summary refs log tree commit diff stats
path: root/target/arm/helper-a64.c
diff options
context:
space:
mode:
Diffstat (limited to 'target/arm/helper-a64.c')
-rw-r--r--target/arm/helper-a64.c559
1 files changed, 559 insertions, 0 deletions
diff --git a/target/arm/helper-a64.c b/target/arm/helper-a64.c
new file mode 100644
index 0000000000..98b97df461
--- /dev/null
+++ b/target/arm/helper-a64.c
@@ -0,0 +1,559 @@
+/*
+ *  AArch64 specific helpers
+ *
+ *  Copyright (c) 2013 Alexander Graf <agraf@suse.de>
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, see <http://www.gnu.org/licenses/>.
+ */
+
+#include "qemu/osdep.h"
+#include "cpu.h"
+#include "exec/gdbstub.h"
+#include "exec/helper-proto.h"
+#include "qemu/host-utils.h"
+#include "qemu/log.h"
+#include "sysemu/sysemu.h"
+#include "qemu/bitops.h"
+#include "internals.h"
+#include "qemu/crc32c.h"
+#include "exec/exec-all.h"
+#include "exec/cpu_ldst.h"
+#include "qemu/int128.h"
+#include "tcg.h"
+#include <zlib.h> /* For crc32 */
+
+/* C2.4.7 Multiply and divide */
+/* special cases for 0 and LLONG_MIN are mandated by the standard */
+uint64_t HELPER(udiv64)(uint64_t num, uint64_t den)
+{
+    if (den == 0) {
+        return 0;
+    }
+    return num / den;
+}
+
+int64_t HELPER(sdiv64)(int64_t num, int64_t den)
+{
+    if (den == 0) {
+        return 0;
+    }
+    if (num == LLONG_MIN && den == -1) {
+        return LLONG_MIN;
+    }
+    return num / den;
+}
+
+uint64_t HELPER(clz64)(uint64_t x)
+{
+    return clz64(x);
+}
+
+uint64_t HELPER(cls64)(uint64_t x)
+{
+    return clrsb64(x);
+}
+
+uint32_t HELPER(cls32)(uint32_t x)
+{
+    return clrsb32(x);
+}
+
+uint32_t HELPER(clz32)(uint32_t x)
+{
+    return clz32(x);
+}
+
+uint64_t HELPER(rbit64)(uint64_t x)
+{
+    return revbit64(x);
+}
+
+/* Convert a softfloat float_relation_ (as returned by
+ * the float*_compare functions) to the correct ARM
+ * NZCV flag state.
+ */
+static inline uint32_t float_rel_to_flags(int res)
+{
+    uint64_t flags;
+    switch (res) {
+    case float_relation_equal:
+        flags = PSTATE_Z | PSTATE_C;
+        break;
+    case float_relation_less:
+        flags = PSTATE_N;
+        break;
+    case float_relation_greater:
+        flags = PSTATE_C;
+        break;
+    case float_relation_unordered:
+    default:
+        flags = PSTATE_C | PSTATE_V;
+        break;
+    }
+    return flags;
+}
+
+uint64_t HELPER(vfp_cmps_a64)(float32 x, float32 y, void *fp_status)
+{
+    return float_rel_to_flags(float32_compare_quiet(x, y, fp_status));
+}
+
+uint64_t HELPER(vfp_cmpes_a64)(float32 x, float32 y, void *fp_status)
+{
+    return float_rel_to_flags(float32_compare(x, y, fp_status));
+}
+
+uint64_t HELPER(vfp_cmpd_a64)(float64 x, float64 y, void *fp_status)
+{
+    return float_rel_to_flags(float64_compare_quiet(x, y, fp_status));
+}
+
+uint64_t HELPER(vfp_cmped_a64)(float64 x, float64 y, void *fp_status)
+{
+    return float_rel_to_flags(float64_compare(x, y, fp_status));
+}
+
+float32 HELPER(vfp_mulxs)(float32 a, float32 b, void *fpstp)
+{
+    float_status *fpst = fpstp;
+
+    a = float32_squash_input_denormal(a, fpst);
+    b = float32_squash_input_denormal(b, fpst);
+
+    if ((float32_is_zero(a) && float32_is_infinity(b)) ||
+        (float32_is_infinity(a) && float32_is_zero(b))) {
+        /* 2.0 with the sign bit set to sign(A) XOR sign(B) */
+        return make_float32((1U << 30) |
+                            ((float32_val(a) ^ float32_val(b)) & (1U << 31)));
+    }
+    return float32_mul(a, b, fpst);
+}
+
+float64 HELPER(vfp_mulxd)(float64 a, float64 b, void *fpstp)
+{
+    float_status *fpst = fpstp;
+
+    a = float64_squash_input_denormal(a, fpst);
+    b = float64_squash_input_denormal(b, fpst);
+
+    if ((float64_is_zero(a) && float64_is_infinity(b)) ||
+        (float64_is_infinity(a) && float64_is_zero(b))) {
+        /* 2.0 with the sign bit set to sign(A) XOR sign(B) */
+        return make_float64((1ULL << 62) |
+                            ((float64_val(a) ^ float64_val(b)) & (1ULL << 63)));
+    }
+    return float64_mul(a, b, fpst);
+}
+
+uint64_t HELPER(simd_tbl)(CPUARMState *env, uint64_t result, uint64_t indices,
+                          uint32_t rn, uint32_t numregs)
+{
+    /* Helper function for SIMD TBL and TBX. We have to do the table
+     * lookup part for the 64 bits worth of indices we're passed in.
+     * result is the initial results vector (either zeroes for TBL
+     * or some guest values for TBX), rn the register number where
+     * the table starts, and numregs the number of registers in the table.
+     * We return the results of the lookups.
+     */
+    int shift;
+
+    for (shift = 0; shift < 64; shift += 8) {
+        int index = extract64(indices, shift, 8);
+        if (index < 16 * numregs) {
+            /* Convert index (a byte offset into the virtual table
+             * which is a series of 128-bit vectors concatenated)
+             * into the correct vfp.regs[] element plus a bit offset
+             * into that element, bearing in mind that the table
+             * can wrap around from V31 to V0.
+             */
+            int elt = (rn * 2 + (index >> 3)) % 64;
+            int bitidx = (index & 7) * 8;
+            uint64_t val = extract64(env->vfp.regs[elt], bitidx, 8);
+
+            result = deposit64(result, shift, 8, val);
+        }
+    }
+    return result;
+}
+
+/* 64bit/double versions of the neon float compare functions */
+uint64_t HELPER(neon_ceq_f64)(float64 a, float64 b, void *fpstp)
+{
+    float_status *fpst = fpstp;
+    return -float64_eq_quiet(a, b, fpst);
+}
+
+uint64_t HELPER(neon_cge_f64)(float64 a, float64 b, void *fpstp)
+{
+    float_status *fpst = fpstp;
+    return -float64_le(b, a, fpst);
+}
+
+uint64_t HELPER(neon_cgt_f64)(float64 a, float64 b, void *fpstp)
+{
+    float_status *fpst = fpstp;
+    return -float64_lt(b, a, fpst);
+}
+
+/* Reciprocal step and sqrt step. Note that unlike the A32/T32
+ * versions, these do a fully fused multiply-add or
+ * multiply-add-and-halve.
+ */
+#define float32_two make_float32(0x40000000)
+#define float32_three make_float32(0x40400000)
+#define float32_one_point_five make_float32(0x3fc00000)
+
+#define float64_two make_float64(0x4000000000000000ULL)
+#define float64_three make_float64(0x4008000000000000ULL)
+#define float64_one_point_five make_float64(0x3FF8000000000000ULL)
+
+float32 HELPER(recpsf_f32)(float32 a, float32 b, void *fpstp)
+{
+    float_status *fpst = fpstp;
+
+    a = float32_squash_input_denormal(a, fpst);
+    b = float32_squash_input_denormal(b, fpst);
+
+    a = float32_chs(a);
+    if ((float32_is_infinity(a) && float32_is_zero(b)) ||
+        (float32_is_infinity(b) && float32_is_zero(a))) {
+        return float32_two;
+    }
+    return float32_muladd(a, b, float32_two, 0, fpst);
+}
+
+float64 HELPER(recpsf_f64)(float64 a, float64 b, void *fpstp)
+{
+    float_status *fpst = fpstp;
+
+    a = float64_squash_input_denormal(a, fpst);
+    b = float64_squash_input_denormal(b, fpst);
+
+    a = float64_chs(a);
+    if ((float64_is_infinity(a) && float64_is_zero(b)) ||
+        (float64_is_infinity(b) && float64_is_zero(a))) {
+        return float64_two;
+    }
+    return float64_muladd(a, b, float64_two, 0, fpst);
+}
+
+float32 HELPER(rsqrtsf_f32)(float32 a, float32 b, void *fpstp)
+{
+    float_status *fpst = fpstp;
+
+    a = float32_squash_input_denormal(a, fpst);
+    b = float32_squash_input_denormal(b, fpst);
+
+    a = float32_chs(a);
+    if ((float32_is_infinity(a) && float32_is_zero(b)) ||
+        (float32_is_infinity(b) && float32_is_zero(a))) {
+        return float32_one_point_five;
+    }
+    return float32_muladd(a, b, float32_three, float_muladd_halve_result, fpst);
+}
+
+float64 HELPER(rsqrtsf_f64)(float64 a, float64 b, void *fpstp)
+{
+    float_status *fpst = fpstp;
+
+    a = float64_squash_input_denormal(a, fpst);
+    b = float64_squash_input_denormal(b, fpst);
+
+    a = float64_chs(a);
+    if ((float64_is_infinity(a) && float64_is_zero(b)) ||
+        (float64_is_infinity(b) && float64_is_zero(a))) {
+        return float64_one_point_five;
+    }
+    return float64_muladd(a, b, float64_three, float_muladd_halve_result, fpst);
+}
+
+/* Pairwise long add: add pairs of adjacent elements into
+ * double-width elements in the result (eg _s8 is an 8x8->16 op)
+ */
+uint64_t HELPER(neon_addlp_s8)(uint64_t a)
+{
+    uint64_t nsignmask = 0x0080008000800080ULL;
+    uint64_t wsignmask = 0x8000800080008000ULL;
+    uint64_t elementmask = 0x00ff00ff00ff00ffULL;
+    uint64_t tmp1, tmp2;
+    uint64_t res, signres;
+
+    /* Extract odd elements, sign extend each to a 16 bit field */
+    tmp1 = a & elementmask;
+    tmp1 ^= nsignmask;
+    tmp1 |= wsignmask;
+    tmp1 = (tmp1 - nsignmask) ^ wsignmask;
+    /* Ditto for the even elements */
+    tmp2 = (a >> 8) & elementmask;
+    tmp2 ^= nsignmask;
+    tmp2 |= wsignmask;
+    tmp2 = (tmp2 - nsignmask) ^ wsignmask;
+
+    /* calculate the result by summing bits 0..14, 16..22, etc,
+     * and then adjusting the sign bits 15, 23, etc manually.
+     * This ensures the addition can't overflow the 16 bit field.
+     */
+    signres = (tmp1 ^ tmp2) & wsignmask;
+    res = (tmp1 & ~wsignmask) + (tmp2 & ~wsignmask);
+    res ^= signres;
+
+    return res;
+}
+
+uint64_t HELPER(neon_addlp_u8)(uint64_t a)
+{
+    uint64_t tmp;
+
+    tmp = a & 0x00ff00ff00ff00ffULL;
+    tmp += (a >> 8) & 0x00ff00ff00ff00ffULL;
+    return tmp;
+}
+
+uint64_t HELPER(neon_addlp_s16)(uint64_t a)
+{
+    int32_t reslo, reshi;
+
+    reslo = (int32_t)(int16_t)a + (int32_t)(int16_t)(a >> 16);
+    reshi = (int32_t)(int16_t)(a >> 32) + (int32_t)(int16_t)(a >> 48);
+
+    return (uint32_t)reslo | (((uint64_t)reshi) << 32);
+}
+
+uint64_t HELPER(neon_addlp_u16)(uint64_t a)
+{
+    uint64_t tmp;
+
+    tmp = a & 0x0000ffff0000ffffULL;
+    tmp += (a >> 16) & 0x0000ffff0000ffffULL;
+    return tmp;
+}
+
+/* Floating-point reciprocal exponent - see FPRecpX in ARM ARM */
+float32 HELPER(frecpx_f32)(float32 a, void *fpstp)
+{
+    float_status *fpst = fpstp;
+    uint32_t val32, sbit;
+    int32_t exp;
+
+    if (float32_is_any_nan(a)) {
+        float32 nan = a;
+        if (float32_is_signaling_nan(a, fpst)) {
+            float_raise(float_flag_invalid, fpst);
+            nan = float32_maybe_silence_nan(a, fpst);
+        }
+        if (fpst->default_nan_mode) {
+            nan = float32_default_nan(fpst);
+        }
+        return nan;
+    }
+
+    val32 = float32_val(a);
+    sbit = 0x80000000ULL & val32;
+    exp = extract32(val32, 23, 8);
+
+    if (exp == 0) {
+        return make_float32(sbit | (0xfe << 23));
+    } else {
+        return make_float32(sbit | (~exp & 0xff) << 23);
+    }
+}
+
+float64 HELPER(frecpx_f64)(float64 a, void *fpstp)
+{
+    float_status *fpst = fpstp;
+    uint64_t val64, sbit;
+    int64_t exp;
+
+    if (float64_is_any_nan(a)) {
+        float64 nan = a;
+        if (float64_is_signaling_nan(a, fpst)) {
+            float_raise(float_flag_invalid, fpst);
+            nan = float64_maybe_silence_nan(a, fpst);
+        }
+        if (fpst->default_nan_mode) {
+            nan = float64_default_nan(fpst);
+        }
+        return nan;
+    }
+
+    val64 = float64_val(a);
+    sbit = 0x8000000000000000ULL & val64;
+    exp = extract64(float64_val(a), 52, 11);
+
+    if (exp == 0) {
+        return make_float64(sbit | (0x7feULL << 52));
+    } else {
+        return make_float64(sbit | (~exp & 0x7ffULL) << 52);
+    }
+}
+
+float32 HELPER(fcvtx_f64_to_f32)(float64 a, CPUARMState *env)
+{
+    /* Von Neumann rounding is implemented by using round-to-zero
+     * and then setting the LSB of the result if Inexact was raised.
+     */
+    float32 r;
+    float_status *fpst = &env->vfp.fp_status;
+    float_status tstat = *fpst;
+    int exflags;
+
+    set_float_rounding_mode(float_round_to_zero, &tstat);
+    set_float_exception_flags(0, &tstat);
+    r = float64_to_float32(a, &tstat);
+    r = float32_maybe_silence_nan(r, &tstat);
+    exflags = get_float_exception_flags(&tstat);
+    if (exflags & float_flag_inexact) {
+        r = make_float32(float32_val(r) | 1);
+    }
+    exflags |= get_float_exception_flags(fpst);
+    set_float_exception_flags(exflags, fpst);
+    return r;
+}
+
+/* 64-bit versions of the CRC helpers. Note that although the operation
+ * (and the prototypes of crc32c() and crc32() mean that only the bottom
+ * 32 bits of the accumulator and result are used, we pass and return
+ * uint64_t for convenience of the generated code. Unlike the 32-bit
+ * instruction set versions, val may genuinely have 64 bits of data in it.
+ * The upper bytes of val (above the number specified by 'bytes') must have
+ * been zeroed out by the caller.
+ */
+uint64_t HELPER(crc32_64)(uint64_t acc, uint64_t val, uint32_t bytes)
+{
+    uint8_t buf[8];
+
+    stq_le_p(buf, val);
+
+    /* zlib crc32 converts the accumulator and output to one's complement.  */
+    return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
+}
+
+uint64_t HELPER(crc32c_64)(uint64_t acc, uint64_t val, uint32_t bytes)
+{
+    uint8_t buf[8];
+
+    stq_le_p(buf, val);
+
+    /* Linux crc32c converts the output to one's complement.  */
+    return crc32c(acc, buf, bytes) ^ 0xffffffff;
+}
+
+/* Returns 0 on success; 1 otherwise.  */
+uint64_t HELPER(paired_cmpxchg64_le)(CPUARMState *env, uint64_t addr,
+                                     uint64_t new_lo, uint64_t new_hi)
+{
+    uintptr_t ra = GETPC();
+    Int128 oldv, cmpv, newv;
+    bool success;
+
+    cmpv = int128_make128(env->exclusive_val, env->exclusive_high);
+    newv = int128_make128(new_lo, new_hi);
+
+    if (parallel_cpus) {
+#ifndef CONFIG_ATOMIC128
+        cpu_loop_exit_atomic(ENV_GET_CPU(env), ra);
+#else
+        int mem_idx = cpu_mmu_index(env, false);
+        TCGMemOpIdx oi = make_memop_idx(MO_LEQ | MO_ALIGN_16, mem_idx);
+        oldv = helper_atomic_cmpxchgo_le_mmu(env, addr, cmpv, newv, oi, ra);
+        success = int128_eq(oldv, cmpv);
+#endif
+    } else {
+        uint64_t o0, o1;
+
+#ifdef CONFIG_USER_ONLY
+        /* ??? Enforce alignment.  */
+        uint64_t *haddr = g2h(addr);
+        o0 = ldq_le_p(haddr + 0);
+        o1 = ldq_le_p(haddr + 1);
+        oldv = int128_make128(o0, o1);
+
+        success = int128_eq(oldv, cmpv);
+        if (success) {
+            stq_le_p(haddr + 0, int128_getlo(newv));
+            stq_le_p(haddr + 1, int128_gethi(newv));
+        }
+#else
+        int mem_idx = cpu_mmu_index(env, false);
+        TCGMemOpIdx oi0 = make_memop_idx(MO_LEQ | MO_ALIGN_16, mem_idx);
+        TCGMemOpIdx oi1 = make_memop_idx(MO_LEQ, mem_idx);
+
+        o0 = helper_le_ldq_mmu(env, addr + 0, oi0, ra);
+        o1 = helper_le_ldq_mmu(env, addr + 8, oi1, ra);
+        oldv = int128_make128(o0, o1);
+
+        success = int128_eq(oldv, cmpv);
+        if (success) {
+            helper_le_stq_mmu(env, addr + 0, int128_getlo(newv), oi1, ra);
+            helper_le_stq_mmu(env, addr + 8, int128_gethi(newv), oi1, ra);
+        }
+#endif
+    }
+
+    return !success;
+}
+
+uint64_t HELPER(paired_cmpxchg64_be)(CPUARMState *env, uint64_t addr,
+                                     uint64_t new_lo, uint64_t new_hi)
+{
+    uintptr_t ra = GETPC();
+    Int128 oldv, cmpv, newv;
+    bool success;
+
+    cmpv = int128_make128(env->exclusive_val, env->exclusive_high);
+    newv = int128_make128(new_lo, new_hi);
+
+    if (parallel_cpus) {
+#ifndef CONFIG_ATOMIC128
+        cpu_loop_exit_atomic(ENV_GET_CPU(env), ra);
+#else
+        int mem_idx = cpu_mmu_index(env, false);
+        TCGMemOpIdx oi = make_memop_idx(MO_BEQ | MO_ALIGN_16, mem_idx);
+        oldv = helper_atomic_cmpxchgo_be_mmu(env, addr, cmpv, newv, oi, ra);
+        success = int128_eq(oldv, cmpv);
+#endif
+    } else {
+        uint64_t o0, o1;
+
+#ifdef CONFIG_USER_ONLY
+        /* ??? Enforce alignment.  */
+        uint64_t *haddr = g2h(addr);
+        o1 = ldq_be_p(haddr + 0);
+        o0 = ldq_be_p(haddr + 1);
+        oldv = int128_make128(o0, o1);
+
+        success = int128_eq(oldv, cmpv);
+        if (success) {
+            stq_be_p(haddr + 0, int128_gethi(newv));
+            stq_be_p(haddr + 1, int128_getlo(newv));
+        }
+#else
+        int mem_idx = cpu_mmu_index(env, false);
+        TCGMemOpIdx oi0 = make_memop_idx(MO_BEQ | MO_ALIGN_16, mem_idx);
+        TCGMemOpIdx oi1 = make_memop_idx(MO_BEQ, mem_idx);
+
+        o1 = helper_be_ldq_mmu(env, addr + 0, oi0, ra);
+        o0 = helper_be_ldq_mmu(env, addr + 8, oi1, ra);
+        oldv = int128_make128(o0, o1);
+
+        success = int128_eq(oldv, cmpv);
+        if (success) {
+            helper_be_stq_mmu(env, addr + 0, int128_gethi(newv), oi1, ra);
+            helper_be_stq_mmu(env, addr + 8, int128_getlo(newv), oi1, ra);
+        }
+#endif
+    }
+
+    return !success;
+}