetofhigh32(S, M) (offsetof(S, M) + sizeof(uint32_t))
+#endif
+
+/* Meanings of the ARMCPU object's four inbound GPIO lines */
+#define ARM_CPU_IRQ 0
+#define ARM_CPU_FIQ 1
+#define ARM_CPU_VIRQ 2
+#define ARM_CPU_VFIQ 3
+
+#define NB_MMU_MODES 7
+/* ARM-specific extra insn start words:
+ * 1: Conditional execution bits
+ * 2: Partial exception syndrome for data aborts
+ */
+#define TARGET_INSN_START_EXTRA_WORDS 2
+
+/* The 2nd extra word holding syndrome info for data aborts does not use
+ * the upper 6 bits nor the lower 14 bits. We mask and shift it down to
+ * help the sleb128 encoder do a better job.
+ * When restoring the CPU state, we shift it back up.
+ */
+#define ARM_INSN_START_WORD2_MASK ((1 << 26) - 1)
+#define ARM_INSN_START_WORD2_SHIFT 14
+
+/* We currently assume float and double are IEEE single and double
+   precision respectively.
+   Doing runtime conversions is tricky because VFP registers may contain
+   integer values (eg. as the result of a FTOSI instruction).
+   s<2n> maps to the least significant half of d<n>
+   s<2n+1> maps to the most significant half of d<n>
+ */
+
+/* CPU state for each instance of a generic timer (in cp15 c14) */
+typedef struct ARMGenericTimer {
+    uint64_t cval; /* Timer CompareValue register */
+    uint64_t ctl; /* Timer Control register */
+} ARMGenericTimer;
+
+#define GTIMER_PHYS 0
+#define GTIMER_VIRT 1
+#define GTIMER_HYP  2
+#define GTIMER_SEC  3
+#define NUM_GTIMERS 4
+
+typedef struct {
+    uint64_t raw_tcr;
+    uint32_t mask;
+    uint32_t base_mask;
+} TCR;
+
+typedef struct CPUARMState {
+    /* Regs for current mode.  */
+    uint32_t regs[16];
+
+    /* 32/64 switch only happens when taking and returning from
+     * exceptions so the overlap semantics are taken care of then
+     * instead of having a complicated union.
+     */
+    /* Regs for A64 mode.  */
+    uint64_t xregs[32];
+    uint64_t pc;
+    /* PSTATE isn't an architectural register for ARMv8. However, it is
+     * convenient for us to assemble the underlying state into a 32 bit format
+     * identical to the architectural format used for the SPSR. (This is also
+     * what the Linux kernel's 'pstate' field in signal handlers and KVM's
+     * 'pstate' register are.) Of the PSTATE bits:
+     *  NZCV are kept in the split out env->CF/VF/NF/ZF, (which have the same
+     *    semantics as for AArch32, as described in the comments on each field)
+     *  nRW (also known as M[4]) is kept, inverted, in env->aarch64
+     *  DAIF (exception masks) are kept in env->daif
+     *  all other bits are stored in their correct places in env->pstate
+     */
+    uint32_t pstate;
+    uint32_t aarch64; /* 1 if CPU is in aarch64 state; inverse of PSTATE.nRW */
+
+    /* Frequently accessed CPSR bits are stored separately for efficiency.
+       This contains all the other bits.  Use cpsr_{read,write} to access
+       the whole CPSR.  */
+    uint32_t uncached_cpsr;
+    uint32_t spsr;
+
+    /* Banked registers.  */
+    uint64_t banked_spsr[8];
+    uint32_t banked_r13[8];
+    uint32_t banked_r14[8];
+
+    /* These hold r8-r12.  */
+    uint32_t usr_regs[5];
+    uint32_t fiq_regs[5];
+
+    /* cpsr flag cache for faster execution */
+    uint32_t CF; /* 0 or 1 */
+    uint32_t VF; /* V is the bit 31. All other bits are undefined */
+    uint32_t NF; /* N is bit 31. All other bits are undefined.  */
+    uint32_t ZF; /* Z set if zero.  */
+    uint32_t QF; /* 0 or 1 */
+    uint32_t GE; /* cpsr[19:16] */
+    uint32_t thumb; /* cpsr[5]. 0 = arm mode, 1 = thumb mode. */
+    uint32_t condexec_bits; /* IT bits.  cpsr[15:10,26:25].  */
+    uint64_t daif; /* exception masks, in the bits they are in PSTATE */
+
+    uint64_t elr_el[4]; /* AArch64 exception link regs  */
+    uint64_t sp_el[4]; /* AArch64 banked stack pointers */
+
+    /* System control coprocessor (cp15) */
+    struct {
+        uint32_t c0_cpuid;
+        union { /* Cache size selection */
+            struct {
+                uint64_t _unused_csselr0;
+                uint64_t csselr_ns;
+                uint64_t _unused_csselr1;
+                uint64_t csselr_s;
+            };
+            uint64_t csselr_el[4];
+        };
+        union { /* System control register. */
+            struct {
+                uint64_t _unused_sctlr;
+                uint64_t sctlr_ns;
+                uint64_t hsctlr;
+                uint64_t sctlr_s;
+            };
+            uint64_t sctlr_el[4];
+        };
+        uint64_t cpacr_el1; /* Architectural feature access control register */
+        uint64_t cptr_el[4];  /* ARMv8 feature trap registers */
+        uint32_t c1_xscaleauxcr; /* XScale auxiliary control register.  */
+        uint64_t sder; /* Secure debug enable register. */
+        uint32_t nsacr; /* Non-secure access control register. */
+        union { /* MMU translation table base 0. */
+            struct {
+                uint64_t _unused_ttbr0_0;
+                uint64_t ttbr0_ns;
+                uint64_t _unused_ttbr0_1;
+                uint64_t ttbr0_s;
+            };
+            uint64_t ttbr0_el[4];
+        };
+        union { /* MMU translation table base 1. */
+            struct {
+                uint64_t _unused_ttbr1_0;
+                uint64_t ttbr1_ns;
+                uint64_t _unused_ttbr1_1;
+                uint64_t ttbr1_s;
+            };
+            uint64_t ttbr1_el[4];
+        };
+        uint64_t vttbr_el2; /* Virtualization Translation Table Base.  */
+        /* MMU translation table base control. */
+        TCR tcr_el[4];
+        TCR vtcr_el2; /* Virtualization Translation Control.  */
+        uint32_t c2_data; /* MPU data cacheable bits.  */
+        uint32_t c2_insn; /* MPU instruction cacheable bits.  */
+        union { /* MMU domain access control register
+                 * MPU write buffer control.
+                 */
+            struct {
+                uint64_t dacr_ns;
+                uint64_t dacr_s;
+            };
+            struct {
+                uint64_t dacr32_el2;
+            };
+        };
+        uint32_t pmsav5_data_ap; /* PMSAv5 MPU data access permissions */
+        uint32_t pmsav5_insn_ap; /* PMSAv5 MPU insn access permissions */
+        uint64_t hcr_el2; /* Hypervisor configuration register */
+        uint64_t scr_el3; /* Secure configuration register.  */
+        union { /* Fault status registers.  */
+            struct {
+                uint64_t ifsr_ns;
+                uint64_t ifsr_s;
+            };
+            struct {
+                uint64_t ifsr32_el2;
+            };
+        };
+        union {
+            struct {
+                uint64_t _unused_dfsr;
+                uint64_t dfsr_ns;
+                uint64_t hsr;
+                uint64_t dfsr_s;
+            };
+            uint64_t esr_el[4];
+        };
+        uint32_t c6_region[8]; /* MPU base/size registers.  */
+        union { /* Fault address registers. */
+            struct {
+                uint64_t _unused_far0;
+#ifdef HOST_WORDS_BIGENDIAN
+                uint32_t ifar_ns;
+                uint32_t dfar_ns;
+                uint32_t ifar_s;
+                uint32_t dfar_s;
+#else
+                uint32_t dfar_ns;
+                uint32_t ifar_ns;
+                uint32_t dfar_s;
+                uint32_t ifar_s;
+#endif
+                uint64_t _unused_far3;
+            };
+            uint64_t far_el[4];
+        };
+        uint64_t hpfar_el2;
+        uint64_t hstr_el2;
+        union { /* Translation result. */
+            struct {
+                uint64_t _unused_par_0;
+                uint64_t par_ns;
+                uint64_t _unused_par_1;
+                uint64_t par_s;
+            };
+            uint64_t par_el[4];
+        };
+
+        uint32_t c6_rgnr;
+
+        uint32_t c9_insn; /* Cache lockdown registers.  */
+        uint32_t c9_data;
+        uint64_t c9_pmcr; /* performance monitor control register */
+        uint64_t c9_pmcnten; /* perf monitor counter enables */
+        uint32_t c9_pmovsr; /* perf monitor overflow status */
+        uint32_t c9_pmxevtyper; /* perf monitor event type */
+        uint32_t c9_pmuserenr; /* perf monitor user enable */
+        uint32_t c9_pminten; /* perf monitor interrupt enables */
+        union { /* Memory attribute redirection */
+            struct {
+#ifdef HOST_WORDS_BIGENDIAN
+                uint64_t _unused_mair_0;
+                uint32_t mair1_ns;
+                uint32_t mair0_ns;
+                uint64_t _unused_mair_1;
+                uint32_t mair1_s;
+                uint32_t mair0_s;
+#else
+                uint64_t _unused_mair_0;
+                uint32_t mair0_ns;
+                uint32_t mair1_ns;
+                uint64_t _unused_mair_1;
+                uint32_t mair0_s;
+                uint32_t mair1_s;
+#endif
+            };
+            uint64_t mair_el[4];
+        };
+        union { /* vector base address register */
+            struct {
+                uint64_t _unused_vbar;
+                uint64_t vbar_ns;
+                uint64_t hvbar;
+                uint64_t vbar_s;
+            };
+            uint64_t vbar_el[4];
+        };
+        uint32_t mvbar; /* (monitor) vector base address register */
+        struct { /* FCSE PID. */
+            uint32_t fcseidr_ns;
+            uint32_t fcseidr_s;
+        };
+        union { /* Context ID. */
+            struct {
+                uint64_t _unused_contextidr_0;
+                uint64_t contextidr_ns;
+                uint64_t _unused_contextidr_1;
+                uint64_t contextidr_s;
+            };
+            uint64_t contextidr_el[4];
+        };
+        union { /* User RW Thread register. */
+            struct {
+                uint64_t tpidrurw_ns;
+                uint64_t tpidrprw_ns;
+                uint64_t htpidr;
+                uint64_t _tpidr_el3;
+            };
+            uint64_t tpidr_el[4];
+        };
+        /* The secure banks of these registers don't map anywhere */
+        uint64_t tpidrurw_s;
+        uint64_t tpidrprw_s;
+        uint64_t tpidruro_s;
+
+        union { /* User RO Thread register. */
+            uint64_t tpidruro_ns;
+            uint64_t tpidrro_el[1];
+        };
+        uint64_t c14_cntfrq; /* Counter Frequency register */
+        uint64_t c14_cntkctl; /* Timer Control register */
+        uint32_t cnthctl_el2; /* Counter/Timer Hyp Control register */
+        uint64_t cntvoff_el2; /* Counter Virtual Offset register */
+        ARMGenericTimer c14_timer[NUM_GTIMERS];
+        uint32_t c15_cpar; /* XScale Coprocessor Access Register */
+        uint32_t c15_ticonfig; /* TI925T configuration byte.  */
+        uint32_t c15_i_max; /* Maximum D-cache dirty line index.  */
+        uint32_t c15_i_min; /* Minimum D-cache dirty line index.  */
+        uint32_t c15_threadid; /* TI debugger thread-ID.  */
+        uint32_t c15_config_base_address; /* SCU base address.  */
+        uint32_t c15_diagnostic; /* diagnostic register */
+        uint32_t c15_power_diagnostic;
+        uint32_t c15_power_control; /* power control */
+        uint64_t dbgbvr[16]; /* breakpoint value registers */
+        uint64_t dbgbcr[16]; /* breakpoint control registers */
+        uint64_t dbgwvr[16]; /* watchpoint value registers */
+        uint64_t dbgwcr[16]; /* watchpoint control registers */
+        uint64_t mdscr_el1;
+        uint64_t oslsr_el1; /* OS Lock Status */
+        uint64_t mdcr_el2;
+        uint64_t mdcr_el3;
+        /* If the counter is enabled, this stores the last time the counter
+         * was reset. Otherwise it stores the counter value
+         */
+        uint64_t c15_ccnt;
+        uint64_t pmccfiltr_el0; /* Performance Monitor Filter Register */
+        uint64_t vpidr_el2; /* Virtualization Processor ID Register */
+        uint64_t vmpidr_el2; /* Virtualization Multiprocessor ID Register */
+    } cp15;
+
+    struct {
+        uint32_t other_sp;
+        uint32_t vecbase;
+        uint32_t basepri;
+        uint32_t control;
+        int current_sp;
+        int exception;
+    } v7m;
+
+    /* Information associated with an exception about to be taken:
+     * code which raises an exception must set cs->exception_index and
+     * the relevant parts of this structure; the cpu_do_interrupt function
+     * will then set the guest-visible registers as part of the exception
+     * entry process.
+     */
+    struct {
+        uint32_t syndrome; /* AArch64 format syndrome register */
+        uint32_t fsr; /* AArch32 format fault status register info */
+        uint64_t vaddress; /* virtual addr associated with exception, if any */
+        uint32_t target_el; /* EL the exception should be targeted for */
+        /* If we implement EL2 we will also need to store information
+         * about the intermediate physical address for stage 2 faults.
+         */
+    } exception;
+
+    /* Thumb-2 EE state.  */
+    uint32_t teecr;
+    uint32_t teehbr;
+
+    /* VFP coprocessor state.  */
+    struct {
+        /* VFP/Neon register state. Note that the mapping between S, D and Q
+         * views of the register bank differs between AArch64 and AArch32:
+         * In AArch32:
+         *  Qn = regs[2n+1]:regs[2n]
+         *  Dn = regs[n]
+         *  Sn = regs[n/2] bits 31..0 for even n, and bits 63..32 for odd n
+         * (and regs[32] to regs[63] are inaccessible)
+         * In AArch64:
+         *  Qn = regs[2n+1]:regs[2n]
+         *  Dn = regs[2n]
+         *  Sn = regs[2n] bits 31..0
+         * This corresponds to the architecturally defined mapping between
+         * the two execution states, and means we do not need to explicitly
+         * map these registers when changing states.
+         */
+        float64 regs[64];
+
+        uint32_t xregs[16];
+        /* We store these fpcsr fields separately for convenience.  */
+        int vec_len;
+        int vec_stride;
+
+        /* scratch space when Tn are not sufficient.  */
+        uint32_t scratch[8];
+
+        /* fp_status is the "normal" fp status. standard_fp_status retains
+         * values corresponding to the ARM "Standard FPSCR Value", ie
+         * default-NaN, flush-to-zero, round-to-nearest and is used by
+         * any operations (generally Neon) which the architecture defines
+         * as controlled by the standard FPSCR value rather than the FPSCR.
+         *
+         * To avoid having to transfer exception bits around, we simply
+         * say that the FPSCR cumulative exception flags are the logical
+         * OR of the flags in the two fp statuses. This relies on the
+         * only thing which needs to read the exception flags being
+         * an explicit FPSCR read.
+         */
+        float_status fp_status;
+        float_status standard_fp_status;
+    } vfp;
+    uint64_t exclusive_addr;
+    uint64_t exclusive_val;
+    uint64_t exclusive_high;
+
+    /* iwMMXt coprocessor state.  */
+    struct {
+        uint64_t regs[16];
+        uint64_t val;
+
+        uint32_t cregs[16];
+    } iwmmxt;
+
+#if defined(CONFIG_USER_ONLY)
+    /* For usermode syscall translation.  */
+    int eabi;
+#endif
+
+    struct CPUBreakpoint *cpu_breakpoint[16];
+    struct CPUWatchpoint *cpu_watchpoint[16];
+
+    CPU_COMMON
+
+    /* These fields after the common ones so they are preserved on reset.  */
+
+    /* Internal CPU feature flags.  */
+    uint64_t features;
+
+    /* PMSAv7 MPU */
+    struct {
+        uint32_t *drbar;
+        uint32_t *drsr;
+        uint32_t *dracr;
+    } pmsav7;
+
+    void *nvic;
+    const struct arm_boot_info *boot_info;
+} CPUARMState;
+
+/**
+ * ARMELChangeHook:
+ * type of a function which can be registered via arm_register_el_change_hook()
+ * to get callbacks when the CPU changes its exception level or mode.
+ */
+typedef void ARMELChangeHook(ARMCPU *cpu, void *opaque);
+
+/**
+ * ARMCPU:
+ * @env: #CPUARMState
+ *
+ * An ARM CPU core.
+ */
+struct ARMCPU {
+    /*< private >*/
+    CPUState parent_obj;
+    /*< public >*/
+
+    CPUARMState env;
+
+    /* Coprocessor information */
+    GHashTable *cp_regs;
+    /* For marshalling (mostly coprocessor) register state between the
+     * kernel and QEMU (for KVM) and between two QEMUs (for migration),
+     * we use these arrays.
+     */
+    /* List of register indexes managed via these arrays; (full KVM style
+     * 64 bit indexes, not CPRegInfo 32 bit indexes)
+     */
+    uint64_t *cpreg_indexes;
+    /* Values of the registers (cpreg_indexes[i]'s value is cpreg_values[i]) */
+    uint64_t *cpreg_values;
+    /* Length of the indexes, values, reset_values arrays */
+    int32_t cpreg_array_len;
+    /* These are used only for migration: incoming data arrives in
+     * these fields and is sanity checked in post_load before copying
+     * to the working data structures above.
+     */
+    uint64_t *cpreg_vmstate_indexes;
+    uint64_t *cpreg_vmstate_values;
+    int32_t cpreg_vmstate_array_len;
+
+    /* Timers used by the generic (architected) timer */
+    QEMUTimer *gt_timer[NUM_GTIMERS];
+    /* GPIO outputs for generic timer */
+    qemu_irq gt_timer_outputs[NUM_GTIMERS];
+
+    /* MemoryRegion to use for secure physical accesses */
+    MemoryRegion *secure_memory;
+
+    /* 'compatible' string for this CPU for Linux device trees */
+    const char *dtb_compatible;
+
+    /* PSCI version for this CPU
+     * Bits[31:16] = Major Version
+     * Bits[15:0] = Minor Version
+     */
+    uint32_t psci_version;
+
+    /* Should CPU start in PSCI powered-off state? */
+    bool start_powered_off;
+    /* CPU currently in PSCI powered-off state */
+    bool powered_off;
+    /* CPU has security extension */
+    bool has_el3;
+    /* CPU has PMU (Performance Monitor Unit) */
+    bool has_pmu;
+
+    /* CPU has memory protection unit */
+    bool has_mpu;
+    /* PMSAv7 MPU number of supported regions */
+    uint32_t pmsav7_dregion;
+
+    /* PSCI conduit used to invoke PSCI methods
+     * 0 - disabled, 1 - smc, 2 - hvc
+     */
+    uint32_t psci_conduit;
+
+    /* [QEMU_]KVM_ARM_TARGET_* constant for this CPU, or
+     * QEMU_KVM_ARM_TARGET_NONE if the kernel doesn't support this CPU type.
+     */
+    uint32_t kvm_target;
+
+    /* KVM init features for this CPU */
+    uint32_t kvm_init_features[7];
+
+    /* Uniprocessor system with MP extensions */
+    bool mp_is_up;
+
+    /* The instance init functions for implementation-specific subclasses
+     * set these fields to specify the implementation-dependent values of
+     * various constant registers and reset values of non-constant
+     * registers.
+     * Some of these might become QOM properties eventually.
+     * Field names match the official register names as defined in the
+     * ARMv7AR ARM Architecture Reference Manual. A reset_ prefix
+     * is used for reset values of non-constant registers; no reset_
+     * prefix means a constant register.
+     */
+    uint32_t midr;
+    uint32_t revidr;
+    uint32_t reset_fpsid;
+    uint32_t mvfr0;
+    uint32_t mvfr1;
+    uint32_t mvfr2;
+    uint32_t ctr;
+    uint32_t reset_sctlr;
+    uint32_t id_pfr0;
+    uint32_t id_pfr1;
+    uint32_t id_dfr0;
+    uint32_t pmceid0;
+    uint32_t pmceid1;
+    uint32_t id_afr0;
+    uint32_t id_mmfr0;
+    uint32_t id_mmfr1;
+    uint32_t id_mmfr2;
+    uint32_t id_mmfr3;
+    uint32_t id_mmfr4;
+    uint32_t id_isar0;
+    uint32_t id_isar1;
+    uint32_t id_isar2;
+    uint32_t id_isar3;
+    uint32_t id_isar4;
+    uint32_t id_isar5;
+    uint64_t id_aa64pfr0;
+    uint64_t id_aa64pfr1;
+    uint64_t id_aa64dfr0;
+    uint64_t id_aa64dfr1;
+    uint64_t id_aa64afr0;
+    uint64_t id_aa64afr1;
+    uint64_t id_aa64isar0;
+    uint64_t id_aa64isar1;
+    uint64_t id_aa64mmfr0;
+    uint64_t id_aa64mmfr1;
+    uint32_t dbgdidr;
+    uint32_t clidr;
+    uint64_t mp_affinity; /* MP ID without feature bits */
+    /* The elements of this array are the CCSIDR values for each cache,
+     * in the order L1DCache, L1ICache, L2DCache, L2ICache, etc.
+     */
+    uint32_t ccsidr[16];
+    uint64_t reset_cbar;
+    uint32_t reset_auxcr;
+    bool reset_hivecs;
+    /* DCZ blocksize, in log_2(words), ie low 4 bits of DCZID_EL0 */
+    uint32_t dcz_blocksize;
+    uint64_t rvbar;
+
+    ARMELChangeHook *el_change_hook;
+    void *el_change_hook_opaque;
+};
+
+static inline ARMCPU *arm_env_get_cpu(CPUARMState *env)
+{
+    return container_of(env, ARMCPU, env);
+}
+
+#define ENV_GET_CPU(e) CPU(arm_env_get_cpu(e))
+
+#define ENV_OFFSET offsetof(ARMCPU, env)
+
+#ifndef CONFIG_USER_ONLY
+extern const struct VMStateDescription vmstate_arm_cpu;
+#endif
+
+void arm_cpu_do_interrupt(CPUState *cpu);
+void arm_v7m_cpu_do_interrupt(CPUState *cpu);
+bool arm_cpu_exec_interrupt(CPUState *cpu, int int_req);
+
+void arm_cpu_dump_state(CPUState *cs, FILE *f, fprintf_function cpu_fprintf,
+                        int flags);
+
+hwaddr arm_cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
+                                         MemTxAttrs *attrs);
+
+int arm_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
+int arm_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
+
+int arm_cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cs,
+                             int cpuid, void *opaque);
+int arm_cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cs,
+                             int cpuid, void *opaque);
+
+#ifdef TARGET_AARCH64
+int aarch64_cpu_gdb_read_register(CPUState *cpu, uint8_t *buf, int reg);
+int aarch64_cpu_gdb_write_register(CPUState *cpu, uint8_t *buf, int reg);
+#endif
+
+ARMCPU *cpu_arm_init(const char *cpu_model);
+target_ulong do_arm_semihosting(CPUARMState *env);
+void aarch64_sync_32_to_64(CPUARMState *env);
+void aarch64_sync_64_to_32(CPUARMState *env);
+
+static inline bool is_a64(CPUARMState *env)
+{
+    return env->aarch64;
+}
+
+/* you can call this signal handler from your SIGBUS and SIGSEGV
+   signal handlers to inform the virtual CPU of exceptions. non zero
+   is returned if the signal was handled by the virtual CPU.  */
+int cpu_arm_signal_handler(int host_signum, void *pinfo,
+                           void *puc);
+
+/**
+ * pmccntr_sync
+ * @env: CPUARMState
+ *
+ * Synchronises the counter in the PMCCNTR. This must always be called twice,
+ * once before any action that might affect the timer and again afterwards.
+ * The function is used to swap the state of the register if required.
+ * This only happens when not in user mode (!CONFIG_USER_ONLY)
+ */
+void pmccntr_sync(CPUARMState *env);
+
+/* SCTLR bit meanings. Several bits have been reused in newer
+ * versions of the architecture; in that case we define constants
+ * for both old and new bit meanings. Code which tests against those
+ * bits should probably check or otherwise arrange that the CPU
+ * is the architectural version it expects.
+ */
+#define SCTLR_M       (1U << 0)
+#define SCTLR_A       (1U << 1)
+#define SCTLR_C       (1U << 2)
+#define SCTLR_W       (1U << 3) /* up to v6; RAO in v7 */
+#define SCTLR_SA      (1U << 3)
+#define SCTLR_P       (1U << 4) /* up to v5; RAO in v6 and v7 */
+#define SCTLR_SA0     (1U << 4) /* v8 onward, AArch64 only */
+#define SCTLR_D       (1U << 5) /* up to v5; RAO in v6 */
+#define SCTLR_CP15BEN (1U << 5) /* v7 onward */
+#define SCTLR_L       (1U << 6) /* up to v5; RAO in v6 and v7; RAZ in v8 */
+#define SCTLR_B       (1U << 7) /* up to v6; RAZ in v7 */
+#define SCTLR_ITD     (1U << 7) /* v8 onward */
+#define SCTLR_S       (1U << 8) /* up to v6; RAZ in v7 */
+#define SCTLR_SED     (1U << 8) /* v8 onward */
+#define SCTLR_R       (1U << 9) /* up to v6; RAZ in v7 */
+#define SCTLR_UMA     (1U << 9) /* v8 onward, AArch64 only */
+#define SCTLR_F       (1U << 10) /* up to v6 */
+#define SCTLR_SW      (1U << 10) /* v7 onward */
+#define SCTLR_Z       (1U << 11)
+#define SCTLR_I       (1U << 12)
+#define SCTLR_V       (1U << 13)
+#define SCTLR_RR      (1U << 14) /* up to v7 */
+#define SCTLR_DZE     (1U << 14) /* v8 onward, AArch64 only */
+#define SCTLR_L4      (1U << 15) /* up to v6; RAZ in v7 */
+#define SCTLR_UCT     (1U << 15) /* v8 onward, AArch64 only */
+#define SCTLR_DT      (1U << 16) /* up to ??, RAO in v6 and v7 */
+#define SCTLR_nTWI    (1U << 16) /* v8 onward */
+#define SCTLR_HA      (1U << 17)
+#define SCTLR_BR      (1U << 17) /* PMSA only */
+#define SCTLR_IT      (1U << 18) /* up to ??, RAO in v6 and v7 */
+#define SCTLR_nTWE    (1U << 18) /* v8 onward */
+#define SCTLR_WXN     (1U << 19)
+#define SCTLR_ST      (1U << 20) /* up to ??, RAZ in v6 */
+#define SCTLR_UWXN    (1U << 20) /* v7 onward */
+#define SCTLR_FI      (1U << 21)
+#define SCTLR_U       (1U << 22)
+#define SCTLR_XP      (1U << 23) /* up to v6; v7 onward RAO */
+#define SCTLR_VE      (1U << 24) /* up to v7 */
+#define SCTLR_E0E     (1U << 24) /* v8 onward, AArch64 only */
+#define SCTLR_EE      (1U << 25)
+#define SCTLR_L2      (1U << 26) /* up to v6, RAZ in v7 */
+#define SCTLR_UCI     (1U << 26) /* v8 onward, AArch64 only */
+#define SCTLR_NMFI    (1U << 27)
+#define SCTLR_TRE     (1U << 28)
+#define SCTLR_AFE     (1U << 29)
+#define SCTLR_TE      (1U << 30)
+
+#define CPTR_TCPAC    (1U << 31)
+#define CPTR_TTA      (1U << 20)
+#define CPTR_TFP      (1U << 10)
+
+#define MDCR_EPMAD    (1U << 21)
+#define MDCR_EDAD     (1U << 20)
+#define MDCR_SPME     (1U << 17)
+#define MDCR_SDD      (1U << 16)
+#define MDCR_SPD      (3U << 14)
+#define MDCR_TDRA     (1U << 11)
+#define MDCR_TDOSA    (1U << 10)
+#define MDCR_TDA      (1U << 9)
+#define MDCR_TDE      (1U << 8)
+#define MDCR_HPME     (1U << 7)
+#define MDCR_TPM      (1U << 6)
+#define MDCR_TPMCR    (1U << 5)
+
+/* Not all of the MDCR_EL3 bits are present in the 32-bit SDCR */
+#define SDCR_VALID_MASK (MDCR_EPMAD | MDCR_EDAD | MDCR_SPME | MDCR_SPD)
+
+#define CPSR_M (0x1fU)
+#define CPSR_T (1U << 5)
+#define CPSR_F (1U << 6)
+#define CPSR_I (1U << 7)
+#define CPSR_A (1U << 8)
+#define CPSR_E (1U << 9)
+#define CPSR_IT_2_7 (0xfc00U)
+#define CPSR_GE (0xfU << 16)
+#define CPSR_IL (1U << 20)
+/* Note that the RESERVED bits include bit 21, which is PSTATE_SS in
+ * an AArch64 SPSR but RES0 in AArch32 SPSR and CPSR. In QEMU we use
+ * env->uncached_cpsr bit 21 to store PSTATE.SS when executing in AArch32,
+ * where it is live state but not accessible to the AArch32 code.
+ */
+#define CPSR_RESERVED (0x7U << 21)
+#define CPSR_J (1U << 24)
+#define CPSR_IT_0_1 (3U << 25)
+#define CPSR_Q (1U << 27)
+#define CPSR_V (1U << 28)
+#define CPSR_C (1U << 29)
+#define CPSR_Z (1U << 30)
+#define CPSR_N (1U << 31)
+#define CPSR_NZCV (CPSR_N | CPSR_Z | CPSR_C | CPSR_V)
+#define CPSR_AIF (CPSR_A | CPSR_I | CPSR_F)
+
+#define CPSR_IT (CPSR_IT_0_1 | CPSR_IT_2_7)
+#define CACHED_CPSR_BITS (CPSR_T | CPSR_AIF | CPSR_GE | CPSR_IT | CPSR_Q \
+    | CPSR_NZCV)
+/* Bits writable in user mode.  */
+#define CPSR_USER (CPSR_NZCV | CPSR_Q | CPSR_GE)
+/* Execution state bits.  MRS read as zero, MSR writes ignored.  */
+#define CPSR_EXEC (CPSR_T | CPSR_IT | CPSR_J | CPSR_IL)
+/* Mask of bits which may be set by exception return copying them from SPSR */
+#define CPSR_ERET_MASK (~CPSR_RESERVED)
+
+#define TTBCR_N      (7U << 0) /* TTBCR.EAE==0 */
+#define TTBCR_T0SZ   (7U << 0) /* TTBCR.EAE==1 */
+#define TTBCR_PD0    (1U << 4)
+#define TTBCR_PD1    (1U << 5)
+#define TTBCR_EPD0   (1U << 7)
+#define TTBCR_IRGN0  (3U << 8)
+#define TTBCR_ORGN0  (3U << 10)
+#define TTBCR_SH0    (3U << 12)
+#define TTBCR_T1SZ   (3U << 16)
+#define TTBCR_A1     (1U << 22)
+#define TTBCR_EPD1   (1U << 23)
+#define TTBCR_IRGN1  (3U << 24)
+#define TTBCR_ORGN1  (3U << 26)
+#define TTBCR_SH1    (1U << 28)
+#define TTBCR_EAE    (1U << 31)
+
+/* Bit definitions for ARMv8 SPSR (PSTATE) format.
+ * Only these are valid when in AArch64 mode; in
+ * AArch32 mode SPSRs are basically CPSR-format.
+ */
+#define PSTATE_SP (1U)
+#define PSTATE_M (0xFU)
+#define PSTATE_nRW (1U << 4)
+#define PSTATE_F (1U << 6)
+#define PSTATE_I (1U << 7)
+#define PSTATE_A (1U << 8)
+#define PSTATE_D (1U << 9)
+#define PSTATE_IL (1U << 20)
+#define PSTATE_SS (1U << 21)
+#define PSTATE_V (1U << 28)
+#define PSTATE_C (1U << 29)
+#define PSTATE_Z (1U << 30)
+#define PSTATE_N (1U << 31)
+#define PSTATE_NZCV (PSTATE_N | PSTATE_Z | PSTATE_C | PSTATE_V)
+#define PSTATE_DAIF (PSTATE_D | PSTATE_A | PSTATE_I | PSTATE_F)
+#define CACHED_PSTATE_BITS (PSTATE_NZCV | PSTATE_DAIF)
+/* Mode values for AArch64 */
+#define PSTATE_MODE_EL3h 13
+#define PSTATE_MODE_EL3t 12
+#define PSTATE_MODE_EL2h 9
+#define PSTATE_MODE_EL2t 8
+#define PSTATE_MODE_EL1h 5
+#define PSTATE_MODE_EL1t 4
+#define PSTATE_MODE_EL0t 0
+
+/* Map EL and handler into a PSTATE_MODE.  */
+static inline unsigned int aarch64_pstate_mode(unsigned int el, bool handler)
+{
+    return (el << 2) | handler;
+}
+
+/* Return the current PSTATE value. For the moment we don't support 32<->64 bit
+ * interprocessing, so we don't attempt to sync with the cpsr state used by
+ * the 32 bit decoder.
+ */
+static inline uint32_t pstate_read(CPUARMState *env)
+{
+    int ZF;
+
+    ZF = (env->ZF == 0);
+    return (env->NF & 0x80000000) | (ZF << 30)
+        | (env->CF << 29) | ((env->VF & 0x80000000) >> 3)
+        | env->pstate | env->daif;
+}
+
+static inline void pstate_write(CPUARMState *env, uint32_t val)
+{
+    env->ZF = (~val) & PSTATE_Z;
+    env->NF = val;
+    env->CF = (val >> 29) & 1;
+    env->VF = (val << 3) & 0x80000000;
+    env->daif = val & PSTATE_DAIF;
+    env->pstate = val & ~CACHED_PSTATE_BITS;
+}
+
+/* Return the current CPSR value.  */
+uint32_t cpsr_read(CPUARMState *env);
+
+typedef enum CPSRWriteType {
+    CPSRWriteByInstr = 0,         /* from guest MSR or CPS */
+    CPSRWriteExceptionReturn = 1, /* from guest exception return insn */
+    CPSRWriteRaw = 2,             /* trust values, do not switch reg banks */
+    CPSRWriteByGDBStub = 3,       /* from the GDB stub */
+} CPSRWriteType;
+
+/* Set the CPSR.  Note that some bits of mask must be all-set or all-clear.*/
+void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask,
+                CPSRWriteType write_type);
+
+/* Return the current xPSR value.  */
+static inline uint32_t xpsr_read(CPUARMState *env)
+{
+    int ZF;
+    ZF = (env->ZF == 0);
+    return (env->NF & 0x80000000) | (ZF << 30)
+        | (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
+        | (env->thumb << 24) | ((env->condexec_bits & 3) << 25)
+        | ((env->condexec_bits & 0xfc) << 8)
+        | env->v7m.exception;
+}
+
+/* Set the xPSR.  Note that some bits of mask must be all-set or all-clear.  */
+static inline void xpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
+{
+    if (mask & CPSR_NZCV) {
+        env->ZF = (~val) & CPSR_Z;
+        env->NF = val;
+        env->CF = (val >> 29) & 1;
+        env->VF = (val << 3) & 0x80000000;
+    }
+    if (mask & CPSR_Q)
+        env->QF = ((val & CPSR_Q) != 0);
+    if (mask & (1 << 24))
+        env->thumb = ((val & (1 << 24)) != 0);
+    if (mask & CPSR_IT_0_1) {
+        env->condexec_bits &= ~3;
+        env->condexec_bits |= (val >> 25) & 3;
+    }
+    if (mask & CPSR_IT_2_7) {
+        env->condexec_bits &= 3;
+        env->condexec_bits |= (val >> 8) & 0xfc;
+    }
+    if (mask & 0x1ff) {
+        env->v7m.exception = val & 0x1ff;
+    }
+}
+
+#define HCR_VM        (1ULL << 0)
+#define HCR_SWIO      (1ULL << 1)
+#define HCR_PTW       (1ULL << 2)
+#define HCR_FMO       (1ULL << 3)
+#define HCR_IMO       (1ULL << 4)
+#define HCR_AMO       (1ULL << 5)
+#define HCR_VF        (1ULL << 6)
+#define HCR_VI        (1ULL << 7)
+#define HCR_VSE       (1ULL << 8)
+#define HCR_FB        (1ULL << 9)
+#define HCR_BSU_MASK  (3ULL << 10)
+#define HCR_DC        (1ULL << 12)
+#define HCR_TWI       (1ULL << 13)
+#define HCR_TWE       (1ULL << 14)
+#define HCR_TID0      (1ULL << 15)
+#define HCR_TID1      (1ULL << 16)
+#define HCR_TID2      (1ULL << 17)
+#define HCR_TID3      (1ULL << 18)
+#define HCR_TSC       (1ULL << 19)
+#define HCR_TIDCP     (1ULL << 20)
+#define HCR_TACR      (1ULL << 21)
+#define HCR_TSW       (1ULL << 22)
+#define HCR_TPC       (1ULL << 23)
+#define HCR_TPU       (1ULL << 24)
+#define HCR_TTLB      (1ULL << 25)
+#define HCR_TVM       (1ULL << 26)
+#define HCR_TGE       (1ULL << 27)
+#define HCR_TDZ       (1ULL << 28)
+#define HCR_HCD       (1ULL << 29)
+#define HCR_TRVM      (1ULL << 30)
+#define HCR_RW        (1ULL << 31)
+#define HCR_CD        (1ULL << 32)
+#define HCR_ID        (1ULL << 33)
+#define HCR_MASK      ((1ULL << 34) - 1)
+
+#define SCR_NS                (1U << 0)
+#define SCR_IRQ               (1U << 1)
+#define SCR_FIQ               (1U << 2)
+#define SCR_EA                (1U << 3)
+#define SCR_FW                (1U << 4)
+#define SCR_AW                (1U << 5)
+#define SCR_NET               (1U << 6)
+#define SCR_SMD               (1U << 7)
+#define SCR_HCE               (1U << 8)
+#define SCR_SIF               (1U << 9)
+#define SCR_RW                (1U << 10)
+#define SCR_ST                (1U << 11)
+#define SCR_TWI               (1U << 12)
+#define SCR_TWE               (1U << 13)
+#define SCR_AARCH32_MASK      (0x3fff & ~(SCR_RW | SCR_ST))
+#define SCR_AARCH64_MASK      (0x3fff & ~SCR_NET)
+
+/* Return the current FPSCR value.  */
+uint32_t vfp_get_fpscr(CPUARMState *env);
+void vfp_set_fpscr(CPUARMState *env, uint32_t val);
+
+/* For A64 the FPSCR is split into two logically distinct registers,
+ * FPCR and FPSR. However since they still use non-overlapping bits
+ * we store the underlying state in fpscr and just mask on read/write.
+ */
+#define FPSR_MASK 0xf800009f
+#define FPCR_MASK 0x07f79f00
+static inline uint32_t vfp_get_fpsr(CPUARMState *env)
+{
+    return vfp_get_fpscr(env) & FPSR_MASK;
+}
+
+static inline void vfp_set_fpsr(CPUARMState *env, uint32_t val)
+{
+    uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPSR_MASK) | (val & FPSR_MASK);
+    vfp_set_fpscr(env, new_fpscr);
+}
+
+static inline uint32_t vfp_get_fpcr(CPUARMState *env)
+{
+    return vfp_get_fpscr(env) & FPCR_MASK;
+}
+
+static inline void vfp_set_fpcr(CPUARMState *env, uint32_t val)
+{
+    uint32_t new_fpscr = (vfp_get_fpscr(env) & ~FPCR_MASK) | (val & FPCR_MASK);
+    vfp_set_fpscr(env, new_fpscr);
+}
+
+enum arm_cpu_mode {
+  ARM_CPU_MODE_USR = 0x10,
+  ARM_CPU_MODE_FIQ = 0x11,
+  ARM_CPU_MODE_IRQ = 0x12,
+  ARM_CPU_MODE_SVC = 0x13,
+  ARM_CPU_MODE_MON = 0x16,
+  ARM_CPU_MODE_ABT = 0x17,
+  ARM_CPU_MODE_HYP = 0x1a,
+  ARM_CPU_MODE_UND = 0x1b,
+  ARM_CPU_MODE_SYS = 0x1f
+};
+
+/* VFP system registers.  */
+#define ARM_VFP_FPSID   0
+#define ARM_VFP_FPSCR   1
+#define ARM_VFP_MVFR2   5
+#define ARM_VFP_MVFR1   6
+#define ARM_VFP_MVFR0   7
+#define ARM_VFP_FPEXC   8
+#define ARM_VFP_FPINST  9
+#define ARM_VFP_FPINST2 10
+
+/* iwMMXt coprocessor control registers.  */
+#define ARM_IWMMXT_wCID		0
+#define ARM_IWMMXT_wCon		1
+#define ARM_IWMMXT_wCSSF	2
+#define ARM_IWMMXT_wCASF	3
+#define ARM_IWMMXT_wCGR0	8
+#define ARM_IWMMXT_wCGR1	9
+#define ARM_IWMMXT_wCGR2	10
+#define ARM_IWMMXT_wCGR3	11
+
+/* If adding a feature bit which corresponds to a Linux ELF
+ * HWCAP bit, remember to update the feature-bit-to-hwcap
+ * mapping in linux-user/elfload.c:get_elf_hwcap().
+ */
+enum arm_features {
+    ARM_FEATURE_VFP,
+    ARM_FEATURE_AUXCR,  /* ARM1026 Auxiliary control register.  */
+    ARM_FEATURE_XSCALE, /* Intel XScale extensions.  */
+    ARM_FEATURE_IWMMXT, /* Intel iwMMXt extension.  */
+    ARM_FEATURE_V6,
+    ARM_FEATURE_V6K,
+    ARM_FEATURE_V7,
+    ARM_FEATURE_THUMB2,
+    ARM_FEATURE_MPU,    /* Only has Memory Protection Unit, not full MMU.  */
+    ARM_FEATURE_VFP3,
+    ARM_FEATURE_VFP_FP16,
+    ARM_FEATURE_NEON,
+    ARM_FEATURE_THUMB_DIV, /* divide supported in Thumb encoding */
+    ARM_FEATURE_M, /* Microcontroller profile.  */
+    ARM_FEATURE_OMAPCP, /* OMAP specific CP15 ops handling.  */
+    ARM_FEATURE_THUMB2EE,
+    ARM_FEATURE_V7MP,    /* v7 Multiprocessing Extensions */
+    ARM_FEATURE_V4T,
+    ARM_FEATURE_V5,
+    ARM_FEATURE_STRONGARM,
+    ARM_FEATURE_VAPA, /* cp15 VA to PA lookups */
+    ARM_FEATURE_ARM_DIV, /* divide supported in ARM encoding */
+    ARM_FEATURE_VFP4, /* VFPv4 (implies that NEON is v2) */
+    ARM_FEATURE_GENERIC_TIMER,
+    ARM_FEATURE_MVFR, /* Media and VFP Feature Registers 0 and 1 */
+    ARM_FEATURE_DUMMY_C15_REGS, /* RAZ/WI all of cp15 crn=15 */
+    ARM_FEATURE_CACHE_TEST_CLEAN, /* 926/1026 style test-and-clean ops */
+    ARM_FEATURE_CACHE_DIRTY_REG, /* 1136/1176 cache dirty status register */
+    ARM_FEATURE_CACHE_BLOCK_OPS, /* v6 optional cache block operations */
+    ARM_FEATURE_MPIDR, /* has cp15 MPIDR */
+    ARM_FEATURE_PXN, /* has Privileged Execute Never bit */
+    ARM_FEATURE_LPAE, /* has Large Physical Address Extension */
+    ARM_FEATURE_V8,
+    ARM_FEATURE_AARCH64, /* supports 64 bit mode */
+    ARM_FEATURE_V8_AES, /* implements AES part of v8 Crypto Extensions */
+    ARM_FEATURE_CBAR, /* has cp15 CBAR */
+    ARM_FEATURE_CRC, /* ARMv8 CRC instructions */
+    ARM_FEATURE_CBAR_RO, /* has cp15 CBAR and it is read-only */
+    ARM_FEATURE_EL2, /* has EL2 Virtualization support */
+    ARM_FEATURE_EL3, /* has EL3 Secure monitor support */
+    ARM_FEATURE_V8_SHA1, /* implements SHA1 part of v8 Crypto Extensions */
+    ARM_FEATURE_V8_SHA256, /* implements SHA256 part of v8 Crypto Extensions */
+    ARM_FEATURE_V8_PMULL, /* implements PMULL part of v8 Crypto Extensions */
+    ARM_FEATURE_THUMB_DSP, /* DSP insns supported in the Thumb encodings */
+    ARM_FEATURE_PMU, /* has PMU support */
+};
+
+static inline int arm_feature(CPUARMState *env, int feature)
+{
+    return (env->features & (1ULL << feature)) != 0;
+}
+
+#if !defined(CONFIG_USER_ONLY)
+/* Return true if exception levels below EL3 are in secure state,
+ * or would be following an exception return to that level.
+ * Unlike arm_is_secure() (which is always a question about the
+ * _current_ state of the CPU) this doesn't care about the current
+ * EL or mode.
+ */
+static inline bool arm_is_secure_below_el3(CPUARMState *env)
+{
+    if (arm_feature(env, ARM_FEATURE_EL3)) {
+        return !(env->cp15.scr_el3 & SCR_NS);
+    } else {
+        /* If EL3 is not supported then the secure state is implementation
+         * defined, in which case QEMU defaults to non-secure.
+         */
+        return false;
+    }
+}
+
+/* Return true if the CPU is AArch64 EL3 or AArch32 Mon */
+static inline bool arm_is_el3_or_mon(CPUARMState *env)
+{
+    if (arm_feature(env, ARM_FEATURE_EL3)) {
+        if (is_a64(env) && extract32(env->pstate, 2, 2) == 3) {
+            /* CPU currently in AArch64 state and EL3 */
+            return true;
+        } else if (!is_a64(env) &&
+                (env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_MON) {
+            /* CPU currently in AArch32 state and monitor mode */
+            return true;
+        }
+    }
+    return false;
+}
+
+/* Return true if the processor is in secure state */
+static inline bool arm_is_secure(CPUARMState *env)
+{
+    if (arm_is_el3_or_mon(env)) {
+        return true;
+    }
+    return arm_is_secure_below_el3(env);
+}
+
+#else
+static inline bool arm_is_secure_below_el3(CPUARMState *env)
+{
+    return false;
+}
+
+static inline bool arm_is_secure(CPUARMState *env)
+{
+    return false;
+}
+#endif
+
+/* Return true if the specified exception level is running in AArch64 state. */
+static inline bool arm_el_is_aa64(CPUARMState *env, int el)
+{
+    /* This isn't valid for EL0 (if we're in EL0, is_a64() is what you want,
+     * and if we're not in EL0 then the state of EL0 isn't well defined.)
+     */
+    assert(el >= 1 && el <= 3);
+    bool aa64 = arm_feature(env, ARM_FEATURE_AARCH64);
+
+    /* The highest exception level is always at the maximum supported
+     * register width, and then lower levels have a register width controlled
+     * by bits in the SCR or HCR registers.
+     */
+    if (el == 3) {
+        return aa64;
+    }
+
+    if (arm_feature(env, ARM_FEATURE_EL3)) {
+        aa64 = aa64 && (env->cp15.scr_el3 & SCR_RW);
+    }
+
+    if (el == 2) {
+        return aa64;
+    }
+
+    if (arm_feature(env, ARM_FEATURE_EL2) && !arm_is_secure_below_el3(env)) {
+        aa64 = aa64 && (env->cp15.hcr_el2 & HCR_RW);
+    }
+
+    return aa64;
+}
+
+/* Function for determing whether guest cp register reads and writes should
+ * access the secure or non-secure bank of a cp register.  When EL3 is
+ * operating in AArch32 state, the NS-bit determines whether the secure
+ * instance of a cp register should be used. When EL3 is AArch64 (or if
+ * it doesn't exist at all) then there is no register banking, and all
+ * accesses are to the non-secure version.
+ */
+static inline bool access_secure_reg(CPUARMState *env)
+{
+    bool ret = (arm_feature(env, ARM_FEATURE_EL3) &&
+                !arm_el_is_aa64(env, 3) &&
+                !(env->cp15.scr_el3 & SCR_NS));
+
+    return ret;
+}
+
+/* Macros for accessing a specified CP register bank */
+#define A32_BANKED_REG_GET(_env, _regname, _secure)    \
+    ((_secure) ? (_env)->cp15._regname##_s : (_env)->cp15._regname##_ns)
+
+#define A32_BANKED_REG_SET(_env, _regname, _secure, _val)   \
+    do {                                                \
+        if (_secure) {                                   \
+            (_env)->cp15._regname##_s = (_val);            \
+        } else {                                        \
+            (_env)->cp15._regname##_ns = (_val);           \
+        }                                               \
+    } while (0)
+
+/* Macros for automatically accessing a specific CP register bank depending on
+ * the current secure state of the system.  These macros are not intended for
+ * supporting instruction translation reads/writes as these are dependent
+ * solely on the SCR.NS bit and not the mode.
+ */
+#define A32_BANKED_CURRENT_REG_GET(_env, _regname)        \
+    A32_BANKED_REG_GET((_env), _regname,                \
+                       (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)))
+
+#define A32_BANKED_CURRENT_REG_SET(_env, _regname, _val)                       \
+    A32_BANKED_REG_SET((_env), _regname,                                    \
+                       (arm_is_secure(_env) && !arm_el_is_aa64((_env), 3)), \
+                       (_val))
+
+void arm_cpu_list(FILE *f, fprintf_function cpu_fprintf);
+uint32_t arm_phys_excp_target_el(CPUState *cs, uint32_t excp_idx,
+                                 uint32_t cur_el, bool secure);
+
+/* Interface between CPU and Interrupt controller.  */
+void armv7m_nvic_set_pending(void *opaque, int irq);
+int armv7m_nvic_acknowledge_irq(void *opaque);
+void armv7m_nvic_complete_irq(void *opaque, int irq);
+
+/* Interface for defining coprocessor registers.
+ * Registers are defined in tables of arm_cp_reginfo structs
+ * which are passed to define_arm_cp_regs().
+ */
+
+/* When looking up a coprocessor register we look for it
+ * via an integer which encodes all of:
+ *  coprocessor number
+ *  Crn, Crm, opc1, opc2 fields
+ *  32 or 64 bit register (ie is it accessed via MRC/MCR
+ *    or via MRRC/MCRR?)
+ *  non-secure/secure bank (AArch32 only)
+ * We allow 4 bits for opc1 because MRRC/MCRR have a 4 bit field.
+ * (In this case crn and opc2 should be zero.)
+ * For AArch64, there is no 32/64 bit size distinction;
+ * instead all registers have a 2 bit op0, 3 bit op1 and op2,
+ * and 4 bit CRn and CRm. The encoding patterns are chosen
+ * to be easy to convert to and from the KVM encodings, and also
+ * so that the hashtable can contain both AArch32 and AArch64
+ * registers (to allow for interprocessing where we might run
+ * 32 bit code on a 64 bit core).
+ */
+/* This bit is private to our hashtable cpreg; in KVM register
+ * IDs the AArch64/32 distinction is the KVM_REG_ARM/ARM64
+ * in the upper bits of the 64 bit ID.
+ */
+#define CP_REG_AA64_SHIFT 28
+#define CP_REG_AA64_MASK (1 << CP_REG_AA64_SHIFT)
+
+/* To enable banking of coprocessor registers depending on ns-bit we
+ * add a bit to distinguish between secure and non-secure cpregs in the
+ * hashtable.
+ */
+#define CP_REG_NS_SHIFT 29
+#define CP_REG_NS_MASK (1 << CP_REG_NS_SHIFT)
+
+#define ENCODE_CP_REG(cp, is64, ns, crn, crm, opc1, opc2)   \
+    ((ns) << CP_REG_NS_SHIFT | ((cp) << 16) | ((is64) << 15) |   \
+     ((crn) << 11) | ((crm) << 7) | ((opc1) << 3) | (opc2))
+
+#define ENCODE_AA64_CP_REG(cp, crn, crm, op0, op1, op2) \
+    (CP_REG_AA64_MASK |                                 \
+     ((cp) << CP_REG_ARM_COPROC_SHIFT) |                \
+     ((op0) << CP_REG_ARM64_SYSREG_OP0_SHIFT) |         \
+     ((op1) << CP_REG_ARM64_SYSREG_OP1_SHIFT) |         \
+     ((crn) << CP_REG_ARM64_SYSREG_CRN_SHIFT) |         \
+     ((crm) << CP_REG_ARM64_SYSREG_CRM_SHIFT) |         \
+     ((op2) << CP_REG_ARM64_SYSREG_OP2_SHIFT))
+
+/* Convert a full 64 bit KVM register ID to the truncated 32 bit
+ * version used as a key for the coprocessor register hashtable
+ */
+static inline uint32_t kvm_to_cpreg_id(uint64_t kvmid)
+{
+    uint32_t cpregid = kvmid;
+    if ((kvmid & CP_REG_ARCH_MASK) == CP_REG_ARM64) {
+        cpregid |= CP_REG_AA64_MASK;
+    } else {
+        if ((kvmid & CP_REG_SIZE_MASK) == CP_REG_SIZE_U64) {
+            cpregid |= (1 << 15);
+        }
+
+        /* KVM is always non-secure so add the NS flag on AArch32 register
+         * entries.
+         */
+         cpregid |= 1 << CP_REG_NS_SHIFT;
+    }
+    return cpregid;
+}
+
+/* Convert a truncated 32 bit hashtable key into the full
+ * 64 bit KVM register ID.
+ */
+static inline uint64_t cpreg_to_kvm_id(uint32_t cpregid)
+{
+    uint64_t kvmid;
+
+    if (cpregid & CP_REG_AA64_MASK) {
+        kvmid = cpregid & ~CP_REG_AA64_MASK;
+        kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM64;
+    } else {
+        kvmid = cpregid & ~(1 << 15);
+        if (cpregid & (1 << 15)) {
+            kvmid |= CP_REG_SIZE_U64 | CP_REG_ARM;
+        } else {
+            kvmid |= CP_REG_SIZE_U32 | CP_REG_ARM;
+        }
+    }
+    return kvmid;
+}
+
+/* ARMCPRegInfo type field bits. If the SPECIAL bit is set this is a
+ * special-behaviour cp reg and bits [15..8] indicate what behaviour
+ * it has. Otherwise it is a simple cp reg, where CONST indicates that
+ * TCG can assume the value to be constant (ie load at translate time)
+ * and 64BIT indicates a 64 bit wide coprocessor register. SUPPRESS_TB_END
+ * indicates that the TB should not be ended after a write to this register
+ * (the default is that the TB ends after cp writes). OVERRIDE permits
+ * a register definition to override a previous definition for the
+ * same (cp, is64, crn, crm, opc1, opc2) tuple: either the new or the
+ * old must have the OVERRIDE bit set.
+ * ALIAS indicates that this register is an alias view of some underlying
+ * state which is also visible via another register, and that the other
+ * register is handling migration and reset; registers marked ALIAS will not be
+ * migrated but may have their state set by syncing of register state from KVM.
+ * NO_RAW indicates that this register has no underlying state and does not
+ * support raw access for state saving/loading; it will not be used for either
+ * migration or KVM state synchronization. (Typically this is for "registers"
+ * which are actually used as instructions for cache maintenance and so on.)
+ * IO indicates that this register does I/O and therefore its accesses
+ * need to be surrounded by gen_io_start()/gen_io_end(). In particular,
+ * registers which implement clocks or timers require this.
+ */
+#define ARM_CP_SPECIAL 1
+#define ARM_CP_CONST 2
+#define ARM_CP_64BIT 4
+#define ARM_CP_SUPPRESS_TB_END 8
+#define ARM_CP_OVERRIDE 16
+#define ARM_CP_ALIAS 32
+#define ARM_CP_IO 64
+#define ARM_CP_NO_RAW 128
+#define ARM_CP_NOP (ARM_CP_SPECIAL | (1 << 8))
+#define ARM_CP_WFI (ARM_CP_SPECIAL | (2 << 8))
+#define ARM_CP_NZCV (ARM_CP_SPECIAL | (3 << 8))
+#define ARM_CP_CURRENTEL (ARM_CP_SPECIAL | (4 << 8))
+#define ARM_CP_DC_ZVA (ARM_CP_SPECIAL | (5 << 8))
+#define ARM_LAST_SPECIAL ARM_CP_DC_ZVA
+/* Used only as a terminator for ARMCPRegInfo lists */
+#define ARM_CP_SENTINEL 0xffff
+/* Mask of only the flag bits in a type field */
+#define ARM_CP_FLAG_MASK 0xff
+
+/* Valid values for ARMCPRegInfo state field, indicating which of
+ * the AArch32 and AArch64 execution states this register is visible in.
+ * If the reginfo doesn't explicitly specify then it is AArch32 only.
+ * If the reginfo is declared to be visible in both states then a second
+ * reginfo is synthesised for the AArch32 view of the AArch64 register,
+ * such that the AArch32 view is the lower 32 bits of the AArch64 one.
+ * Note that we rely on the values of these enums as we iterate through
+ * the various states in some places.
+ */
+enum {
+    ARM_CP_STATE_AA32 = 0,
+    ARM_CP_STATE_AA64 = 1,
+    ARM_CP_STATE_BOTH = 2,
+};
+
+/* ARM CP register secure state flags.  These flags identify security state
+ * attributes for a given CP register entry.
+ * The existence of both or neither secure and non-secure flags indicates that
+ * the register has both a secure and non-secure hash entry.  A single one of
+ * these flags causes the register to only be hashed for the specified
+ * security state.
+ * Although definitions may have any combination of the S/NS bits, each
+ * registered entry will only have one to identify whether the entry is secure
+ * or non-secure.
+ */
+enum {
+    ARM_CP_SECSTATE_S =   (1 << 0), /* bit[0]: Secure state register */
+    ARM_CP_SECSTATE_NS =  (1 << 1), /* bit[1]: Non-secure state register */
+};
+
+/* Return true if cptype is a valid type field. This is used to try to
+ * catch errors where the sentinel has been accidentally left off the end
+ * of a list of registers.
+ */
+static inline bool cptype_valid(int cptype)
+{
+    return ((cptype & ~ARM_CP_FLAG_MASK) == 0)
+        || ((cptype & ARM_CP_SPECIAL) &&
+            ((cptype & ~ARM_CP_FLAG_MASK) <= ARM_LAST_SPECIAL));
+}
+
+/* Access rights:
+ * We define bits for Read and Write access for what rev C of the v7-AR ARM ARM
+ * defines as PL0 (user), PL1 (fiq/irq/svc/abt/und/sys, ie privileged), and
+ * PL2 (hyp). The other level which has Read and Write bits is Secure PL1
+ * (ie any of the privileged modes in Secure state, or Monitor mode).
+ * If a register is accessible in one privilege level it's always accessible
+ * in higher privilege levels too. Since "Secure PL1" also follows this rule
+ * (ie anything visible in PL2 is visible in S-PL1, some things are only
+ * visible in S-PL1) but "Secure PL1" is a bit of a mouthful, we bend the
+ * terminology a little and call this PL3.
+ * In AArch64 things are somewhat simpler as the PLx bits line up exactly
+ * with the ELx exception levels.
+ *
+ * If access permissions for a register are more complex than can be
+ * described with these bits, then use a laxer set of restrictions, and
+ * do the more restrictive/complex check inside a helper function.
+ */
+#define PL3_R 0x80
+#define PL3_W 0x40
+#define PL2_R (0x20 | PL3_R)
+#define PL2_W (0x10 | PL3_W)
+#define PL1_R (0x08 | PL2_R)
+#define PL1_W (0x04 | PL2_W)
+#define PL0_R (0x02 | PL1_R)
+#define PL0_W (0x01 | PL1_W)
+
+#define PL3_RW (PL3_R | PL3_W)
+#define PL2_RW (PL2_R | PL2_W)
+#define PL1_RW (PL1_R | PL1_W)
+#define PL0_RW (PL0_R | PL0_W)
+
+/* Return the highest implemented Exception Level */
+static inline int arm_highest_el(CPUARMState *env)
+{
+    if (arm_feature(env, ARM_FEATURE_EL3)) {
+        return 3;
+    }
+    if (arm_feature(env, ARM_FEATURE_EL2)) {
+        return 2;
+    }
+    return 1;
+}
+
+/* Return the current Exception Level (as per ARMv8; note that this differs
+ * from the ARMv7 Privilege Level).
+ */
+static inline int arm_current_el(CPUARMState *env)
+{
+    if (arm_feature(env, ARM_FEATURE_M)) {
+        return !((env->v7m.exception == 0) && (env->v7m.control & 1));
+    }
+
+    if (is_a64(env)) {
+        return extract32(env->pstate, 2, 2);
+    }
+
+    switch (env->uncached_cpsr & 0x1f) {
+    case ARM_CPU_MODE_USR:
+        return 0;
+    case ARM_CPU_MODE_HYP:
+        return 2;
+    case ARM_CPU_MODE_MON:
+        return 3;
+    default:
+        if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
+            /* If EL3 is 32-bit then all secure privileged modes run in
+             * EL3
+             */
+            return 3;
+        }
+
+        return 1;
+    }
+}
+
+typedef struct ARMCPRegInfo ARMCPRegInfo;
+
+typedef enum CPAccessResult {
+    /* Access is permitted */
+    CP_ACCESS_OK = 0,
+    /* Access fails due to a configurable trap or enable which would
+     * result in a categorized exception syndrome giving information about
+     * the failing instruction (ie syndrome category 0x3, 0x4, 0x5, 0x6,
+     * 0xc or 0x18). The exception is taken to the usual target EL (EL1 or
+     * PL1 if in EL0, otherwise to the current EL).
+     */
+    CP_ACCESS_TRAP = 1,
+    /* Access fails and results in an exception syndrome 0x0 ("uncategorized").
+     * Note that this is not a catch-all case -- the set of cases which may
+     * result in this failure is specifically defined by the architecture.
+     */
+    CP_ACCESS_TRAP_UNCATEGORIZED = 2,
+    /* As CP_ACCESS_TRAP, but for traps directly to EL2 or EL3 */
+    CP_ACCESS_TRAP_EL2 = 3,
+    CP_ACCESS_TRAP_EL3 = 4,
+    /* As CP_ACCESS_UNCATEGORIZED, but for traps directly to EL2 or EL3 */
+    CP_ACCESS_TRAP_UNCATEGORIZED_EL2 = 5,
+    CP_ACCESS_TRAP_UNCATEGORIZED_EL3 = 6,
+    /* Access fails and results in an exception syndrome for an FP access,
+     * trapped directly to EL2 or EL3
+     */
+    CP_ACCESS_TRAP_FP_EL2 = 7,
+    CP_ACCESS_TRAP_FP_EL3 = 8,
+} CPAccessResult;
+
+/* Access functions for coprocessor registers. These cannot fail and
+ * may not raise exceptions.
+ */
+typedef uint64_t CPReadFn(CPUARMState *env, const ARMCPRegInfo *opaque);
+typedef void CPWriteFn(CPUARMState *env, const ARMCPRegInfo *opaque,
+                       uint64_t value);
+/* Access permission check functions for coprocessor registers. */
+typedef CPAccessResult CPAccessFn(CPUARMState *env,
+                                  const ARMCPRegInfo *opaque,
+                                  bool isread);
+/* Hook function for register reset */
+typedef void CPResetFn(CPUARMState *env, const ARMCPRegInfo *opaque);
+
+#define CP_ANY 0xff
+
+/* Definition of an ARM coprocessor register */
+struct ARMCPRegInfo {
+    /* Name of register (useful mainly for debugging, need not be unique) */
+    const char *name;
+    /* Location of register: coprocessor number and (crn,crm,opc1,opc2)
+     * tuple. Any of crm, opc1 and opc2 may be CP_ANY to indicate a
+     * 'wildcard' field -- any value of that field in the MRC/MCR insn
+     * will be decoded to this register. The register read and write
+     * callbacks will be passed an ARMCPRegInfo with the crn/crm/opc1/opc2
+     * used by the program, so it is possible to register a wildcard and
+     * then behave differently on read/write if necessary.
+     * For 64 bit registers, only crm and opc1 are relevant; crn and opc2
+     * must both be zero.
+     * For AArch64-visible registers, opc0 is also used.
+     * Since there are no "coprocessors" in AArch64, cp is purely used as a
+     * way to distinguish (for KVM's benefit) guest-visible system registers
+     * from demuxed ones provided to preserve the "no side effects on
+     * KVM register read/write from QEMU" semantics. cp==0x13 is guest
+     * visible (to match KVM's encoding); cp==0 will be converted to
+     * cp==0x13 when the ARMCPRegInfo is registered, for convenience.
+     */
+    uint8_t cp;
+    uint8_t crn;
+    uint8_t crm;
+    uint8_t opc0;
+    uint8_t opc1;
+    uint8_t opc2;
+    /* Execution state in which this register is visible: ARM_CP_STATE_* */
+    int state;
+    /* Register type: ARM_CP_* bits/values */
+    int type;
+    /* Access rights: PL*_[RW] */
+    int access;
+    /* Security state: ARM_CP_SECSTATE_* bits/values */
+    int secure;
+    /* The opaque pointer passed to define_arm_cp_regs_with_opaque() when
+     * this register was defined: can be used to hand data through to the
+     * register read/write functions, since they are passed the ARMCPRegInfo*.
+     */
+    void *opaque;
+    /* Value of this register, if it is ARM_CP_CONST. Otherwise, if
+     * fieldoffset is non-zero, the reset value of the register.
+     */
+    uint64_t resetvalue;
+    /* Offset of the field in CPUARMState for this register.
+     *
+     * This is not needed if either:
+     *  1. type is ARM_CP_CONST or one of the ARM_CP_SPECIALs
+     *  2. both readfn and writefn are specified
+     */
+    ptrdiff_t fieldoffset; /* offsetof(CPUARMState, field) */
+
+    /* Offsets of the secure and non-secure fields in CPUARMState for the
+     * register if it is banked.  These fields are only used during the static
+     * registration of a register.  During hashing the bank associated
+     * with a given security state is copied to fieldoffset which is used from
+     * there on out.
+     *
+     * It is expected that register definitions use either fieldoffset or
+     * bank_fieldoffsets in the definition but not both.  It is also expected
+     * that both bank offsets are set when defining a banked register.  This
+     * use indicates that a register is banked.
+     */
+    ptrdiff_t bank_fieldoffsets[2];
+
+    /* Function for making any access checks for this register in addition to
+     * those specified by the 'access' permissions bits. If NULL, no extra
+     * checks required. The access check is performed at runtime, not at
+     * translate time.
+     */
+    CPAccessFn *accessfn;
+    /* Function for handling reads of this register. If NULL, then reads
+     * will be done by loading from the offset into CPUARMState specified
+     * by fieldoffset.
+     */
+    CPReadFn *readfn;
+    /* Function for handling writes of this register. If NULL, then writes
+     * will be done by writing to the offset into CPUARMState specified
+     * by fieldoffset.
+     */
+    CPWriteFn *writefn;
+    /* Function for doing a "raw" read; used when we need to copy
+     * coprocessor state to the kernel for KVM or out for
+     * migration. This only needs to be provided if there is also a
+     * readfn and it has side effects (for instance clear-on-read bits).
+     */
+    CPReadFn *raw_readfn;
+    /* Function for doing a "raw" write; used when we need to copy KVM
+     * kernel coprocessor state into userspace, or for inbound
+     * migration. This only needs to be provided if there is also a
+     * writefn and it masks out "unwritable" bits or has write-one-to-clear
+     * or similar behaviour.
+     */
+    CPWriteFn *raw_writefn;
+    /* Function for resetting the register. If NULL, then reset will be done
+     * by writing resetvalue to the field specified in fieldoffset. If
+     * fieldoffset is 0 then no reset will be done.
+     */
+    CPResetFn *resetfn;
+};
+
+/* Macros which are lvalues for the field in CPUARMState for the
+ * ARMCPRegInfo *ri.
+ */
+#define CPREG_FIELD32(env, ri) \
+    (*(uint32_t *)((char *)(env) + (ri)->fieldoffset))
+#define CPREG_FIELD64(env, ri) \
+    (*(uint64_t *)((char *)(env) + (ri)->fieldoffset))
+
+#define REGINFO_SENTINEL { .type = ARM_CP_SENTINEL }
+
+void define_arm_cp_regs_with_opaque(ARMCPU *cpu,
+                                    const ARMCPRegInfo *regs, void *opaque);
+void define_one_arm_cp_reg_with_opaque(ARMCPU *cpu,
+                                       const ARMCPRegInfo *regs, void *opaque);
+static inline void define_arm_cp_regs(ARMCPU *cpu, const ARMCPRegInfo *regs)
+{
+    define_arm_cp_regs_with_opaque(cpu, regs, 0);
+}
+static inline void define_one_arm_cp_reg(ARMCPU *cpu, const ARMCPRegInfo *regs)
+{
+    define_one_arm_cp_reg_with_opaque(cpu, regs, 0);
+}
+const ARMCPRegInfo *get_arm_cp_reginfo(GHashTable *cpregs, uint32_t encoded_cp);
+
+/* CPWriteFn that can be used to implement writes-ignored behaviour */
+void arm_cp_write_ignore(CPUARMState *env, const ARMCPRegInfo *ri,
+                         uint64_t value);
+/* CPReadFn that can be used for read-as-zero behaviour */
+uint64_t arm_cp_read_zero(CPUARMState *env, const ARMCPRegInfo *ri);
+
+/* CPResetFn that does nothing, for use if no reset is required even
+ * if fieldoffset is non zero.
+ */
+void arm_cp_reset_ignore(CPUARMState *env, const ARMCPRegInfo *opaque);
+
+/* Return true if this reginfo struct's field in the cpu state struct
+ * is 64 bits wide.
+ */
+static inline bool cpreg_field_is_64bit(const ARMCPRegInfo *ri)
+{
+    return (ri->state == ARM_CP_STATE_AA64) || (ri->type & ARM_CP_64BIT);
+}
+
+static inline bool cp_access_ok(int current_el,
+                                const ARMCPRegInfo *ri, int isread)
+{
+    return (ri->access >> ((current_el * 2) + isread)) & 1;
+}
+
+/* Raw read of a coprocessor register (as needed for migration, etc) */
+uint64_t read_raw_cp_reg(CPUARMState *env, const ARMCPRegInfo *ri);
+
+/**
+ * write_list_to_cpustate
+ * @cpu: ARMCPU
+ *
+ * For each register listed in the ARMCPU cpreg_indexes list, write
+ * its value from the cpreg_values list into the ARMCPUState structure.
+ * This updates TCG's working data structures from KVM data or
+ * from incoming migration state.
+ *
+ * Returns: true if all register values were updated correctly,
+ * false if some register was unknown or could not be written.
+ * Note that we do not stop early on failure -- we will attempt
+ * writing all registers in the list.
+ */
+bool write_list_to_cpustate(ARMCPU *cpu);
+
+/**
+ * write_cpustate_to_list:
+ * @cpu: ARMCPU
+ *
+ * For each register listed in the ARMCPU cpreg_indexes list, write
+ * its value from the ARMCPUState structure into the cpreg_values list.
+ * This is used to copy info from TCG's working data structures into
+ * KVM or for outbound migration.
+ *
+ * Returns: true if all register values were read correctly,
+ * false if some register was unknown or could not be read.
+ * Note that we do not stop early on failure -- we will attempt
+ * reading all registers in the list.
+ */
+bool write_cpustate_to_list(ARMCPU *cpu);
+
+/* Does the core conform to the "MicroController" profile. e.g. Cortex-M3.
+   Note the M in older cores (eg. ARM7TDMI) stands for Multiply. These are
+   conventional cores (ie. Application or Realtime profile).  */
+
+#define IS_M(env) arm_feature(env, ARM_FEATURE_M)
+
+#define ARM_CPUID_TI915T      0x54029152
+#define ARM_CPUID_TI925T      0x54029252
+
+#if defined(CONFIG_USER_ONLY)
+#define TARGET_PAGE_BITS 12
+#else
+/* ARMv7 and later CPUs have 4K pages minimum, but ARMv5 and v6
+ * have to support 1K tiny pages.
+ */
+#define TARGET_PAGE_BITS_VARY
+#define TARGET_PAGE_BITS_MIN 10
+#endif
+
+#if defined(TARGET_AARCH64)
+#  define TARGET_PHYS_ADDR_SPACE_BITS 48
+#  define TARGET_VIRT_ADDR_SPACE_BITS 64
+#else
+#  define TARGET_PHYS_ADDR_SPACE_BITS 40
+#  define TARGET_VIRT_ADDR_SPACE_BITS 32
+#endif
+
+static inline bool arm_excp_unmasked(CPUState *cs, unsigned int excp_idx,
+                                     unsigned int target_el)
+{
+    CPUARMState *env = cs->env_ptr;
+    unsigned int cur_el = arm_current_el(env);
+    bool secure = arm_is_secure(env);
+    bool pstate_unmasked;
+    int8_t unmasked = 0;
+
+    /* Don't take exceptions if they target a lower EL.
+     * This check should catch any exceptions that would not be taken but left
+     * pending.
+     */
+    if (cur_el > target_el) {
+        return false;
+    }
+
+    switch (excp_idx) {
+    case EXCP_FIQ:
+        pstate_unmasked = !(env->daif & PSTATE_F);
+        break;
+
+    case EXCP_IRQ:
+        pstate_unmasked = !(env->daif & PSTATE_I);
+        break;
+
+    case EXCP_VFIQ:
+        if (secure || !(env->cp15.hcr_el2 & HCR_FMO)) {
+            /* VFIQs are only taken when hypervized and non-secure.  */
+            return false;
+        }
+        return !(env->daif & PSTATE_F);
+    case EXCP_VIRQ:
+        if (secure || !(env->cp15.hcr_el2 & HCR_IMO)) {
+            /* VIRQs are only taken when hypervized and non-secure.  */
+            return false;
+        }
+        return !(env->daif & PSTATE_I);
+    default:
+        g_assert_not_reached();
+    }
+
+    /* Use the target EL, current execution state and SCR/HCR settings to
+     * determine whether the corresponding CPSR bit is used to mask the
+     * interrupt.
+     */
+    if ((target_el > cur_el) && (target_el != 1)) {
+        /* Exceptions targeting a higher EL may not be maskable */
+        if (arm_feature(env, ARM_FEATURE_AARCH64)) {
+            /* 64-bit masking rules are simple: exceptions to EL3
+             * can't be masked, and exceptions to EL2 can only be
+             * masked from Secure state. The HCR and SCR settings
+             * don't affect the masking logic, only the interrupt routing.
+             */
+            if (target_el == 3 || !secure) {
+                unmasked = 1;
+            }
+        } else {
+            /* The old 32-bit-only environment has a more complicated
+             * masking setup. HCR and SCR bits not only affect interrupt
+             * routing but also change the behaviour of masking.
+             */
+            bool hcr, scr;
+
+            switch (excp_idx) {
+            case EXCP_FIQ:
+                /* If FIQs are routed to EL3 or EL2 then there are cases where
+                 * we override the CPSR.F in determining if the exception is
+                 * masked or not. If neither of these are set then we fall back
+                 * to the CPSR.F setting otherwise we further assess the state
+                 * below.
+                 */
+                hcr = (env->cp15.hcr_el2 & HCR_FMO);
+                scr = (env->cp15.scr_el3 & SCR_FIQ);
+
+                /* When EL3 is 32-bit, the SCR.FW bit controls whether the
+                 * CPSR.F bit masks FIQ interrupts when taken in non-secure
+                 * state. If SCR.FW is set then FIQs can be masked by CPSR.F
+                 * when non-secure but only when FIQs are only routed to EL3.
+                 */
+                scr = scr && !((env->cp15.scr_el3 & SCR_FW) && !hcr);
+                break;
+            case EXCP_IRQ:
+                /* When EL3 execution state is 32-bit, if HCR.IMO is set then
+                 * we may override the CPSR.I masking when in non-secure state.
+                 * The SCR.IRQ setting has already been taken into consideration
+                 * when setting the target EL, so it does not have a further
+                 * affect here.
+                 */
+                hcr = (env->cp15.hcr_el2 & HCR_IMO);
+                scr = false;
+                break;
+            default:
+                g_assert_not_reached();
+            }
+
+            if ((scr || hcr) && !secure) {
+                unmasked = 1;
+            }
+        }
+    }
+
+    /* The PSTATE bits only mask the interrupt if we have not overriden the
+     * ability above.
+     */
+    return unmasked || pstate_unmasked;
+}
+
+#define cpu_init(cpu_model) CPU(cpu_arm_init(cpu_model))
+
+#define cpu_signal_handler cpu_arm_signal_handler
+#define cpu_list arm_cpu_list
+
+/* ARM has the following "translation regimes" (as the ARM ARM calls them):
+ *
+ * If EL3 is 64-bit:
+ *  + NonSecure EL1 & 0 stage 1
+ *  + NonSecure EL1 & 0 stage 2
+ *  + NonSecure EL2
+ *  + Secure EL1 & EL0
+ *  + Secure EL3
+ * If EL3 is 32-bit:
+ *  + NonSecure PL1 & 0 stage 1
+ *  + NonSecure PL1 & 0 stage 2
+ *  + NonSecure PL2
+ *  + Secure PL0 & PL1
+ * (reminder: for 32 bit EL3, Secure PL1 is *EL3*, not EL1.)
+ *
+ * For QEMU, an mmu_idx is not quite the same as a translation regime because:
+ *  1. we need to split the "EL1 & 0" regimes into two mmu_idxes, because they
+ *     may differ in access permissions even if the VA->PA map is the same
+ *  2. we want to cache in our TLB the full VA->IPA->PA lookup for a stage 1+2
+ *     translation, which means that we have one mmu_idx that deals with two
+ *     concatenated translation regimes [this sort of combined s1+2 TLB is
+ *     architecturally permitted]
+ *  3. we don't need to allocate an mmu_idx to translations that we won't be
+ *     handling via the TLB. The only way to do a stage 1 translation without
+ *     the immediate stage 2 translation is via the ATS or AT system insns,
+ *     which can be slow-pathed and always do a page table walk.
+ *  4. we can also safely fold together the "32 bit EL3" and "64 bit EL3"
+ *     translation regimes, because they map reasonably well to each other
+ *     and they can't both be active at the same time.
+ * This gives us the following list of mmu_idx values:
+ *
+ * NS EL0 (aka NS PL0) stage 1+2
+ * NS EL1 (aka NS PL1) stage 1+2
+ * NS EL2 (aka NS PL2)
+ * S EL3 (aka S PL1)
+ * S EL0 (aka S PL0)
+ * S EL1 (not used if EL3 is 32 bit)
+ * NS EL0+1 stage 2
+ *
+ * (The last of these is an mmu_idx because we want to be able to use the TLB
+ * for the accesses done as part of a stage 1 page table walk, rather than
+ * having to walk the stage 2 page table over and over.)
+ *
+ * Our enumeration includes at the end some entries which are not "true"
+ * mmu_idx values in that they don't have corresponding TLBs and are only
+ * valid for doing slow path page table walks.
+ *
+ * The constant names here are patterned after the general style of the names
+ * of the AT/ATS operations.
+ * The values used are carefully arranged to make mmu_idx => EL lookup easy.
+ */
+typedef enum ARMMMUIdx {
+    ARMMMUIdx_S12NSE0 = 0,
+    ARMMMUIdx_S12NSE1 = 1,
+    ARMMMUIdx_S1E2 = 2,
+    ARMMMUIdx_S1E3 = 3,
+    ARMMMUIdx_S1SE0 = 4,
+    ARMMMUIdx_S1SE1 = 5,
+    ARMMMUIdx_S2NS = 6,
+    /* Indexes below here don't have TLBs and are used only for AT system
+     * instructions or for the first stage of an S12 page table walk.
+     */
+    ARMMMUIdx_S1NSE0 = 7,
+    ARMMMUIdx_S1NSE1 = 8,
+} ARMMMUIdx;
+
+#define MMU_USER_IDX 0
+
+/* Return the exception level we're running at if this is our mmu_idx */
+static inline int arm_mmu_idx_to_el(ARMMMUIdx mmu_idx)
+{
+    assert(mmu_idx < ARMMMUIdx_S2NS);
+    return mmu_idx & 3;
+}
+
+/* Determine the current mmu_idx to use for normal loads/stores */
+static inline int cpu_mmu_index(CPUARMState *env, bool ifetch)
+{
+    int el = arm_current_el(env);
+
+    if (el < 2 && arm_is_secure_below_el3(env)) {
+        return ARMMMUIdx_S1SE0 + el;
+    }
+    return el;
+}
+
+/* Indexes used when registering address spaces with cpu_address_space_init */
+typedef enum ARMASIdx {
+    ARMASIdx_NS = 0,
+    ARMASIdx_S = 1,
+} ARMASIdx;
+
+/* Return the Exception Level targeted by debug exceptions. */
+static inline int arm_debug_target_el(CPUARMState *env)
+{
+    bool secure = arm_is_secure(env);
+    bool route_to_el2 = false;
+
+    if (arm_feature(env, ARM_FEATURE_EL2) && !secure) {
+        route_to_el2 = env->cp15.hcr_el2 & HCR_TGE ||
+                       env->cp15.mdcr_el2 & (1 << 8);
+    }
+
+    if (route_to_el2) {
+        return 2;
+    } else if (arm_feature(env, ARM_FEATURE_EL3) &&
+               !arm_el_is_aa64(env, 3) && secure) {
+        return 3;
+    } else {
+        return 1;
+    }
+}
+
+static inline bool aa64_generate_debug_exceptions(CPUARMState *env)
+{
+    if (arm_is_secure(env)) {
+        /* MDCR_EL3.SDD disables debug events from Secure state */
+        if (extract32(env->cp15.mdcr_el3, 16, 1) != 0
+            || arm_current_el(env) == 3) {
+            return false;
+        }
+    }
+
+    if (arm_current_el(env) == arm_debug_target_el(env)) {
+        if ((extract32(env->cp15.mdscr_el1, 13, 1) == 0)
+            || (env->daif & PSTATE_D)) {
+            return false;
+        }
+    }
+    return true;
+}
+
+static inline bool aa32_generate_debug_exceptions(CPUARMState *env)
+{
+    int el = arm_current_el(env);
+
+    if (el == 0 && arm_el_is_aa64(env, 1)) {
+        return aa64_generate_debug_exceptions(env);
+    }
+
+    if (arm_is_secure(env)) {
+        int spd;
+
+        if (el == 0 && (env->cp15.sder & 1)) {
+            /* SDER.SUIDEN means debug exceptions from Secure EL0
+             * are always enabled. Otherwise they are controlled by
+             * SDCR.SPD like those from other Secure ELs.
+             */
+            return true;
+        }
+
+        spd = extract32(env->cp15.mdcr_el3, 14, 2);
+        switch (spd) {
+        case 1:
+            /* SPD == 0b01 is reserved, but behaves as 0b00. */
+        case 0:
+            /* For 0b00 we return true if external secure invasive debug
+             * is enabled. On real hardware this is controlled by external
+             * signals to the core. QEMU always permits debug, and behaves
+             * as if DBGEN, SPIDEN, NIDEN and SPNIDEN are all tied high.
+             */
+            return true;
+        case 2:
+            return false;
+        case 3:
+            return true;
+        }
+    }
+
+    return el != 2;
+}
+
+/* Return true if debugging exceptions are currently enabled.
+ * This corresponds to what in ARM ARM pseudocode would be
+ *    if UsingAArch32() then
+ *        return AArch32.GenerateDebugExceptions()
+ *    else
+ *        return AArch64.GenerateDebugExceptions()
+ * We choose to push the if() down into this function for clarity,
+ * since the pseudocode has it at all callsites except for the one in
+ * CheckSoftwareStep(), where it is elided because both branches would
+ * always return the same value.
+ *
+ * Parts of the pseudocode relating to EL2 and EL3 are omitted because we
+ * don't yet implement those exception levels or their associated trap bits.
+ */
+static inline bool arm_generate_debug_exceptions(CPUARMState *env)
+{
+    if (env->aarch64) {
+        return aa64_generate_debug_exceptions(env);
+    } else {
+        return aa32_generate_debug_exceptions(env);
+    }
+}
+
+/* Is single-stepping active? (Note that the "is EL_D AArch64?" check
+ * implicitly means this always returns false in pre-v8 CPUs.)
+ */
+static inline bool arm_singlestep_active(CPUARMState *env)
+{
+    return extract32(env->cp15.mdscr_el1, 0, 1)
+        && arm_el_is_aa64(env, arm_debug_target_el(env))
+        && arm_generate_debug_exceptions(env);
+}
+
+static inline bool arm_sctlr_b(CPUARMState *env)
+{
+    return
+        /* We need not implement SCTLR.ITD in user-mode emulation, so
+         * let linux-user ignore the fact that it conflicts with SCTLR_B.
+         * This lets people run BE32 binaries with "-cpu any".
+         */
+#ifndef CONFIG_USER_ONLY
+        !arm_feature(env, ARM_FEATURE_V7) &&
+#endif
+        (env->cp15.sctlr_el[1] & SCTLR_B) != 0;
+}
+
+/* Return true if the processor is in big-endian mode. */
+static inline bool arm_cpu_data_is_big_endian(CPUARMState *env)
+{
+    int cur_el;
+
+    /* In 32bit endianness is determined by looking at CPSR's E bit */
+    if (!is_a64(env)) {
+        return
+#ifdef CONFIG_USER_ONLY
+            /* In system mode, BE32 is modelled in line with the
+             * architecture (as word-invariant big-endianness), where loads
+             * and stores are done little endian but from addresses which
+             * are adjusted by XORing with the appropriate constant. So the
+             * endianness to use for the raw data access is not affected by
+             * SCTLR.B.
+             * In user mode, however, we model BE32 as byte-invariant
+             * big-endianness (because user-only code cannot tell the
+             * difference), and so we need to use a data access endianness
+             * that depends on SCTLR.B.
+             */
+            arm_sctlr_b(env) ||
+#endif
+                ((env->uncached_cpsr & CPSR_E) ? 1 : 0);
+    }
+
+    cur_el = arm_current_el(env);
+
+    if (cur_el == 0) {
+        return (env->cp15.sctlr_el[1] & SCTLR_E0E) != 0;
+    }
+
+    return (env->cp15.sctlr_el[cur_el] & SCTLR_EE) != 0;
+}
+
+#include "exec/cpu-all.h"
+
+/* Bit usage in the TB flags field: bit 31 indicates whether we are
+ * in 32 or 64 bit mode. The meaning of the other bits depends on that.
+ * We put flags which are shared between 32 and 64 bit mode at the top
+ * of the word, and flags which apply to only one mode at the bottom.
+ */
+#define ARM_TBFLAG_AARCH64_STATE_SHIFT 31
+#define ARM_TBFLAG_AARCH64_STATE_MASK  (1U << ARM_TBFLAG_AARCH64_STATE_SHIFT)
+#define ARM_TBFLAG_MMUIDX_SHIFT 28
+#define ARM_TBFLAG_MMUIDX_MASK (0x7 << ARM_TBFLAG_MMUIDX_SHIFT)
+#define ARM_TBFLAG_SS_ACTIVE_SHIFT 27
+#define ARM_TBFLAG_SS_ACTIVE_MASK (1 << ARM_TBFLAG_SS_ACTIVE_SHIFT)
+#define ARM_TBFLAG_PSTATE_SS_SHIFT 26
+#define ARM_TBFLAG_PSTATE_SS_MASK (1 << ARM_TBFLAG_PSTATE_SS_SHIFT)
+/* Target EL if we take a floating-point-disabled exception */
+#define ARM_TBFLAG_FPEXC_EL_SHIFT 24
+#define ARM_TBFLAG_FPEXC_EL_MASK (0x3 << ARM_TBFLAG_FPEXC_EL_SHIFT)
+
+/* Bit usage when in AArch32 state: */
+#define ARM_TBFLAG_THUMB_SHIFT      0
+#define ARM_TBFLAG_THUMB_MASK       (1 << ARM_TBFLAG_THUMB_SHIFT)
+#define ARM_TBFLAG_VECLEN_SHIFT     1
+#define ARM_TBFLAG_VECLEN_MASK      (0x7 << ARM_TBFLAG_VECLEN_SHIFT)
+#define ARM_TBFLAG_VECSTRIDE_SHIFT  4
+#define ARM_TBFLAG_VECSTRIDE_MASK   (0x3 << ARM_TBFLAG_VECSTRIDE_SHIFT)
+#define ARM_TBFLAG_VFPEN_SHIFT      7
+#define ARM_TBFLAG_VFPEN_MASK       (1 << ARM_TBFLAG_VFPEN_SHIFT)
+#define ARM_TBFLAG_CONDEXEC_SHIFT   8
+#define ARM_TBFLAG_CONDEXEC_MASK    (0xff << ARM_TBFLAG_CONDEXEC_SHIFT)
+#define ARM_TBFLAG_SCTLR_B_SHIFT    16
+#define ARM_TBFLAG_SCTLR_B_MASK     (1 << ARM_TBFLAG_SCTLR_B_SHIFT)
+/* We store the bottom two bits of the CPAR as TB flags and handle
+ * checks on the other bits at runtime
+ */
+#define ARM_TBFLAG_XSCALE_CPAR_SHIFT 17
+#define ARM_TBFLAG_XSCALE_CPAR_MASK (3 << ARM_TBFLAG_XSCALE_CPAR_SHIFT)
+/* Indicates whether cp register reads and writes by guest code should access
+ * the secure or nonsecure bank of banked registers; note that this is not
+ * the same thing as the current security state of the processor!
+ */
+#define ARM_TBFLAG_NS_SHIFT         19
+#define ARM_TBFLAG_NS_MASK          (1 << ARM_TBFLAG_NS_SHIFT)
+#define ARM_TBFLAG_BE_DATA_SHIFT    20
+#define ARM_TBFLAG_BE_DATA_MASK     (1 << ARM_TBFLAG_BE_DATA_SHIFT)
+
+/* Bit usage when in AArch64 state */
+#define ARM_TBFLAG_TBI0_SHIFT 0        /* TBI0 for EL0/1 or TBI for EL2/3 */
+#define ARM_TBFLAG_TBI0_MASK (0x1ull << ARM_TBFLAG_TBI0_SHIFT)
+#define ARM_TBFLAG_TBI1_SHIFT 1        /* TBI1 for EL0/1  */
+#define ARM_TBFLAG_TBI1_MASK (0x1ull << ARM_TBFLAG_TBI1_SHIFT)
+
+/* some convenience accessor macros */
+#define ARM_TBFLAG_AARCH64_STATE(F) \
+    (((F) & ARM_TBFLAG_AARCH64_STATE_MASK) >> ARM_TBFLAG_AARCH64_STATE_SHIFT)
+#define ARM_TBFLAG_MMUIDX(F) \
+    (((F) & ARM_TBFLAG_MMUIDX_MASK) >> ARM_TBFLAG_MMUIDX_SHIFT)
+#define ARM_TBFLAG_SS_ACTIVE(F) \
+    (((F) & ARM_TBFLAG_SS_ACTIVE_MASK) >> ARM_TBFLAG_SS_ACTIVE_SHIFT)
+#define ARM_TBFLAG_PSTATE_SS(F) \
+    (((F) & ARM_TBFLAG_PSTATE_SS_MASK) >> ARM_TBFLAG_PSTATE_SS_SHIFT)
+#define ARM_TBFLAG_FPEXC_EL(F) \
+    (((F) & ARM_TBFLAG_FPEXC_EL_MASK) >> ARM_TBFLAG_FPEXC_EL_SHIFT)
+#define ARM_TBFLAG_THUMB(F) \
+    (((F) & ARM_TBFLAG_THUMB_MASK) >> ARM_TBFLAG_THUMB_SHIFT)
+#define ARM_TBFLAG_VECLEN(F) \
+    (((F) & ARM_TBFLAG_VECLEN_MASK) >> ARM_TBFLAG_VECLEN_SHIFT)
+#define ARM_TBFLAG_VECSTRIDE(F) \
+    (((F) & ARM_TBFLAG_VECSTRIDE_MASK) >> ARM_TBFLAG_VECSTRIDE_SHIFT)
+#define ARM_TBFLAG_VFPEN(F) \
+    (((F) & ARM_TBFLAG_VFPEN_MASK) >> ARM_TBFLAG_VFPEN_SHIFT)
+#define ARM_TBFLAG_CONDEXEC(F) \
+    (((F) & ARM_TBFLAG_CONDEXEC_MASK) >> ARM_TBFLAG_CONDEXEC_SHIFT)
+#define ARM_TBFLAG_SCTLR_B(F) \
+    (((F) & ARM_TBFLAG_SCTLR_B_MASK) >> ARM_TBFLAG_SCTLR_B_SHIFT)
+#define ARM_TBFLAG_XSCALE_CPAR(F) \
+    (((F) & ARM_TBFLAG_XSCALE_CPAR_MASK) >> ARM_TBFLAG_XSCALE_CPAR_SHIFT)
+#define ARM_TBFLAG_NS(F) \
+    (((F) & ARM_TBFLAG_NS_MASK) >> ARM_TBFLAG_NS_SHIFT)
+#define ARM_TBFLAG_BE_DATA(F) \
+    (((F) & ARM_TBFLAG_BE_DATA_MASK) >> ARM_TBFLAG_BE_DATA_SHIFT)
+#define ARM_TBFLAG_TBI0(F) \
+    (((F) & ARM_TBFLAG_TBI0_MASK) >> ARM_TBFLAG_TBI0_SHIFT)
+#define ARM_TBFLAG_TBI1(F) \
+    (((F) & ARM_TBFLAG_TBI1_MASK) >> ARM_TBFLAG_TBI1_SHIFT)
+
+static inline bool bswap_code(bool sctlr_b)
+{
+#ifdef CONFIG_USER_ONLY
+    /* BE8 (SCTLR.B = 0, TARGET_WORDS_BIGENDIAN = 1) is mixed endian.
+     * The invalid combination SCTLR.B=1/CPSR.E=1/TARGET_WORDS_BIGENDIAN=0
+     * would also end up as a mixed-endian mode with BE code, LE data.
+     */
+    return
+#ifdef TARGET_WORDS_BIGENDIAN
+        1 ^
+#endif
+        sctlr_b;
+#else
+    /* All code access in ARM is little endian, and there are no loaders
+     * doing swaps that need to be reversed
+     */
+    return 0;
+#endif
+}
+
+/* Return the exception level to which FP-disabled exceptions should
+ * be taken, or 0 if FP is enabled.
+ */
+static inline int fp_exception_el(CPUARMState *env)
+{
+    int fpen;
+    int cur_el = arm_current_el(env);
+
+    /* CPACR and the CPTR registers don't exist before v6, so FP is
+     * always accessible
+     */
+    if (!arm_feature(env, ARM_FEATURE_V6)) {
+        return 0;
+    }
+
+    /* The CPACR controls traps to EL1, or PL1 if we're 32 bit:
+     * 0, 2 : trap EL0 and EL1/PL1 accesses
+     * 1    : trap only EL0 accesses
+     * 3    : trap no accesses
+     */
+    fpen = extract32(env->cp15.cpacr_el1, 20, 2);
+    switch (fpen) {
+    case 0:
+    case 2:
+        if (cur_el == 0 || cur_el == 1) {
+            /* Trap to PL1, which might be EL1 or EL3 */
+            if (arm_is_secure(env) && !arm_el_is_aa64(env, 3)) {
+                return 3;
+            }
+            return 1;
+        }
+        if (cur_el == 3 && !is_a64(env)) {
+            /* Secure PL1 running at EL3 */
+            return 3;
+        }
+        break;
+    case 1:
+        if (cur_el == 0) {
+            return 1;
+        }
+        break;
+    case 3:
+        break;
+    }
+
+    /* For the CPTR registers we don't need to guard with an ARM_FEATURE
+     * check because zero bits in the registers mean "don't trap".
+     */
+
+    /* CPTR_EL2 : present in v7VE or v8 */
+    if (cur_el <= 2 && extract32(env->cp15.cptr_el[2], 10, 1)
+        && !arm_is_secure_below_el3(env)) {
+        /* Trap FP ops at EL2, NS-EL1 or NS-EL0 to EL2 */
+        return 2;
+    }
+
+    /* CPTR_EL3 : present in v8 */
+    if (extract32(env->cp15.cptr_el[3], 10, 1)) {
+        /* Trap all FP ops to EL3 */
+        return 3;
+    }
+
+    return 0;
+}
+
+#ifdef CONFIG_USER_ONLY
+static inline bool arm_cpu_bswap_data(CPUARMState *env)
+{
+    return
+#ifdef TARGET_WORDS_BIGENDIAN
+       1 ^
+#endif
+       arm_cpu_data_is_big_endian(env);
+}
+#endif
+
+#ifndef CONFIG_USER_ONLY
+/**
+ * arm_regime_tbi0:
+ * @env: CPUARMState
+ * @mmu_idx: MMU index indicating required translation regime
+ *
+ * Extracts the TBI0 value from the appropriate TCR for the current EL
+ *
+ * Returns: the TBI0 value.
+ */
+uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx);
+
+/**
+ * arm_regime_tbi1:
+ * @env: CPUARMState
+ * @mmu_idx: MMU index indicating required translation regime
+ *
+ * Extracts the TBI1 value from the appropriate TCR for the current EL
+ *
+ * Returns: the TBI1 value.
+ */
+uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx);
+#else
+/* We can't handle tagged addresses properly in user-only mode */
+static inline uint32_t arm_regime_tbi0(CPUARMState *env, ARMMMUIdx mmu_idx)
+{
+    return 0;
+}
+
+static inline uint32_t arm_regime_tbi1(CPUARMState *env, ARMMMUIdx mmu_idx)
+{
+    return 0;
+}
+#endif
+
+static inline void cpu_get_tb_cpu_state(CPUARMState *env, target_ulong *pc,
+                                        target_ulong *cs_base, uint32_t *flags)
+{
+    ARMMMUIdx mmu_idx = cpu_mmu_index(env, false);
+    if (is_a64(env)) {
+        *pc = env->pc;
+        *flags = ARM_TBFLAG_AARCH64_STATE_MASK;
+        /* Get control bits for tagged addresses */
+        *flags |= (arm_regime_tbi0(env, mmu_idx) << ARM_TBFLAG_TBI0_SHIFT);
+        *flags |= (arm_regime_tbi1(env, mmu_idx) << ARM_TBFLAG_TBI1_SHIFT);
+    } else {
+        *pc = env->regs[15];
+        *flags = (env->thumb << ARM_TBFLAG_THUMB_SHIFT)
+            | (env->vfp.vec_len << ARM_TBFLAG_VECLEN_SHIFT)
+            | (env->vfp.vec_stride << ARM_TBFLAG_VECSTRIDE_SHIFT)
+            | (env->condexec_bits << ARM_TBFLAG_CONDEXEC_SHIFT)
+            | (arm_sctlr_b(env) << ARM_TBFLAG_SCTLR_B_SHIFT);
+        if (!(access_secure_reg(env))) {
+            *flags |= ARM_TBFLAG_NS_MASK;
+        }
+        if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30)
+            || arm_el_is_aa64(env, 1)) {
+            *flags |= ARM_TBFLAG_VFPEN_MASK;
+        }
+        *flags |= (extract32(env->cp15.c15_cpar, 0, 2)
+                   << ARM_TBFLAG_XSCALE_CPAR_SHIFT);
+    }
+
+    *flags |= (mmu_idx << ARM_TBFLAG_MMUIDX_SHIFT);
+
+    /* The SS_ACTIVE and PSTATE_SS bits correspond to the state machine
+     * states defined in the ARM ARM for software singlestep:
+     *  SS_ACTIVE   PSTATE.SS   State
+     *     0            x       Inactive (the TB flag for SS is always 0)
+     *     1            0       Active-pending
+     *     1            1       Active-not-pending
+     */
+    if (arm_singlestep_active(env)) {
+        *flags |= ARM_TBFLAG_SS_ACTIVE_MASK;
+        if (is_a64(env)) {
+            if (env->pstate & PSTATE_SS) {
+                *flags |= ARM_TBFLAG_PSTATE_SS_MASK;
+            }
+        } else {
+            if (env->uncached_cpsr & PSTATE_SS) {
+                *flags |= ARM_TBFLAG_PSTATE_SS_MASK;
+            }
+        }
+    }
+    if (arm_cpu_data_is_big_endian(env)) {
+        *flags |= ARM_TBFLAG_BE_DATA_MASK;
+    }
+    *flags |= fp_exception_el(env) << ARM_TBFLAG_FPEXC_EL_SHIFT;
+
+    *cs_base = 0;
+}
+
+enum {
+    QEMU_PSCI_CONDUIT_DISABLED = 0,
+    QEMU_PSCI_CONDUIT_SMC = 1,
+    QEMU_PSCI_CONDUIT_HVC = 2,
+};
+
+#ifndef CONFIG_USER_ONLY
+/* Return the address space index to use for a memory access */
+static inline int arm_asidx_from_attrs(CPUState *cs, MemTxAttrs attrs)
+{
+    return attrs.secure ? ARMASIdx_S : ARMASIdx_NS;
+}
+
+/* Return the AddressSpace to use for a memory access
+ * (which depends on whether the access is S or NS, and whether
+ * the board gave us a separate AddressSpace for S accesses).
+ */
+static inline AddressSpace *arm_addressspace(CPUState *cs, MemTxAttrs attrs)
+{
+    return cpu_get_address_space(cs, arm_asidx_from_attrs(cs, attrs));
+}
+#endif
+
+/**
+ * arm_register_el_change_hook:
+ * Register a hook function which will be called back whenever this
+ * CPU changes exception level or mode. The hook function will be
+ * passed a pointer to the ARMCPU and the opaque data pointer passed
+ * to this function when the hook was registered.
+ *
+ * Note that we currently only support registering a single hook function,
+ * and will assert if this function is called twice.
+ * This facility is intended for the use of the GICv3 emulation.
+ */
+void arm_register_el_change_hook(ARMCPU *cpu, ARMELChangeHook *hook,
+                                 void *opaque);
+
+/**
+ * arm_get_el_change_hook_opaque:
+ * Return the opaque data that will be used by the el_change_hook
+ * for this CPU.
+ */
+static inline void *arm_get_el_change_hook_opaque(ARMCPU *cpu)
+{
+    return cpu->el_change_hook_opaque;
+}
+
+#endif