diff options
Diffstat (limited to 'target/arm/kvm64.c')
| -rw-r--r-- | target/arm/kvm64.c | 1290 |
1 files changed, 0 insertions, 1290 deletions
diff --git a/target/arm/kvm64.c b/target/arm/kvm64.c deleted file mode 100644 index 3c175c93a7..0000000000 --- a/target/arm/kvm64.c +++ /dev/null @@ -1,1290 +0,0 @@ -/* - * ARM implementation of KVM hooks, 64 bit specific code - * - * Copyright Mian-M. Hamayun 2013, Virtual Open Systems - * Copyright Alex BennĂ©e 2014, Linaro - * - * This work is licensed under the terms of the GNU GPL, version 2 or later. - * See the COPYING file in the top-level directory. - * - */ - -#include "qemu/osdep.h" -#include <sys/ioctl.h> -#include <sys/ptrace.h> - -#include <linux/elf.h> -#include <linux/kvm.h> - -#include "qapi/error.h" -#include "cpu.h" -#include "qemu/timer.h" -#include "qemu/error-report.h" -#include "qemu/host-utils.h" -#include "qemu/main-loop.h" -#include "exec/gdbstub.h" -#include "sysemu/runstate.h" -#include "sysemu/kvm.h" -#include "sysemu/kvm_int.h" -#include "kvm_arm.h" -#include "internals.h" -#include "cpu-features.h" -#include "hw/acpi/acpi.h" -#include "hw/acpi/ghes.h" - -static bool have_guest_debug; - -void kvm_arm_init_debug(KVMState *s) -{ - have_guest_debug = kvm_check_extension(s, - KVM_CAP_SET_GUEST_DEBUG); - - max_hw_wps = kvm_check_extension(s, KVM_CAP_GUEST_DEBUG_HW_WPS); - hw_watchpoints = g_array_sized_new(true, true, - sizeof(HWWatchpoint), max_hw_wps); - - max_hw_bps = kvm_check_extension(s, KVM_CAP_GUEST_DEBUG_HW_BPS); - hw_breakpoints = g_array_sized_new(true, true, - sizeof(HWBreakpoint), max_hw_bps); - return; -} - -int kvm_arch_insert_hw_breakpoint(vaddr addr, vaddr len, int type) -{ - switch (type) { - case GDB_BREAKPOINT_HW: - return insert_hw_breakpoint(addr); - break; - case GDB_WATCHPOINT_READ: - case GDB_WATCHPOINT_WRITE: - case GDB_WATCHPOINT_ACCESS: - return insert_hw_watchpoint(addr, len, type); - default: - return -ENOSYS; - } -} - -int kvm_arch_remove_hw_breakpoint(vaddr addr, vaddr len, int type) -{ - switch (type) { - case GDB_BREAKPOINT_HW: - return delete_hw_breakpoint(addr); - case GDB_WATCHPOINT_READ: - case GDB_WATCHPOINT_WRITE: - case GDB_WATCHPOINT_ACCESS: - return delete_hw_watchpoint(addr, len, type); - default: - return -ENOSYS; - } -} - - -void kvm_arch_remove_all_hw_breakpoints(void) -{ - if (cur_hw_wps > 0) { - g_array_remove_range(hw_watchpoints, 0, cur_hw_wps); - } - if (cur_hw_bps > 0) { - g_array_remove_range(hw_breakpoints, 0, cur_hw_bps); - } -} - -void kvm_arm_copy_hw_debug_data(struct kvm_guest_debug_arch *ptr) -{ - int i; - memset(ptr, 0, sizeof(struct kvm_guest_debug_arch)); - - for (i = 0; i < max_hw_wps; i++) { - HWWatchpoint *wp = get_hw_wp(i); - ptr->dbg_wcr[i] = wp->wcr; - ptr->dbg_wvr[i] = wp->wvr; - } - for (i = 0; i < max_hw_bps; i++) { - HWBreakpoint *bp = get_hw_bp(i); - ptr->dbg_bcr[i] = bp->bcr; - ptr->dbg_bvr[i] = bp->bvr; - } -} - -bool kvm_arm_hw_debug_active(CPUState *cs) -{ - return ((cur_hw_wps > 0) || (cur_hw_bps > 0)); -} - -static bool kvm_arm_set_device_attr(CPUState *cs, struct kvm_device_attr *attr, - const char *name) -{ - int err; - - err = kvm_vcpu_ioctl(cs, KVM_HAS_DEVICE_ATTR, attr); - if (err != 0) { - error_report("%s: KVM_HAS_DEVICE_ATTR: %s", name, strerror(-err)); - return false; - } - - err = kvm_vcpu_ioctl(cs, KVM_SET_DEVICE_ATTR, attr); - if (err != 0) { - error_report("%s: KVM_SET_DEVICE_ATTR: %s", name, strerror(-err)); - return false; - } - - return true; -} - -void kvm_arm_pmu_init(CPUState *cs) -{ - struct kvm_device_attr attr = { - .group = KVM_ARM_VCPU_PMU_V3_CTRL, - .attr = KVM_ARM_VCPU_PMU_V3_INIT, - }; - - if (!ARM_CPU(cs)->has_pmu) { - return; - } - if (!kvm_arm_set_device_attr(cs, &attr, "PMU")) { - error_report("failed to init PMU"); - abort(); - } -} - -void kvm_arm_pmu_set_irq(CPUState *cs, int irq) -{ - struct kvm_device_attr attr = { - .group = KVM_ARM_VCPU_PMU_V3_CTRL, - .addr = (intptr_t)&irq, - .attr = KVM_ARM_VCPU_PMU_V3_IRQ, - }; - - if (!ARM_CPU(cs)->has_pmu) { - return; - } - if (!kvm_arm_set_device_attr(cs, &attr, "PMU")) { - error_report("failed to set irq for PMU"); - abort(); - } -} - -void kvm_arm_pvtime_init(CPUState *cs, uint64_t ipa) -{ - struct kvm_device_attr attr = { - .group = KVM_ARM_VCPU_PVTIME_CTRL, - .attr = KVM_ARM_VCPU_PVTIME_IPA, - .addr = (uint64_t)&ipa, - }; - - if (ARM_CPU(cs)->kvm_steal_time == ON_OFF_AUTO_OFF) { - return; - } - if (!kvm_arm_set_device_attr(cs, &attr, "PVTIME IPA")) { - error_report("failed to init PVTIME IPA"); - abort(); - } -} - -static int read_sys_reg32(int fd, uint32_t *pret, uint64_t id) -{ - uint64_t ret; - struct kvm_one_reg idreg = { .id = id, .addr = (uintptr_t)&ret }; - int err; - - assert((id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64); - err = ioctl(fd, KVM_GET_ONE_REG, &idreg); - if (err < 0) { - return -1; - } - *pret = ret; - return 0; -} - -static int read_sys_reg64(int fd, uint64_t *pret, uint64_t id) -{ - struct kvm_one_reg idreg = { .id = id, .addr = (uintptr_t)pret }; - - assert((id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64); - return ioctl(fd, KVM_GET_ONE_REG, &idreg); -} - -static bool kvm_arm_pauth_supported(void) -{ - return (kvm_check_extension(kvm_state, KVM_CAP_ARM_PTRAUTH_ADDRESS) && - kvm_check_extension(kvm_state, KVM_CAP_ARM_PTRAUTH_GENERIC)); -} - -bool kvm_arm_get_host_cpu_features(ARMHostCPUFeatures *ahcf) -{ - /* Identify the feature bits corresponding to the host CPU, and - * fill out the ARMHostCPUClass fields accordingly. To do this - * we have to create a scratch VM, create a single CPU inside it, - * and then query that CPU for the relevant ID registers. - */ - int fdarray[3]; - bool sve_supported; - bool pmu_supported = false; - uint64_t features = 0; - int err; - - /* Old kernels may not know about the PREFERRED_TARGET ioctl: however - * we know these will only support creating one kind of guest CPU, - * which is its preferred CPU type. Fortunately these old kernels - * support only a very limited number of CPUs. - */ - static const uint32_t cpus_to_try[] = { - KVM_ARM_TARGET_AEM_V8, - KVM_ARM_TARGET_FOUNDATION_V8, - KVM_ARM_TARGET_CORTEX_A57, - QEMU_KVM_ARM_TARGET_NONE - }; - /* - * target = -1 informs kvm_arm_create_scratch_host_vcpu() - * to use the preferred target - */ - struct kvm_vcpu_init init = { .target = -1, }; - - /* - * Ask for SVE if supported, so that we can query ID_AA64ZFR0, - * which is otherwise RAZ. - */ - sve_supported = kvm_arm_sve_supported(); - if (sve_supported) { - init.features[0] |= 1 << KVM_ARM_VCPU_SVE; - } - - /* - * Ask for Pointer Authentication if supported, so that we get - * the unsanitized field values for AA64ISAR1_EL1. - */ - if (kvm_arm_pauth_supported()) { - init.features[0] |= (1 << KVM_ARM_VCPU_PTRAUTH_ADDRESS | - 1 << KVM_ARM_VCPU_PTRAUTH_GENERIC); - } - - if (kvm_arm_pmu_supported()) { - init.features[0] |= 1 << KVM_ARM_VCPU_PMU_V3; - pmu_supported = true; - } - - if (!kvm_arm_create_scratch_host_vcpu(cpus_to_try, fdarray, &init)) { - return false; - } - - ahcf->target = init.target; - ahcf->dtb_compatible = "arm,arm-v8"; - - err = read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64pfr0, - ARM64_SYS_REG(3, 0, 0, 4, 0)); - if (unlikely(err < 0)) { - /* - * Before v4.15, the kernel only exposed a limited number of system - * registers, not including any of the interesting AArch64 ID regs. - * For the most part we could leave these fields as zero with minimal - * effect, since this does not affect the values seen by the guest. - * - * However, it could cause problems down the line for QEMU, - * so provide a minimal v8.0 default. - * - * ??? Could read MIDR and use knowledge from cpu64.c. - * ??? Could map a page of memory into our temp guest and - * run the tiniest of hand-crafted kernels to extract - * the values seen by the guest. - * ??? Either of these sounds like too much effort just - * to work around running a modern host kernel. - */ - ahcf->isar.id_aa64pfr0 = 0x00000011; /* EL1&0, AArch64 only */ - err = 0; - } else { - err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64pfr1, - ARM64_SYS_REG(3, 0, 0, 4, 1)); - err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64smfr0, - ARM64_SYS_REG(3, 0, 0, 4, 5)); - err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64dfr0, - ARM64_SYS_REG(3, 0, 0, 5, 0)); - err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64dfr1, - ARM64_SYS_REG(3, 0, 0, 5, 1)); - err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar0, - ARM64_SYS_REG(3, 0, 0, 6, 0)); - err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar1, - ARM64_SYS_REG(3, 0, 0, 6, 1)); - err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64isar2, - ARM64_SYS_REG(3, 0, 0, 6, 2)); - err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr0, - ARM64_SYS_REG(3, 0, 0, 7, 0)); - err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr1, - ARM64_SYS_REG(3, 0, 0, 7, 1)); - err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64mmfr2, - ARM64_SYS_REG(3, 0, 0, 7, 2)); - - /* - * Note that if AArch32 support is not present in the host, - * the AArch32 sysregs are present to be read, but will - * return UNKNOWN values. This is neither better nor worse - * than skipping the reads and leaving 0, as we must avoid - * considering the values in every case. - */ - err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_pfr0, - ARM64_SYS_REG(3, 0, 0, 1, 0)); - err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_pfr1, - ARM64_SYS_REG(3, 0, 0, 1, 1)); - err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_dfr0, - ARM64_SYS_REG(3, 0, 0, 1, 2)); - err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr0, - ARM64_SYS_REG(3, 0, 0, 1, 4)); - err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr1, - ARM64_SYS_REG(3, 0, 0, 1, 5)); - err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr2, - ARM64_SYS_REG(3, 0, 0, 1, 6)); - err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr3, - ARM64_SYS_REG(3, 0, 0, 1, 7)); - err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar0, - ARM64_SYS_REG(3, 0, 0, 2, 0)); - err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar1, - ARM64_SYS_REG(3, 0, 0, 2, 1)); - err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar2, - ARM64_SYS_REG(3, 0, 0, 2, 2)); - err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar3, - ARM64_SYS_REG(3, 0, 0, 2, 3)); - err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar4, - ARM64_SYS_REG(3, 0, 0, 2, 4)); - err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar5, - ARM64_SYS_REG(3, 0, 0, 2, 5)); - err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr4, - ARM64_SYS_REG(3, 0, 0, 2, 6)); - err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_isar6, - ARM64_SYS_REG(3, 0, 0, 2, 7)); - - err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr0, - ARM64_SYS_REG(3, 0, 0, 3, 0)); - err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr1, - ARM64_SYS_REG(3, 0, 0, 3, 1)); - err |= read_sys_reg32(fdarray[2], &ahcf->isar.mvfr2, - ARM64_SYS_REG(3, 0, 0, 3, 2)); - err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_pfr2, - ARM64_SYS_REG(3, 0, 0, 3, 4)); - err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_dfr1, - ARM64_SYS_REG(3, 0, 0, 3, 5)); - err |= read_sys_reg32(fdarray[2], &ahcf->isar.id_mmfr5, - ARM64_SYS_REG(3, 0, 0, 3, 6)); - - /* - * DBGDIDR is a bit complicated because the kernel doesn't - * provide an accessor for it in 64-bit mode, which is what this - * scratch VM is in, and there's no architected "64-bit sysreg - * which reads the same as the 32-bit register" the way there is - * for other ID registers. Instead we synthesize a value from the - * AArch64 ID_AA64DFR0, the same way the kernel code in - * arch/arm64/kvm/sys_regs.c:trap_dbgidr() does. - * We only do this if the CPU supports AArch32 at EL1. - */ - if (FIELD_EX32(ahcf->isar.id_aa64pfr0, ID_AA64PFR0, EL1) >= 2) { - int wrps = FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, WRPS); - int brps = FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, BRPS); - int ctx_cmps = - FIELD_EX64(ahcf->isar.id_aa64dfr0, ID_AA64DFR0, CTX_CMPS); - int version = 6; /* ARMv8 debug architecture */ - bool has_el3 = - !!FIELD_EX32(ahcf->isar.id_aa64pfr0, ID_AA64PFR0, EL3); - uint32_t dbgdidr = 0; - - dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, WRPS, wrps); - dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, BRPS, brps); - dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, CTX_CMPS, ctx_cmps); - dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, VERSION, version); - dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, NSUHD_IMP, has_el3); - dbgdidr = FIELD_DP32(dbgdidr, DBGDIDR, SE_IMP, has_el3); - dbgdidr |= (1 << 15); /* RES1 bit */ - ahcf->isar.dbgdidr = dbgdidr; - } - - if (pmu_supported) { - /* PMCR_EL0 is only accessible if the vCPU has feature PMU_V3 */ - err |= read_sys_reg64(fdarray[2], &ahcf->isar.reset_pmcr_el0, - ARM64_SYS_REG(3, 3, 9, 12, 0)); - } - - if (sve_supported) { - /* - * There is a range of kernels between kernel commit 73433762fcae - * and f81cb2c3ad41 which have a bug where the kernel doesn't - * expose SYS_ID_AA64ZFR0_EL1 via the ONE_REG API unless the VM has - * enabled SVE support, which resulted in an error rather than RAZ. - * So only read the register if we set KVM_ARM_VCPU_SVE above. - */ - err |= read_sys_reg64(fdarray[2], &ahcf->isar.id_aa64zfr0, - ARM64_SYS_REG(3, 0, 0, 4, 4)); - } - } - - kvm_arm_destroy_scratch_host_vcpu(fdarray); - - if (err < 0) { - return false; - } - - /* - * We can assume any KVM supporting CPU is at least a v8 - * with VFPv4+Neon; this in turn implies most of the other - * feature bits. - */ - features |= 1ULL << ARM_FEATURE_V8; - features |= 1ULL << ARM_FEATURE_NEON; - features |= 1ULL << ARM_FEATURE_AARCH64; - features |= 1ULL << ARM_FEATURE_PMU; - features |= 1ULL << ARM_FEATURE_GENERIC_TIMER; - - ahcf->features = features; - - return true; -} - -void kvm_arm_steal_time_finalize(ARMCPU *cpu, Error **errp) -{ - bool has_steal_time = kvm_arm_steal_time_supported(); - - if (cpu->kvm_steal_time == ON_OFF_AUTO_AUTO) { - if (!has_steal_time || !arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { - cpu->kvm_steal_time = ON_OFF_AUTO_OFF; - } else { - cpu->kvm_steal_time = ON_OFF_AUTO_ON; - } - } else if (cpu->kvm_steal_time == ON_OFF_AUTO_ON) { - if (!has_steal_time) { - error_setg(errp, "'kvm-steal-time' cannot be enabled " - "on this host"); - return; - } else if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { - /* - * DEN0057A chapter 2 says "This specification only covers - * systems in which the Execution state of the hypervisor - * as well as EL1 of virtual machines is AArch64.". And, - * to ensure that, the smc/hvc calls are only specified as - * smc64/hvc64. - */ - error_setg(errp, "'kvm-steal-time' cannot be enabled " - "for AArch32 guests"); - return; - } - } -} - -bool kvm_arm_aarch32_supported(void) -{ - return kvm_check_extension(kvm_state, KVM_CAP_ARM_EL1_32BIT); -} - -bool kvm_arm_sve_supported(void) -{ - return kvm_check_extension(kvm_state, KVM_CAP_ARM_SVE); -} - -bool kvm_arm_steal_time_supported(void) -{ - return kvm_check_extension(kvm_state, KVM_CAP_STEAL_TIME); -} - -QEMU_BUILD_BUG_ON(KVM_ARM64_SVE_VQ_MIN != 1); - -uint32_t kvm_arm_sve_get_vls(CPUState *cs) -{ - /* Only call this function if kvm_arm_sve_supported() returns true. */ - static uint64_t vls[KVM_ARM64_SVE_VLS_WORDS]; - static bool probed; - uint32_t vq = 0; - int i; - - /* - * KVM ensures all host CPUs support the same set of vector lengths. - * So we only need to create the scratch VCPUs once and then cache - * the results. - */ - if (!probed) { - struct kvm_vcpu_init init = { - .target = -1, - .features[0] = (1 << KVM_ARM_VCPU_SVE), - }; - struct kvm_one_reg reg = { - .id = KVM_REG_ARM64_SVE_VLS, - .addr = (uint64_t)&vls[0], - }; - int fdarray[3], ret; - - probed = true; - - if (!kvm_arm_create_scratch_host_vcpu(NULL, fdarray, &init)) { - error_report("failed to create scratch VCPU with SVE enabled"); - abort(); - } - ret = ioctl(fdarray[2], KVM_GET_ONE_REG, ®); - kvm_arm_destroy_scratch_host_vcpu(fdarray); - if (ret) { - error_report("failed to get KVM_REG_ARM64_SVE_VLS: %s", - strerror(errno)); - abort(); - } - - for (i = KVM_ARM64_SVE_VLS_WORDS - 1; i >= 0; --i) { - if (vls[i]) { - vq = 64 - clz64(vls[i]) + i * 64; - break; - } - } - if (vq > ARM_MAX_VQ) { - warn_report("KVM supports vector lengths larger than " - "QEMU can enable"); - vls[0] &= MAKE_64BIT_MASK(0, ARM_MAX_VQ); - } - } - - return vls[0]; -} - -static int kvm_arm_sve_set_vls(CPUState *cs) -{ - ARMCPU *cpu = ARM_CPU(cs); - uint64_t vls[KVM_ARM64_SVE_VLS_WORDS] = { cpu->sve_vq.map }; - - assert(cpu->sve_max_vq <= KVM_ARM64_SVE_VQ_MAX); - - return kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_VLS, &vls[0]); -} - -#define ARM_CPU_ID_MPIDR 3, 0, 0, 0, 5 - -int kvm_arch_init_vcpu(CPUState *cs) -{ - int ret; - uint64_t mpidr; - ARMCPU *cpu = ARM_CPU(cs); - CPUARMState *env = &cpu->env; - uint64_t psciver; - - if (cpu->kvm_target == QEMU_KVM_ARM_TARGET_NONE || - !object_dynamic_cast(OBJECT(cpu), TYPE_AARCH64_CPU)) { - error_report("KVM is not supported for this guest CPU type"); - return -EINVAL; - } - - qemu_add_vm_change_state_handler(kvm_arm_vm_state_change, cs); - - /* Determine init features for this CPU */ - memset(cpu->kvm_init_features, 0, sizeof(cpu->kvm_init_features)); - if (cs->start_powered_off) { - cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_POWER_OFF; - } - if (kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PSCI_0_2)) { - cpu->psci_version = QEMU_PSCI_VERSION_0_2; - cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PSCI_0_2; - } - if (!arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) { - cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_EL1_32BIT; - } - if (!kvm_check_extension(cs->kvm_state, KVM_CAP_ARM_PMU_V3)) { - cpu->has_pmu = false; - } - if (cpu->has_pmu) { - cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_PMU_V3; - } else { - env->features &= ~(1ULL << ARM_FEATURE_PMU); - } - if (cpu_isar_feature(aa64_sve, cpu)) { - assert(kvm_arm_sve_supported()); - cpu->kvm_init_features[0] |= 1 << KVM_ARM_VCPU_SVE; - } - if (cpu_isar_feature(aa64_pauth, cpu)) { - cpu->kvm_init_features[0] |= (1 << KVM_ARM_VCPU_PTRAUTH_ADDRESS | - 1 << KVM_ARM_VCPU_PTRAUTH_GENERIC); - } - - /* Do KVM_ARM_VCPU_INIT ioctl */ - ret = kvm_arm_vcpu_init(cs); - if (ret) { - return ret; - } - - if (cpu_isar_feature(aa64_sve, cpu)) { - ret = kvm_arm_sve_set_vls(cs); - if (ret) { - return ret; - } - ret = kvm_arm_vcpu_finalize(cs, KVM_ARM_VCPU_SVE); - if (ret) { - return ret; - } - } - - /* - * KVM reports the exact PSCI version it is implementing via a - * special sysreg. If it is present, use its contents to determine - * what to report to the guest in the dtb (it is the PSCI version, - * in the same 15-bits major 16-bits minor format that PSCI_VERSION - * returns). - */ - if (!kvm_get_one_reg(cs, KVM_REG_ARM_PSCI_VERSION, &psciver)) { - cpu->psci_version = psciver; - } - - /* - * When KVM is in use, PSCI is emulated in-kernel and not by qemu. - * Currently KVM has its own idea about MPIDR assignment, so we - * override our defaults with what we get from KVM. - */ - ret = kvm_get_one_reg(cs, ARM64_SYS_REG(ARM_CPU_ID_MPIDR), &mpidr); - if (ret) { - return ret; - } - cpu->mp_affinity = mpidr & ARM64_AFFINITY_MASK; - - /* Check whether user space can specify guest syndrome value */ - kvm_arm_init_serror_injection(cs); - - return kvm_arm_init_cpreg_list(cpu); -} - -int kvm_arch_destroy_vcpu(CPUState *cs) -{ - return 0; -} - -bool kvm_arm_reg_syncs_via_cpreg_list(uint64_t regidx) -{ - /* Return true if the regidx is a register we should synchronize - * via the cpreg_tuples array (ie is not a core or sve reg that - * we sync by hand in kvm_arch_get/put_registers()) - */ - switch (regidx & KVM_REG_ARM_COPROC_MASK) { - case KVM_REG_ARM_CORE: - case KVM_REG_ARM64_SVE: - return false; - default: - return true; - } -} - -typedef struct CPRegStateLevel { - uint64_t regidx; - int level; -} CPRegStateLevel; - -/* All system registers not listed in the following table are assumed to be - * of the level KVM_PUT_RUNTIME_STATE. If a register should be written less - * often, you must add it to this table with a state of either - * KVM_PUT_RESET_STATE or KVM_PUT_FULL_STATE. - */ -static const CPRegStateLevel non_runtime_cpregs[] = { - { KVM_REG_ARM_TIMER_CNT, KVM_PUT_FULL_STATE }, - { KVM_REG_ARM_PTIMER_CNT, KVM_PUT_FULL_STATE }, -}; - -int kvm_arm_cpreg_level(uint64_t regidx) -{ - int i; - - for (i = 0; i < ARRAY_SIZE(non_runtime_cpregs); i++) { - const CPRegStateLevel *l = &non_runtime_cpregs[i]; - if (l->regidx == regidx) { - return l->level; - } - } - - return KVM_PUT_RUNTIME_STATE; -} - -/* Callers must hold the iothread mutex lock */ -static void kvm_inject_arm_sea(CPUState *c) -{ - ARMCPU *cpu = ARM_CPU(c); - CPUARMState *env = &cpu->env; - uint32_t esr; - bool same_el; - - c->exception_index = EXCP_DATA_ABORT; - env->exception.target_el = 1; - - /* - * Set the DFSC to synchronous external abort and set FnV to not valid, - * this will tell guest the FAR_ELx is UNKNOWN for this abort. - */ - same_el = arm_current_el(env) == env->exception.target_el; - esr = syn_data_abort_no_iss(same_el, 1, 0, 0, 0, 0, 0x10); - - env->exception.syndrome = esr; - - arm_cpu_do_interrupt(c); -} - -#define AARCH64_CORE_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U64 | \ - KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x)) - -#define AARCH64_SIMD_CORE_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U128 | \ - KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x)) - -#define AARCH64_SIMD_CTRL_REG(x) (KVM_REG_ARM64 | KVM_REG_SIZE_U32 | \ - KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(x)) - -static int kvm_arch_put_fpsimd(CPUState *cs) -{ - CPUARMState *env = &ARM_CPU(cs)->env; - int i, ret; - - for (i = 0; i < 32; i++) { - uint64_t *q = aa64_vfp_qreg(env, i); -#if HOST_BIG_ENDIAN - uint64_t fp_val[2] = { q[1], q[0] }; - ret = kvm_set_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]), - fp_val); -#else - ret = kvm_set_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]), q); -#endif - if (ret) { - return ret; - } - } - - return 0; -} - -/* - * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits - * and PREGS and the FFR have a slice size of 256 bits. However we simply hard - * code the slice index to zero for now as it's unlikely we'll need more than - * one slice for quite some time. - */ -static int kvm_arch_put_sve(CPUState *cs) -{ - ARMCPU *cpu = ARM_CPU(cs); - CPUARMState *env = &cpu->env; - uint64_t tmp[ARM_MAX_VQ * 2]; - uint64_t *r; - int n, ret; - - for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) { - r = sve_bswap64(tmp, &env->vfp.zregs[n].d[0], cpu->sve_max_vq * 2); - ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_ZREG(n, 0), r); - if (ret) { - return ret; - } - } - - for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) { - r = sve_bswap64(tmp, r = &env->vfp.pregs[n].p[0], - DIV_ROUND_UP(cpu->sve_max_vq * 2, 8)); - ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_PREG(n, 0), r); - if (ret) { - return ret; - } - } - - r = sve_bswap64(tmp, &env->vfp.pregs[FFR_PRED_NUM].p[0], - DIV_ROUND_UP(cpu->sve_max_vq * 2, 8)); - ret = kvm_set_one_reg(cs, KVM_REG_ARM64_SVE_FFR(0), r); - if (ret) { - return ret; - } - - return 0; -} - -int kvm_arch_put_registers(CPUState *cs, int level) -{ - uint64_t val; - uint32_t fpr; - int i, ret; - unsigned int el; - - ARMCPU *cpu = ARM_CPU(cs); - CPUARMState *env = &cpu->env; - - /* If we are in AArch32 mode then we need to copy the AArch32 regs to the - * AArch64 registers before pushing them out to 64-bit KVM. - */ - if (!is_a64(env)) { - aarch64_sync_32_to_64(env); - } - - for (i = 0; i < 31; i++) { - ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.regs[i]), - &env->xregs[i]); - if (ret) { - return ret; - } - } - - /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the - * QEMU side we keep the current SP in xregs[31] as well. - */ - aarch64_save_sp(env, 1); - - ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.sp), &env->sp_el[0]); - if (ret) { - return ret; - } - - ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(sp_el1), &env->sp_el[1]); - if (ret) { - return ret; - } - - /* Note that KVM thinks pstate is 64 bit but we use a uint32_t */ - if (is_a64(env)) { - val = pstate_read(env); - } else { - val = cpsr_read(env); - } - ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.pstate), &val); - if (ret) { - return ret; - } - - ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(regs.pc), &env->pc); - if (ret) { - return ret; - } - - ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(elr_el1), &env->elr_el[1]); - if (ret) { - return ret; - } - - /* Saved Program State Registers - * - * Before we restore from the banked_spsr[] array we need to - * ensure that any modifications to env->spsr are correctly - * reflected in the banks. - */ - el = arm_current_el(env); - if (el > 0 && !is_a64(env)) { - i = bank_number(env->uncached_cpsr & CPSR_M); - env->banked_spsr[i] = env->spsr; - } - - /* KVM 0-4 map to QEMU banks 1-5 */ - for (i = 0; i < KVM_NR_SPSR; i++) { - ret = kvm_set_one_reg(cs, AARCH64_CORE_REG(spsr[i]), - &env->banked_spsr[i + 1]); - if (ret) { - return ret; - } - } - - if (cpu_isar_feature(aa64_sve, cpu)) { - ret = kvm_arch_put_sve(cs); - } else { - ret = kvm_arch_put_fpsimd(cs); - } - if (ret) { - return ret; - } - - fpr = vfp_get_fpsr(env); - ret = kvm_set_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpsr), &fpr); - if (ret) { - return ret; - } - - fpr = vfp_get_fpcr(env); - ret = kvm_set_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpcr), &fpr); - if (ret) { - return ret; - } - - write_cpustate_to_list(cpu, true); - - if (!write_list_to_kvmstate(cpu, level)) { - return -EINVAL; - } - - /* - * Setting VCPU events should be triggered after syncing the registers - * to avoid overwriting potential changes made by KVM upon calling - * KVM_SET_VCPU_EVENTS ioctl - */ - ret = kvm_put_vcpu_events(cpu); - if (ret) { - return ret; - } - - kvm_arm_sync_mpstate_to_kvm(cpu); - - return ret; -} - -static int kvm_arch_get_fpsimd(CPUState *cs) -{ - CPUARMState *env = &ARM_CPU(cs)->env; - int i, ret; - - for (i = 0; i < 32; i++) { - uint64_t *q = aa64_vfp_qreg(env, i); - ret = kvm_get_one_reg(cs, AARCH64_SIMD_CORE_REG(fp_regs.vregs[i]), q); - if (ret) { - return ret; - } else { -#if HOST_BIG_ENDIAN - uint64_t t; - t = q[0], q[0] = q[1], q[1] = t; -#endif - } - } - - return 0; -} - -/* - * KVM SVE registers come in slices where ZREGs have a slice size of 2048 bits - * and PREGS and the FFR have a slice size of 256 bits. However we simply hard - * code the slice index to zero for now as it's unlikely we'll need more than - * one slice for quite some time. - */ -static int kvm_arch_get_sve(CPUState *cs) -{ - ARMCPU *cpu = ARM_CPU(cs); - CPUARMState *env = &cpu->env; - uint64_t *r; - int n, ret; - - for (n = 0; n < KVM_ARM64_SVE_NUM_ZREGS; ++n) { - r = &env->vfp.zregs[n].d[0]; - ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_ZREG(n, 0), r); - if (ret) { - return ret; - } - sve_bswap64(r, r, cpu->sve_max_vq * 2); - } - - for (n = 0; n < KVM_ARM64_SVE_NUM_PREGS; ++n) { - r = &env->vfp.pregs[n].p[0]; - ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_PREG(n, 0), r); - if (ret) { - return ret; - } - sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8)); - } - - r = &env->vfp.pregs[FFR_PRED_NUM].p[0]; - ret = kvm_get_one_reg(cs, KVM_REG_ARM64_SVE_FFR(0), r); - if (ret) { - return ret; - } - sve_bswap64(r, r, DIV_ROUND_UP(cpu->sve_max_vq * 2, 8)); - - return 0; -} - -int kvm_arch_get_registers(CPUState *cs) -{ - uint64_t val; - unsigned int el; - uint32_t fpr; - int i, ret; - - ARMCPU *cpu = ARM_CPU(cs); - CPUARMState *env = &cpu->env; - - for (i = 0; i < 31; i++) { - ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.regs[i]), - &env->xregs[i]); - if (ret) { - return ret; - } - } - - ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.sp), &env->sp_el[0]); - if (ret) { - return ret; - } - - ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(sp_el1), &env->sp_el[1]); - if (ret) { - return ret; - } - - ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.pstate), &val); - if (ret) { - return ret; - } - - env->aarch64 = ((val & PSTATE_nRW) == 0); - if (is_a64(env)) { - pstate_write(env, val); - } else { - cpsr_write(env, val, 0xffffffff, CPSRWriteRaw); - } - - /* KVM puts SP_EL0 in regs.sp and SP_EL1 in regs.sp_el1. On the - * QEMU side we keep the current SP in xregs[31] as well. - */ - aarch64_restore_sp(env, 1); - - ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(regs.pc), &env->pc); - if (ret) { - return ret; - } - - /* If we are in AArch32 mode then we need to sync the AArch32 regs with the - * incoming AArch64 regs received from 64-bit KVM. - * We must perform this after all of the registers have been acquired from - * the kernel. - */ - if (!is_a64(env)) { - aarch64_sync_64_to_32(env); - } - - ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(elr_el1), &env->elr_el[1]); - if (ret) { - return ret; - } - - /* Fetch the SPSR registers - * - * KVM SPSRs 0-4 map to QEMU banks 1-5 - */ - for (i = 0; i < KVM_NR_SPSR; i++) { - ret = kvm_get_one_reg(cs, AARCH64_CORE_REG(spsr[i]), - &env->banked_spsr[i + 1]); - if (ret) { - return ret; - } - } - - el = arm_current_el(env); - if (el > 0 && !is_a64(env)) { - i = bank_number(env->uncached_cpsr & CPSR_M); - env->spsr = env->banked_spsr[i]; - } - - if (cpu_isar_feature(aa64_sve, cpu)) { - ret = kvm_arch_get_sve(cs); - } else { - ret = kvm_arch_get_fpsimd(cs); - } - if (ret) { - return ret; - } - - ret = kvm_get_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpsr), &fpr); - if (ret) { - return ret; - } - vfp_set_fpsr(env, fpr); - - ret = kvm_get_one_reg(cs, AARCH64_SIMD_CTRL_REG(fp_regs.fpcr), &fpr); - if (ret) { - return ret; - } - vfp_set_fpcr(env, fpr); - - ret = kvm_get_vcpu_events(cpu); - if (ret) { - return ret; - } - - if (!write_kvmstate_to_list(cpu)) { - return -EINVAL; - } - /* Note that it's OK to have registers which aren't in CPUState, - * so we can ignore a failure return here. - */ - write_list_to_cpustate(cpu); - - kvm_arm_sync_mpstate_to_qemu(cpu); - - /* TODO: other registers */ - return ret; -} - -void kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr) -{ - ram_addr_t ram_addr; - hwaddr paddr; - - assert(code == BUS_MCEERR_AR || code == BUS_MCEERR_AO); - - if (acpi_ghes_present() && addr) { - ram_addr = qemu_ram_addr_from_host(addr); - if (ram_addr != RAM_ADDR_INVALID && - kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) { - kvm_hwpoison_page_add(ram_addr); - /* - * If this is a BUS_MCEERR_AR, we know we have been called - * synchronously from the vCPU thread, so we can easily - * synchronize the state and inject an error. - * - * TODO: we currently don't tell the guest at all about - * BUS_MCEERR_AO. In that case we might either be being - * called synchronously from the vCPU thread, or a bit - * later from the main thread, so doing the injection of - * the error would be more complicated. - */ - if (code == BUS_MCEERR_AR) { - kvm_cpu_synchronize_state(c); - if (!acpi_ghes_record_errors(ACPI_HEST_SRC_ID_SEA, paddr)) { - kvm_inject_arm_sea(c); - } else { - error_report("failed to record the error"); - abort(); - } - } - return; - } - if (code == BUS_MCEERR_AO) { - error_report("Hardware memory error at addr %p for memory used by " - "QEMU itself instead of guest system!", addr); - } - } - - if (code == BUS_MCEERR_AR) { - error_report("Hardware memory error!"); - exit(1); - } -} - -/* C6.6.29 BRK instruction */ -static const uint32_t brk_insn = 0xd4200000; - -int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) -{ - if (have_guest_debug) { - if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0) || - cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk_insn, 4, 1)) { - return -EINVAL; - } - return 0; - } else { - error_report("guest debug not supported on this kernel"); - return -EINVAL; - } -} - -int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) -{ - static uint32_t brk; - - if (have_guest_debug) { - if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&brk, 4, 0) || - brk != brk_insn || - cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, 4, 1)) { - return -EINVAL; - } - return 0; - } else { - error_report("guest debug not supported on this kernel"); - return -EINVAL; - } -} - -/* See v8 ARM ARM D7.2.27 ESR_ELx, Exception Syndrome Register - * - * To minimise translating between kernel and user-space the kernel - * ABI just provides user-space with the full exception syndrome - * register value to be decoded in QEMU. - */ - -bool kvm_arm_handle_debug(CPUState *cs, struct kvm_debug_exit_arch *debug_exit) -{ - int hsr_ec = syn_get_ec(debug_exit->hsr); - ARMCPU *cpu = ARM_CPU(cs); - CPUARMState *env = &cpu->env; - - /* Ensure PC is synchronised */ - kvm_cpu_synchronize_state(cs); - - switch (hsr_ec) { - case EC_SOFTWARESTEP: - if (cs->singlestep_enabled) { - return true; - } else { - /* - * The kernel should have suppressed the guest's ability to - * single step at this point so something has gone wrong. - */ - error_report("%s: guest single-step while debugging unsupported" - " (%"PRIx64", %"PRIx32")", - __func__, env->pc, debug_exit->hsr); - return false; - } - break; - case EC_AA64_BKPT: - if (kvm_find_sw_breakpoint(cs, env->pc)) { - return true; - } - break; - case EC_BREAKPOINT: - if (find_hw_breakpoint(cs, env->pc)) { - return true; - } - break; - case EC_WATCHPOINT: - { - CPUWatchpoint *wp = find_hw_watchpoint(cs, debug_exit->far); - if (wp) { - cs->watchpoint_hit = wp; - return true; - } - break; - } - default: - error_report("%s: unhandled debug exit (%"PRIx32", %"PRIx64")", - __func__, debug_exit->hsr, env->pc); - } - - /* If we are not handling the debug exception it must belong to - * the guest. Let's re-use the existing TCG interrupt code to set - * everything up properly. - */ - cs->exception_index = EXCP_BKPT; - env->exception.syndrome = debug_exit->hsr; - env->exception.vaddress = debug_exit->far; - env->exception.target_el = 1; - qemu_mutex_lock_iothread(); - arm_cpu_do_interrupt(cs); - qemu_mutex_unlock_iothread(); - - return false; -} - -#define ARM64_REG_ESR_EL1 ARM64_SYS_REG(3, 0, 5, 2, 0) -#define ARM64_REG_TCR_EL1 ARM64_SYS_REG(3, 0, 2, 0, 2) - -/* - * ESR_EL1 - * ISS encoding - * AARCH64: DFSC, bits [5:0] - * AARCH32: - * TTBCR.EAE == 0 - * FS[4] - DFSR[10] - * FS[3:0] - DFSR[3:0] - * TTBCR.EAE == 1 - * FS, bits [5:0] - */ -#define ESR_DFSC(aarch64, lpae, v) \ - ((aarch64 || (lpae)) ? ((v) & 0x3F) \ - : (((v) >> 6) | ((v) & 0x1F))) - -#define ESR_DFSC_EXTABT(aarch64, lpae) \ - ((aarch64) ? 0x10 : (lpae) ? 0x10 : 0x8) - -bool kvm_arm_verify_ext_dabt_pending(CPUState *cs) -{ - uint64_t dfsr_val; - - if (!kvm_get_one_reg(cs, ARM64_REG_ESR_EL1, &dfsr_val)) { - ARMCPU *cpu = ARM_CPU(cs); - CPUARMState *env = &cpu->env; - int aarch64_mode = arm_feature(env, ARM_FEATURE_AARCH64); - int lpae = 0; - - if (!aarch64_mode) { - uint64_t ttbcr; - - if (!kvm_get_one_reg(cs, ARM64_REG_TCR_EL1, &ttbcr)) { - lpae = arm_feature(env, ARM_FEATURE_LPAE) - && (ttbcr & TTBCR_EAE); - } - } - /* - * The verification here is based on the DFSC bits - * of the ESR_EL1 reg only - */ - return (ESR_DFSC(aarch64_mode, lpae, dfsr_val) == - ESR_DFSC_EXTABT(aarch64_mode, lpae)); - } - return false; -} |