diff options
Diffstat (limited to 'target/arm/mve_helper.c')
| -rw-r--r-- | target/arm/mve_helper.c | 524 |
1 files changed, 507 insertions, 17 deletions
diff --git a/target/arm/mve_helper.c b/target/arm/mve_helper.c index 05552ce7ee..db5d622085 100644 --- a/target/arm/mve_helper.c +++ b/target/arm/mve_helper.c @@ -18,7 +18,6 @@ */ #include "qemu/osdep.h" -#include "qemu/int128.h" #include "cpu.h" #include "internals.h" #include "vec_internal.h" @@ -324,6 +323,30 @@ DO_1OP(vnegw, 4, int32_t, DO_NEG) DO_1OP(vfnegh, 8, uint64_t, DO_FNEGH) DO_1OP(vfnegs, 8, uint64_t, DO_FNEGS) +/* + * 1 operand immediates: Vda is destination and possibly also one source. + * All these insns work at 64-bit widths. + */ +#define DO_1OP_IMM(OP, FN) \ + void HELPER(mve_##OP)(CPUARMState *env, void *vda, uint64_t imm) \ + { \ + uint64_t *da = vda; \ + uint16_t mask = mve_element_mask(env); \ + unsigned e; \ + for (e = 0; e < 16 / 8; e++, mask >>= 8) { \ + mergemask(&da[H8(e)], FN(da[H8(e)], imm), mask); \ + } \ + mve_advance_vpt(env); \ + } + +#define DO_MOVI(N, I) (I) +#define DO_ANDI(N, I) ((N) & (I)) +#define DO_ORRI(N, I) ((N) | (I)) + +DO_1OP_IMM(vmovi, DO_MOVI) +DO_1OP_IMM(vandi, DO_ANDI) +DO_1OP_IMM(vorri, DO_ORRI) + #define DO_2OP(OP, ESIZE, TYPE, FN) \ void HELPER(glue(mve_, OP))(CPUARMState *env, \ void *vd, void *vn, void *vm) \ @@ -710,6 +733,8 @@ DO_2OP_SAT(vqsubsw, 4, int32_t, DO_SQSUB_W) WRAP_QRSHL_HELPER(do_sqrshl_bhs, N, M, true, satp) #define DO_UQRSHL_OP(N, M, satp) \ WRAP_QRSHL_HELPER(do_uqrshl_bhs, N, M, true, satp) +#define DO_SUQSHL_OP(N, M, satp) \ + WRAP_QRSHL_HELPER(do_suqrshl_bhs, N, M, false, satp) DO_2OP_SAT_S(vqshls, DO_SQSHL_OP) DO_2OP_SAT_U(vqshlu, DO_UQSHL_OP) @@ -1100,40 +1125,45 @@ DO_LDAV(vmlsldavsw, 4, int32_t, false, +=, -=) DO_LDAV(vmlsldavxsw, 4, int32_t, true, +=, -=) /* - * Rounding multiply add long dual accumulate high: we must keep - * a 72-bit internal accumulator value and return the top 64 bits. + * Rounding multiply add long dual accumulate high. In the pseudocode + * this is implemented with a 72-bit internal accumulator value of which + * the top 64 bits are returned. We optimize this to avoid having to + * use 128-bit arithmetic -- we can do this because the 74-bit accumulator + * is squashed back into 64-bits after each beat. */ -#define DO_LDAVH(OP, ESIZE, TYPE, XCHG, EVENACC, ODDACC, TO128) \ +#define DO_LDAVH(OP, TYPE, LTYPE, XCHG, SUB) \ uint64_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vn, \ void *vm, uint64_t a) \ { \ uint16_t mask = mve_element_mask(env); \ unsigned e; \ TYPE *n = vn, *m = vm; \ - Int128 acc = int128_lshift(TO128(a), 8); \ - for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \ + for (e = 0; e < 16 / 4; e++, mask >>= 4) { \ if (mask & 1) { \ + LTYPE mul; \ if (e & 1) { \ - acc = ODDACC(acc, TO128(n[H##ESIZE(e - 1 * XCHG)] * \ - m[H##ESIZE(e)])); \ + mul = (LTYPE)n[H4(e - 1 * XCHG)] * m[H4(e)]; \ + if (SUB) { \ + mul = -mul; \ + } \ } else { \ - acc = EVENACC(acc, TO128(n[H##ESIZE(e + 1 * XCHG)] * \ - m[H##ESIZE(e)])); \ + mul = (LTYPE)n[H4(e + 1 * XCHG)] * m[H4(e)]; \ } \ - acc = int128_add(acc, int128_make64(1 << 7)); \ + mul = (mul >> 8) + ((mul >> 7) & 1); \ + a += mul; \ } \ } \ mve_advance_vpt(env); \ - return int128_getlo(int128_rshift(acc, 8)); \ + return a; \ } -DO_LDAVH(vrmlaldavhsw, 4, int32_t, false, int128_add, int128_add, int128_makes64) -DO_LDAVH(vrmlaldavhxsw, 4, int32_t, true, int128_add, int128_add, int128_makes64) +DO_LDAVH(vrmlaldavhsw, int32_t, int64_t, false, false) +DO_LDAVH(vrmlaldavhxsw, int32_t, int64_t, true, false) -DO_LDAVH(vrmlaldavhuw, 4, uint32_t, false, int128_add, int128_add, int128_make64) +DO_LDAVH(vrmlaldavhuw, uint32_t, uint64_t, false, false) -DO_LDAVH(vrmlsldavhsw, 4, int32_t, false, int128_add, int128_sub, int128_makes64) -DO_LDAVH(vrmlsldavhxsw, 4, int32_t, true, int128_add, int128_sub, int128_makes64) +DO_LDAVH(vrmlsldavhsw, int32_t, int64_t, false, true) +DO_LDAVH(vrmlsldavhxsw, int32_t, int64_t, true, true) /* Vector add across vector */ #define DO_VADDV(OP, ESIZE, TYPE) \ @@ -1158,3 +1188,463 @@ DO_VADDV(vaddvsw, 4, uint32_t) DO_VADDV(vaddvub, 1, uint8_t) DO_VADDV(vaddvuh, 2, uint16_t) DO_VADDV(vaddvuw, 4, uint32_t) + +#define DO_VADDLV(OP, TYPE, LTYPE) \ + uint64_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vm, \ + uint64_t ra) \ + { \ + uint16_t mask = mve_element_mask(env); \ + unsigned e; \ + TYPE *m = vm; \ + for (e = 0; e < 16 / 4; e++, mask >>= 4) { \ + if (mask & 1) { \ + ra += (LTYPE)m[H4(e)]; \ + } \ + } \ + mve_advance_vpt(env); \ + return ra; \ + } \ + +DO_VADDLV(vaddlv_s, int32_t, int64_t) +DO_VADDLV(vaddlv_u, uint32_t, uint64_t) + +/* Shifts by immediate */ +#define DO_2SHIFT(OP, ESIZE, TYPE, FN) \ + void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, \ + void *vm, uint32_t shift) \ + { \ + TYPE *d = vd, *m = vm; \ + uint16_t mask = mve_element_mask(env); \ + unsigned e; \ + for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \ + mergemask(&d[H##ESIZE(e)], \ + FN(m[H##ESIZE(e)], shift), mask); \ + } \ + mve_advance_vpt(env); \ + } + +#define DO_2SHIFT_SAT(OP, ESIZE, TYPE, FN) \ + void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, \ + void *vm, uint32_t shift) \ + { \ + TYPE *d = vd, *m = vm; \ + uint16_t mask = mve_element_mask(env); \ + unsigned e; \ + bool qc = false; \ + for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \ + bool sat = false; \ + mergemask(&d[H##ESIZE(e)], \ + FN(m[H##ESIZE(e)], shift, &sat), mask); \ + qc |= sat & mask & 1; \ + } \ + if (qc) { \ + env->vfp.qc[0] = qc; \ + } \ + mve_advance_vpt(env); \ + } + +/* provide unsigned 2-op shift helpers for all sizes */ +#define DO_2SHIFT_U(OP, FN) \ + DO_2SHIFT(OP##b, 1, uint8_t, FN) \ + DO_2SHIFT(OP##h, 2, uint16_t, FN) \ + DO_2SHIFT(OP##w, 4, uint32_t, FN) +#define DO_2SHIFT_S(OP, FN) \ + DO_2SHIFT(OP##b, 1, int8_t, FN) \ + DO_2SHIFT(OP##h, 2, int16_t, FN) \ + DO_2SHIFT(OP##w, 4, int32_t, FN) + +#define DO_2SHIFT_SAT_U(OP, FN) \ + DO_2SHIFT_SAT(OP##b, 1, uint8_t, FN) \ + DO_2SHIFT_SAT(OP##h, 2, uint16_t, FN) \ + DO_2SHIFT_SAT(OP##w, 4, uint32_t, FN) +#define DO_2SHIFT_SAT_S(OP, FN) \ + DO_2SHIFT_SAT(OP##b, 1, int8_t, FN) \ + DO_2SHIFT_SAT(OP##h, 2, int16_t, FN) \ + DO_2SHIFT_SAT(OP##w, 4, int32_t, FN) + +DO_2SHIFT_U(vshli_u, DO_VSHLU) +DO_2SHIFT_S(vshli_s, DO_VSHLS) +DO_2SHIFT_SAT_U(vqshli_u, DO_UQSHL_OP) +DO_2SHIFT_SAT_S(vqshli_s, DO_SQSHL_OP) +DO_2SHIFT_SAT_S(vqshlui_s, DO_SUQSHL_OP) +DO_2SHIFT_U(vrshli_u, DO_VRSHLU) +DO_2SHIFT_S(vrshli_s, DO_VRSHLS) + +/* Shift-and-insert; we always work with 64 bits at a time */ +#define DO_2SHIFT_INSERT(OP, ESIZE, SHIFTFN, MASKFN) \ + void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, \ + void *vm, uint32_t shift) \ + { \ + uint64_t *d = vd, *m = vm; \ + uint16_t mask; \ + uint64_t shiftmask; \ + unsigned e; \ + if (shift == 0 || shift == ESIZE * 8) { \ + /* \ + * Only VSLI can shift by 0; only VSRI can shift by <dt>. \ + * The generic logic would give the right answer for 0 but \ + * fails for <dt>. \ + */ \ + goto done; \ + } \ + assert(shift < ESIZE * 8); \ + mask = mve_element_mask(env); \ + /* ESIZE / 2 gives the MO_* value if ESIZE is in [1,2,4] */ \ + shiftmask = dup_const(ESIZE / 2, MASKFN(ESIZE * 8, shift)); \ + for (e = 0; e < 16 / 8; e++, mask >>= 8) { \ + uint64_t r = (SHIFTFN(m[H8(e)], shift) & shiftmask) | \ + (d[H8(e)] & ~shiftmask); \ + mergemask(&d[H8(e)], r, mask); \ + } \ +done: \ + mve_advance_vpt(env); \ + } + +#define DO_SHL(N, SHIFT) ((N) << (SHIFT)) +#define DO_SHR(N, SHIFT) ((N) >> (SHIFT)) +#define SHL_MASK(EBITS, SHIFT) MAKE_64BIT_MASK((SHIFT), (EBITS) - (SHIFT)) +#define SHR_MASK(EBITS, SHIFT) MAKE_64BIT_MASK(0, (EBITS) - (SHIFT)) + +DO_2SHIFT_INSERT(vsrib, 1, DO_SHR, SHR_MASK) +DO_2SHIFT_INSERT(vsrih, 2, DO_SHR, SHR_MASK) +DO_2SHIFT_INSERT(vsriw, 4, DO_SHR, SHR_MASK) +DO_2SHIFT_INSERT(vslib, 1, DO_SHL, SHL_MASK) +DO_2SHIFT_INSERT(vslih, 2, DO_SHL, SHL_MASK) +DO_2SHIFT_INSERT(vsliw, 4, DO_SHL, SHL_MASK) + +/* + * Long shifts taking half-sized inputs from top or bottom of the input + * vector and producing a double-width result. ESIZE, TYPE are for + * the input, and LESIZE, LTYPE for the output. + * Unlike the normal shift helpers, we do not handle negative shift counts, + * because the long shift is strictly left-only. + */ +#define DO_VSHLL(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE) \ + void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, \ + void *vm, uint32_t shift) \ + { \ + LTYPE *d = vd; \ + TYPE *m = vm; \ + uint16_t mask = mve_element_mask(env); \ + unsigned le; \ + assert(shift <= 16); \ + for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) { \ + LTYPE r = (LTYPE)m[H##ESIZE(le * 2 + TOP)] << shift; \ + mergemask(&d[H##LESIZE(le)], r, mask); \ + } \ + mve_advance_vpt(env); \ + } + +#define DO_VSHLL_ALL(OP, TOP) \ + DO_VSHLL(OP##sb, TOP, 1, int8_t, 2, int16_t) \ + DO_VSHLL(OP##ub, TOP, 1, uint8_t, 2, uint16_t) \ + DO_VSHLL(OP##sh, TOP, 2, int16_t, 4, int32_t) \ + DO_VSHLL(OP##uh, TOP, 2, uint16_t, 4, uint32_t) \ + +DO_VSHLL_ALL(vshllb, false) +DO_VSHLL_ALL(vshllt, true) + +/* + * Narrowing right shifts, taking a double sized input, shifting it + * and putting the result in either the top or bottom half of the output. + * ESIZE, TYPE are the output, and LESIZE, LTYPE the input. + */ +#define DO_VSHRN(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN) \ + void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, \ + void *vm, uint32_t shift) \ + { \ + LTYPE *m = vm; \ + TYPE *d = vd; \ + uint16_t mask = mve_element_mask(env); \ + unsigned le; \ + for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) { \ + TYPE r = FN(m[H##LESIZE(le)], shift); \ + mergemask(&d[H##ESIZE(le * 2 + TOP)], r, mask); \ + } \ + mve_advance_vpt(env); \ + } + +#define DO_VSHRN_ALL(OP, FN) \ + DO_VSHRN(OP##bb, false, 1, uint8_t, 2, uint16_t, FN) \ + DO_VSHRN(OP##bh, false, 2, uint16_t, 4, uint32_t, FN) \ + DO_VSHRN(OP##tb, true, 1, uint8_t, 2, uint16_t, FN) \ + DO_VSHRN(OP##th, true, 2, uint16_t, 4, uint32_t, FN) + +static inline uint64_t do_urshr(uint64_t x, unsigned sh) +{ + if (likely(sh < 64)) { + return (x >> sh) + ((x >> (sh - 1)) & 1); + } else if (sh == 64) { + return x >> 63; + } else { + return 0; + } +} + +static inline int64_t do_srshr(int64_t x, unsigned sh) +{ + if (likely(sh < 64)) { + return (x >> sh) + ((x >> (sh - 1)) & 1); + } else { + /* Rounding the sign bit always produces 0. */ + return 0; + } +} + +DO_VSHRN_ALL(vshrn, DO_SHR) +DO_VSHRN_ALL(vrshrn, do_urshr) + +static inline int32_t do_sat_bhs(int64_t val, int64_t min, int64_t max, + bool *satp) +{ + if (val > max) { + *satp = true; + return max; + } else if (val < min) { + *satp = true; + return min; + } else { + return val; + } +} + +/* Saturating narrowing right shifts */ +#define DO_VSHRN_SAT(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN) \ + void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, \ + void *vm, uint32_t shift) \ + { \ + LTYPE *m = vm; \ + TYPE *d = vd; \ + uint16_t mask = mve_element_mask(env); \ + bool qc = false; \ + unsigned le; \ + for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) { \ + bool sat = false; \ + TYPE r = FN(m[H##LESIZE(le)], shift, &sat); \ + mergemask(&d[H##ESIZE(le * 2 + TOP)], r, mask); \ + qc |= sat && (mask & 1 << (TOP * ESIZE)); \ + } \ + if (qc) { \ + env->vfp.qc[0] = qc; \ + } \ + mve_advance_vpt(env); \ + } + +#define DO_VSHRN_SAT_UB(BOP, TOP, FN) \ + DO_VSHRN_SAT(BOP, false, 1, uint8_t, 2, uint16_t, FN) \ + DO_VSHRN_SAT(TOP, true, 1, uint8_t, 2, uint16_t, FN) + +#define DO_VSHRN_SAT_UH(BOP, TOP, FN) \ + DO_VSHRN_SAT(BOP, false, 2, uint16_t, 4, uint32_t, FN) \ + DO_VSHRN_SAT(TOP, true, 2, uint16_t, 4, uint32_t, FN) + +#define DO_VSHRN_SAT_SB(BOP, TOP, FN) \ + DO_VSHRN_SAT(BOP, false, 1, int8_t, 2, int16_t, FN) \ + DO_VSHRN_SAT(TOP, true, 1, int8_t, 2, int16_t, FN) + +#define DO_VSHRN_SAT_SH(BOP, TOP, FN) \ + DO_VSHRN_SAT(BOP, false, 2, int16_t, 4, int32_t, FN) \ + DO_VSHRN_SAT(TOP, true, 2, int16_t, 4, int32_t, FN) + +#define DO_SHRN_SB(N, M, SATP) \ + do_sat_bhs((int64_t)(N) >> (M), INT8_MIN, INT8_MAX, SATP) +#define DO_SHRN_UB(N, M, SATP) \ + do_sat_bhs((uint64_t)(N) >> (M), 0, UINT8_MAX, SATP) +#define DO_SHRUN_B(N, M, SATP) \ + do_sat_bhs((int64_t)(N) >> (M), 0, UINT8_MAX, SATP) + +#define DO_SHRN_SH(N, M, SATP) \ + do_sat_bhs((int64_t)(N) >> (M), INT16_MIN, INT16_MAX, SATP) +#define DO_SHRN_UH(N, M, SATP) \ + do_sat_bhs((uint64_t)(N) >> (M), 0, UINT16_MAX, SATP) +#define DO_SHRUN_H(N, M, SATP) \ + do_sat_bhs((int64_t)(N) >> (M), 0, UINT16_MAX, SATP) + +#define DO_RSHRN_SB(N, M, SATP) \ + do_sat_bhs(do_srshr(N, M), INT8_MIN, INT8_MAX, SATP) +#define DO_RSHRN_UB(N, M, SATP) \ + do_sat_bhs(do_urshr(N, M), 0, UINT8_MAX, SATP) +#define DO_RSHRUN_B(N, M, SATP) \ + do_sat_bhs(do_srshr(N, M), 0, UINT8_MAX, SATP) + +#define DO_RSHRN_SH(N, M, SATP) \ + do_sat_bhs(do_srshr(N, M), INT16_MIN, INT16_MAX, SATP) +#define DO_RSHRN_UH(N, M, SATP) \ + do_sat_bhs(do_urshr(N, M), 0, UINT16_MAX, SATP) +#define DO_RSHRUN_H(N, M, SATP) \ + do_sat_bhs(do_srshr(N, M), 0, UINT16_MAX, SATP) + +DO_VSHRN_SAT_SB(vqshrnb_sb, vqshrnt_sb, DO_SHRN_SB) +DO_VSHRN_SAT_SH(vqshrnb_sh, vqshrnt_sh, DO_SHRN_SH) +DO_VSHRN_SAT_UB(vqshrnb_ub, vqshrnt_ub, DO_SHRN_UB) +DO_VSHRN_SAT_UH(vqshrnb_uh, vqshrnt_uh, DO_SHRN_UH) +DO_VSHRN_SAT_SB(vqshrunbb, vqshruntb, DO_SHRUN_B) +DO_VSHRN_SAT_SH(vqshrunbh, vqshrunth, DO_SHRUN_H) + +DO_VSHRN_SAT_SB(vqrshrnb_sb, vqrshrnt_sb, DO_RSHRN_SB) +DO_VSHRN_SAT_SH(vqrshrnb_sh, vqrshrnt_sh, DO_RSHRN_SH) +DO_VSHRN_SAT_UB(vqrshrnb_ub, vqrshrnt_ub, DO_RSHRN_UB) +DO_VSHRN_SAT_UH(vqrshrnb_uh, vqrshrnt_uh, DO_RSHRN_UH) +DO_VSHRN_SAT_SB(vqrshrunbb, vqrshruntb, DO_RSHRUN_B) +DO_VSHRN_SAT_SH(vqrshrunbh, vqrshrunth, DO_RSHRUN_H) + +uint32_t HELPER(mve_vshlc)(CPUARMState *env, void *vd, uint32_t rdm, + uint32_t shift) +{ + uint32_t *d = vd; + uint16_t mask = mve_element_mask(env); + unsigned e; + uint32_t r; + + /* + * For each 32-bit element, we shift it left, bringing in the + * low 'shift' bits of rdm at the bottom. Bits shifted out at + * the top become the new rdm, if the predicate mask permits. + * The final rdm value is returned to update the register. + * shift == 0 here means "shift by 32 bits". + */ + if (shift == 0) { + for (e = 0; e < 16 / 4; e++, mask >>= 4) { + r = rdm; + if (mask & 1) { + rdm = d[H4(e)]; + } + mergemask(&d[H4(e)], r, mask); + } + } else { + uint32_t shiftmask = MAKE_64BIT_MASK(0, shift); + + for (e = 0; e < 16 / 4; e++, mask >>= 4) { + r = (d[H4(e)] << shift) | (rdm & shiftmask); + if (mask & 1) { + rdm = d[H4(e)] >> (32 - shift); + } + mergemask(&d[H4(e)], r, mask); + } + } + mve_advance_vpt(env); + return rdm; +} + +uint64_t HELPER(mve_sshrl)(CPUARMState *env, uint64_t n, uint32_t shift) +{ + return do_sqrshl_d(n, -(int8_t)shift, false, NULL); +} + +uint64_t HELPER(mve_ushll)(CPUARMState *env, uint64_t n, uint32_t shift) +{ + return do_uqrshl_d(n, (int8_t)shift, false, NULL); +} + +uint64_t HELPER(mve_sqshll)(CPUARMState *env, uint64_t n, uint32_t shift) +{ + return do_sqrshl_d(n, (int8_t)shift, false, &env->QF); +} + +uint64_t HELPER(mve_uqshll)(CPUARMState *env, uint64_t n, uint32_t shift) +{ + return do_uqrshl_d(n, (int8_t)shift, false, &env->QF); +} + +uint64_t HELPER(mve_sqrshrl)(CPUARMState *env, uint64_t n, uint32_t shift) +{ + return do_sqrshl_d(n, -(int8_t)shift, true, &env->QF); +} + +uint64_t HELPER(mve_uqrshll)(CPUARMState *env, uint64_t n, uint32_t shift) +{ + return do_uqrshl_d(n, (int8_t)shift, true, &env->QF); +} + +/* Operate on 64-bit values, but saturate at 48 bits */ +static inline int64_t do_sqrshl48_d(int64_t src, int64_t shift, + bool round, uint32_t *sat) +{ + if (shift <= -48) { + /* Rounding the sign bit always produces 0. */ + if (round) { + return 0; + } + return src >> 63; + } else if (shift < 0) { + if (round) { + src >>= -shift - 1; + return (src >> 1) + (src & 1); + } + return src >> -shift; + } else if (shift < 48) { + int64_t val = src << shift; + int64_t extval = sextract64(val, 0, 48); + if (!sat || val == extval) { + return extval; + } + } else if (!sat || src == 0) { + return 0; + } + + *sat = 1; + return (1ULL << 47) - (src >= 0); +} + +/* Operate on 64-bit values, but saturate at 48 bits */ +static inline uint64_t do_uqrshl48_d(uint64_t src, int64_t shift, + bool round, uint32_t *sat) +{ + uint64_t val, extval; + + if (shift <= -(48 + round)) { + return 0; + } else if (shift < 0) { + if (round) { + val = src >> (-shift - 1); + val = (val >> 1) + (val & 1); + } else { + val = src >> -shift; + } + extval = extract64(val, 0, 48); + if (!sat || val == extval) { + return extval; + } + } else if (shift < 48) { + uint64_t val = src << shift; + uint64_t extval = extract64(val, 0, 48); + if (!sat || val == extval) { + return extval; + } + } else if (!sat || src == 0) { + return 0; + } + + *sat = 1; + return MAKE_64BIT_MASK(0, 48); +} + +uint64_t HELPER(mve_sqrshrl48)(CPUARMState *env, uint64_t n, uint32_t shift) +{ + return do_sqrshl48_d(n, -(int8_t)shift, true, &env->QF); +} + +uint64_t HELPER(mve_uqrshll48)(CPUARMState *env, uint64_t n, uint32_t shift) +{ + return do_uqrshl48_d(n, (int8_t)shift, true, &env->QF); +} + +uint32_t HELPER(mve_uqshl)(CPUARMState *env, uint32_t n, uint32_t shift) +{ + return do_uqrshl_bhs(n, (int8_t)shift, 32, false, &env->QF); +} + +uint32_t HELPER(mve_sqshl)(CPUARMState *env, uint32_t n, uint32_t shift) +{ + return do_sqrshl_bhs(n, (int8_t)shift, 32, false, &env->QF); +} + +uint32_t HELPER(mve_uqrshl)(CPUARMState *env, uint32_t n, uint32_t shift) +{ + return do_uqrshl_bhs(n, (int8_t)shift, 32, true, &env->QF); +} + +uint32_t HELPER(mve_sqrshr)(CPUARMState *env, uint32_t n, uint32_t shift) +{ + return do_sqrshl_bhs(n, -(int8_t)shift, 32, true, &env->QF); +} |