summary refs log tree commit diff stats
path: root/target/arm/tcg/helper-a64.c
diff options
context:
space:
mode:
Diffstat (limited to 'target/arm/tcg/helper-a64.c')
-rw-r--r--target/arm/tcg/helper-a64.c954
1 files changed, 954 insertions, 0 deletions
diff --git a/target/arm/tcg/helper-a64.c b/target/arm/tcg/helper-a64.c
new file mode 100644
index 0000000000..0972a4bdd0
--- /dev/null
+++ b/target/arm/tcg/helper-a64.c
@@ -0,0 +1,954 @@
+/*
+ *  AArch64 specific helpers
+ *
+ *  Copyright (c) 2013 Alexander Graf <agraf@suse.de>
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, see <http://www.gnu.org/licenses/>.
+ */
+
+#include "qemu/osdep.h"
+#include "qemu/units.h"
+#include "cpu.h"
+#include "exec/gdbstub.h"
+#include "exec/helper-proto.h"
+#include "qemu/host-utils.h"
+#include "qemu/log.h"
+#include "qemu/main-loop.h"
+#include "qemu/bitops.h"
+#include "internals.h"
+#include "qemu/crc32c.h"
+#include "exec/exec-all.h"
+#include "exec/cpu_ldst.h"
+#include "qemu/int128.h"
+#include "qemu/atomic128.h"
+#include "fpu/softfloat.h"
+#include <zlib.h> /* For crc32 */
+
+/* C2.4.7 Multiply and divide */
+/* special cases for 0 and LLONG_MIN are mandated by the standard */
+uint64_t HELPER(udiv64)(uint64_t num, uint64_t den)
+{
+    if (den == 0) {
+        return 0;
+    }
+    return num / den;
+}
+
+int64_t HELPER(sdiv64)(int64_t num, int64_t den)
+{
+    if (den == 0) {
+        return 0;
+    }
+    if (num == LLONG_MIN && den == -1) {
+        return LLONG_MIN;
+    }
+    return num / den;
+}
+
+uint64_t HELPER(rbit64)(uint64_t x)
+{
+    return revbit64(x);
+}
+
+void HELPER(msr_i_spsel)(CPUARMState *env, uint32_t imm)
+{
+    update_spsel(env, imm);
+}
+
+static void daif_check(CPUARMState *env, uint32_t op,
+                       uint32_t imm, uintptr_t ra)
+{
+    /* DAIF update to PSTATE. This is OK from EL0 only if UMA is set.  */
+    if (arm_current_el(env) == 0 && !(arm_sctlr(env, 0) & SCTLR_UMA)) {
+        raise_exception_ra(env, EXCP_UDEF,
+                           syn_aa64_sysregtrap(0, extract32(op, 0, 3),
+                                               extract32(op, 3, 3), 4,
+                                               imm, 0x1f, 0),
+                           exception_target_el(env), ra);
+    }
+}
+
+void HELPER(msr_i_daifset)(CPUARMState *env, uint32_t imm)
+{
+    daif_check(env, 0x1e, imm, GETPC());
+    env->daif |= (imm << 6) & PSTATE_DAIF;
+    arm_rebuild_hflags(env);
+}
+
+void HELPER(msr_i_daifclear)(CPUARMState *env, uint32_t imm)
+{
+    daif_check(env, 0x1f, imm, GETPC());
+    env->daif &= ~((imm << 6) & PSTATE_DAIF);
+    arm_rebuild_hflags(env);
+}
+
+/* Convert a softfloat float_relation_ (as returned by
+ * the float*_compare functions) to the correct ARM
+ * NZCV flag state.
+ */
+static inline uint32_t float_rel_to_flags(int res)
+{
+    uint64_t flags;
+    switch (res) {
+    case float_relation_equal:
+        flags = PSTATE_Z | PSTATE_C;
+        break;
+    case float_relation_less:
+        flags = PSTATE_N;
+        break;
+    case float_relation_greater:
+        flags = PSTATE_C;
+        break;
+    case float_relation_unordered:
+    default:
+        flags = PSTATE_C | PSTATE_V;
+        break;
+    }
+    return flags;
+}
+
+uint64_t HELPER(vfp_cmph_a64)(uint32_t x, uint32_t y, void *fp_status)
+{
+    return float_rel_to_flags(float16_compare_quiet(x, y, fp_status));
+}
+
+uint64_t HELPER(vfp_cmpeh_a64)(uint32_t x, uint32_t y, void *fp_status)
+{
+    return float_rel_to_flags(float16_compare(x, y, fp_status));
+}
+
+uint64_t HELPER(vfp_cmps_a64)(float32 x, float32 y, void *fp_status)
+{
+    return float_rel_to_flags(float32_compare_quiet(x, y, fp_status));
+}
+
+uint64_t HELPER(vfp_cmpes_a64)(float32 x, float32 y, void *fp_status)
+{
+    return float_rel_to_flags(float32_compare(x, y, fp_status));
+}
+
+uint64_t HELPER(vfp_cmpd_a64)(float64 x, float64 y, void *fp_status)
+{
+    return float_rel_to_flags(float64_compare_quiet(x, y, fp_status));
+}
+
+uint64_t HELPER(vfp_cmped_a64)(float64 x, float64 y, void *fp_status)
+{
+    return float_rel_to_flags(float64_compare(x, y, fp_status));
+}
+
+float32 HELPER(vfp_mulxs)(float32 a, float32 b, void *fpstp)
+{
+    float_status *fpst = fpstp;
+
+    a = float32_squash_input_denormal(a, fpst);
+    b = float32_squash_input_denormal(b, fpst);
+
+    if ((float32_is_zero(a) && float32_is_infinity(b)) ||
+        (float32_is_infinity(a) && float32_is_zero(b))) {
+        /* 2.0 with the sign bit set to sign(A) XOR sign(B) */
+        return make_float32((1U << 30) |
+                            ((float32_val(a) ^ float32_val(b)) & (1U << 31)));
+    }
+    return float32_mul(a, b, fpst);
+}
+
+float64 HELPER(vfp_mulxd)(float64 a, float64 b, void *fpstp)
+{
+    float_status *fpst = fpstp;
+
+    a = float64_squash_input_denormal(a, fpst);
+    b = float64_squash_input_denormal(b, fpst);
+
+    if ((float64_is_zero(a) && float64_is_infinity(b)) ||
+        (float64_is_infinity(a) && float64_is_zero(b))) {
+        /* 2.0 with the sign bit set to sign(A) XOR sign(B) */
+        return make_float64((1ULL << 62) |
+                            ((float64_val(a) ^ float64_val(b)) & (1ULL << 63)));
+    }
+    return float64_mul(a, b, fpst);
+}
+
+/* 64bit/double versions of the neon float compare functions */
+uint64_t HELPER(neon_ceq_f64)(float64 a, float64 b, void *fpstp)
+{
+    float_status *fpst = fpstp;
+    return -float64_eq_quiet(a, b, fpst);
+}
+
+uint64_t HELPER(neon_cge_f64)(float64 a, float64 b, void *fpstp)
+{
+    float_status *fpst = fpstp;
+    return -float64_le(b, a, fpst);
+}
+
+uint64_t HELPER(neon_cgt_f64)(float64 a, float64 b, void *fpstp)
+{
+    float_status *fpst = fpstp;
+    return -float64_lt(b, a, fpst);
+}
+
+/* Reciprocal step and sqrt step. Note that unlike the A32/T32
+ * versions, these do a fully fused multiply-add or
+ * multiply-add-and-halve.
+ */
+
+uint32_t HELPER(recpsf_f16)(uint32_t a, uint32_t b, void *fpstp)
+{
+    float_status *fpst = fpstp;
+
+    a = float16_squash_input_denormal(a, fpst);
+    b = float16_squash_input_denormal(b, fpst);
+
+    a = float16_chs(a);
+    if ((float16_is_infinity(a) && float16_is_zero(b)) ||
+        (float16_is_infinity(b) && float16_is_zero(a))) {
+        return float16_two;
+    }
+    return float16_muladd(a, b, float16_two, 0, fpst);
+}
+
+float32 HELPER(recpsf_f32)(float32 a, float32 b, void *fpstp)
+{
+    float_status *fpst = fpstp;
+
+    a = float32_squash_input_denormal(a, fpst);
+    b = float32_squash_input_denormal(b, fpst);
+
+    a = float32_chs(a);
+    if ((float32_is_infinity(a) && float32_is_zero(b)) ||
+        (float32_is_infinity(b) && float32_is_zero(a))) {
+        return float32_two;
+    }
+    return float32_muladd(a, b, float32_two, 0, fpst);
+}
+
+float64 HELPER(recpsf_f64)(float64 a, float64 b, void *fpstp)
+{
+    float_status *fpst = fpstp;
+
+    a = float64_squash_input_denormal(a, fpst);
+    b = float64_squash_input_denormal(b, fpst);
+
+    a = float64_chs(a);
+    if ((float64_is_infinity(a) && float64_is_zero(b)) ||
+        (float64_is_infinity(b) && float64_is_zero(a))) {
+        return float64_two;
+    }
+    return float64_muladd(a, b, float64_two, 0, fpst);
+}
+
+uint32_t HELPER(rsqrtsf_f16)(uint32_t a, uint32_t b, void *fpstp)
+{
+    float_status *fpst = fpstp;
+
+    a = float16_squash_input_denormal(a, fpst);
+    b = float16_squash_input_denormal(b, fpst);
+
+    a = float16_chs(a);
+    if ((float16_is_infinity(a) && float16_is_zero(b)) ||
+        (float16_is_infinity(b) && float16_is_zero(a))) {
+        return float16_one_point_five;
+    }
+    return float16_muladd(a, b, float16_three, float_muladd_halve_result, fpst);
+}
+
+float32 HELPER(rsqrtsf_f32)(float32 a, float32 b, void *fpstp)
+{
+    float_status *fpst = fpstp;
+
+    a = float32_squash_input_denormal(a, fpst);
+    b = float32_squash_input_denormal(b, fpst);
+
+    a = float32_chs(a);
+    if ((float32_is_infinity(a) && float32_is_zero(b)) ||
+        (float32_is_infinity(b) && float32_is_zero(a))) {
+        return float32_one_point_five;
+    }
+    return float32_muladd(a, b, float32_three, float_muladd_halve_result, fpst);
+}
+
+float64 HELPER(rsqrtsf_f64)(float64 a, float64 b, void *fpstp)
+{
+    float_status *fpst = fpstp;
+
+    a = float64_squash_input_denormal(a, fpst);
+    b = float64_squash_input_denormal(b, fpst);
+
+    a = float64_chs(a);
+    if ((float64_is_infinity(a) && float64_is_zero(b)) ||
+        (float64_is_infinity(b) && float64_is_zero(a))) {
+        return float64_one_point_five;
+    }
+    return float64_muladd(a, b, float64_three, float_muladd_halve_result, fpst);
+}
+
+/* Pairwise long add: add pairs of adjacent elements into
+ * double-width elements in the result (eg _s8 is an 8x8->16 op)
+ */
+uint64_t HELPER(neon_addlp_s8)(uint64_t a)
+{
+    uint64_t nsignmask = 0x0080008000800080ULL;
+    uint64_t wsignmask = 0x8000800080008000ULL;
+    uint64_t elementmask = 0x00ff00ff00ff00ffULL;
+    uint64_t tmp1, tmp2;
+    uint64_t res, signres;
+
+    /* Extract odd elements, sign extend each to a 16 bit field */
+    tmp1 = a & elementmask;
+    tmp1 ^= nsignmask;
+    tmp1 |= wsignmask;
+    tmp1 = (tmp1 - nsignmask) ^ wsignmask;
+    /* Ditto for the even elements */
+    tmp2 = (a >> 8) & elementmask;
+    tmp2 ^= nsignmask;
+    tmp2 |= wsignmask;
+    tmp2 = (tmp2 - nsignmask) ^ wsignmask;
+
+    /* calculate the result by summing bits 0..14, 16..22, etc,
+     * and then adjusting the sign bits 15, 23, etc manually.
+     * This ensures the addition can't overflow the 16 bit field.
+     */
+    signres = (tmp1 ^ tmp2) & wsignmask;
+    res = (tmp1 & ~wsignmask) + (tmp2 & ~wsignmask);
+    res ^= signres;
+
+    return res;
+}
+
+uint64_t HELPER(neon_addlp_u8)(uint64_t a)
+{
+    uint64_t tmp;
+
+    tmp = a & 0x00ff00ff00ff00ffULL;
+    tmp += (a >> 8) & 0x00ff00ff00ff00ffULL;
+    return tmp;
+}
+
+uint64_t HELPER(neon_addlp_s16)(uint64_t a)
+{
+    int32_t reslo, reshi;
+
+    reslo = (int32_t)(int16_t)a + (int32_t)(int16_t)(a >> 16);
+    reshi = (int32_t)(int16_t)(a >> 32) + (int32_t)(int16_t)(a >> 48);
+
+    return (uint32_t)reslo | (((uint64_t)reshi) << 32);
+}
+
+uint64_t HELPER(neon_addlp_u16)(uint64_t a)
+{
+    uint64_t tmp;
+
+    tmp = a & 0x0000ffff0000ffffULL;
+    tmp += (a >> 16) & 0x0000ffff0000ffffULL;
+    return tmp;
+}
+
+/* Floating-point reciprocal exponent - see FPRecpX in ARM ARM */
+uint32_t HELPER(frecpx_f16)(uint32_t a, void *fpstp)
+{
+    float_status *fpst = fpstp;
+    uint16_t val16, sbit;
+    int16_t exp;
+
+    if (float16_is_any_nan(a)) {
+        float16 nan = a;
+        if (float16_is_signaling_nan(a, fpst)) {
+            float_raise(float_flag_invalid, fpst);
+            if (!fpst->default_nan_mode) {
+                nan = float16_silence_nan(a, fpst);
+            }
+        }
+        if (fpst->default_nan_mode) {
+            nan = float16_default_nan(fpst);
+        }
+        return nan;
+    }
+
+    a = float16_squash_input_denormal(a, fpst);
+
+    val16 = float16_val(a);
+    sbit = 0x8000 & val16;
+    exp = extract32(val16, 10, 5);
+
+    if (exp == 0) {
+        return make_float16(deposit32(sbit, 10, 5, 0x1e));
+    } else {
+        return make_float16(deposit32(sbit, 10, 5, ~exp));
+    }
+}
+
+float32 HELPER(frecpx_f32)(float32 a, void *fpstp)
+{
+    float_status *fpst = fpstp;
+    uint32_t val32, sbit;
+    int32_t exp;
+
+    if (float32_is_any_nan(a)) {
+        float32 nan = a;
+        if (float32_is_signaling_nan(a, fpst)) {
+            float_raise(float_flag_invalid, fpst);
+            if (!fpst->default_nan_mode) {
+                nan = float32_silence_nan(a, fpst);
+            }
+        }
+        if (fpst->default_nan_mode) {
+            nan = float32_default_nan(fpst);
+        }
+        return nan;
+    }
+
+    a = float32_squash_input_denormal(a, fpst);
+
+    val32 = float32_val(a);
+    sbit = 0x80000000ULL & val32;
+    exp = extract32(val32, 23, 8);
+
+    if (exp == 0) {
+        return make_float32(sbit | (0xfe << 23));
+    } else {
+        return make_float32(sbit | (~exp & 0xff) << 23);
+    }
+}
+
+float64 HELPER(frecpx_f64)(float64 a, void *fpstp)
+{
+    float_status *fpst = fpstp;
+    uint64_t val64, sbit;
+    int64_t exp;
+
+    if (float64_is_any_nan(a)) {
+        float64 nan = a;
+        if (float64_is_signaling_nan(a, fpst)) {
+            float_raise(float_flag_invalid, fpst);
+            if (!fpst->default_nan_mode) {
+                nan = float64_silence_nan(a, fpst);
+            }
+        }
+        if (fpst->default_nan_mode) {
+            nan = float64_default_nan(fpst);
+        }
+        return nan;
+    }
+
+    a = float64_squash_input_denormal(a, fpst);
+
+    val64 = float64_val(a);
+    sbit = 0x8000000000000000ULL & val64;
+    exp = extract64(float64_val(a), 52, 11);
+
+    if (exp == 0) {
+        return make_float64(sbit | (0x7feULL << 52));
+    } else {
+        return make_float64(sbit | (~exp & 0x7ffULL) << 52);
+    }
+}
+
+float32 HELPER(fcvtx_f64_to_f32)(float64 a, CPUARMState *env)
+{
+    /* Von Neumann rounding is implemented by using round-to-zero
+     * and then setting the LSB of the result if Inexact was raised.
+     */
+    float32 r;
+    float_status *fpst = &env->vfp.fp_status;
+    float_status tstat = *fpst;
+    int exflags;
+
+    set_float_rounding_mode(float_round_to_zero, &tstat);
+    set_float_exception_flags(0, &tstat);
+    r = float64_to_float32(a, &tstat);
+    exflags = get_float_exception_flags(&tstat);
+    if (exflags & float_flag_inexact) {
+        r = make_float32(float32_val(r) | 1);
+    }
+    exflags |= get_float_exception_flags(fpst);
+    set_float_exception_flags(exflags, fpst);
+    return r;
+}
+
+/* 64-bit versions of the CRC helpers. Note that although the operation
+ * (and the prototypes of crc32c() and crc32() mean that only the bottom
+ * 32 bits of the accumulator and result are used, we pass and return
+ * uint64_t for convenience of the generated code. Unlike the 32-bit
+ * instruction set versions, val may genuinely have 64 bits of data in it.
+ * The upper bytes of val (above the number specified by 'bytes') must have
+ * been zeroed out by the caller.
+ */
+uint64_t HELPER(crc32_64)(uint64_t acc, uint64_t val, uint32_t bytes)
+{
+    uint8_t buf[8];
+
+    stq_le_p(buf, val);
+
+    /* zlib crc32 converts the accumulator and output to one's complement.  */
+    return crc32(acc ^ 0xffffffff, buf, bytes) ^ 0xffffffff;
+}
+
+uint64_t HELPER(crc32c_64)(uint64_t acc, uint64_t val, uint32_t bytes)
+{
+    uint8_t buf[8];
+
+    stq_le_p(buf, val);
+
+    /* Linux crc32c converts the output to one's complement.  */
+    return crc32c(acc, buf, bytes) ^ 0xffffffff;
+}
+
+/*
+ * AdvSIMD half-precision
+ */
+
+#define ADVSIMD_HELPER(name, suffix) HELPER(glue(glue(advsimd_, name), suffix))
+
+#define ADVSIMD_HALFOP(name) \
+uint32_t ADVSIMD_HELPER(name, h)(uint32_t a, uint32_t b, void *fpstp) \
+{ \
+    float_status *fpst = fpstp; \
+    return float16_ ## name(a, b, fpst);    \
+}
+
+ADVSIMD_HALFOP(add)
+ADVSIMD_HALFOP(sub)
+ADVSIMD_HALFOP(mul)
+ADVSIMD_HALFOP(div)
+ADVSIMD_HALFOP(min)
+ADVSIMD_HALFOP(max)
+ADVSIMD_HALFOP(minnum)
+ADVSIMD_HALFOP(maxnum)
+
+#define ADVSIMD_TWOHALFOP(name)                                         \
+uint32_t ADVSIMD_HELPER(name, 2h)(uint32_t two_a, uint32_t two_b, void *fpstp) \
+{ \
+    float16  a1, a2, b1, b2;                        \
+    uint32_t r1, r2;                                \
+    float_status *fpst = fpstp;                     \
+    a1 = extract32(two_a, 0, 16);                   \
+    a2 = extract32(two_a, 16, 16);                  \
+    b1 = extract32(two_b, 0, 16);                   \
+    b2 = extract32(two_b, 16, 16);                  \
+    r1 = float16_ ## name(a1, b1, fpst);            \
+    r2 = float16_ ## name(a2, b2, fpst);            \
+    return deposit32(r1, 16, 16, r2);               \
+}
+
+ADVSIMD_TWOHALFOP(add)
+ADVSIMD_TWOHALFOP(sub)
+ADVSIMD_TWOHALFOP(mul)
+ADVSIMD_TWOHALFOP(div)
+ADVSIMD_TWOHALFOP(min)
+ADVSIMD_TWOHALFOP(max)
+ADVSIMD_TWOHALFOP(minnum)
+ADVSIMD_TWOHALFOP(maxnum)
+
+/* Data processing - scalar floating-point and advanced SIMD */
+static float16 float16_mulx(float16 a, float16 b, void *fpstp)
+{
+    float_status *fpst = fpstp;
+
+    a = float16_squash_input_denormal(a, fpst);
+    b = float16_squash_input_denormal(b, fpst);
+
+    if ((float16_is_zero(a) && float16_is_infinity(b)) ||
+        (float16_is_infinity(a) && float16_is_zero(b))) {
+        /* 2.0 with the sign bit set to sign(A) XOR sign(B) */
+        return make_float16((1U << 14) |
+                            ((float16_val(a) ^ float16_val(b)) & (1U << 15)));
+    }
+    return float16_mul(a, b, fpst);
+}
+
+ADVSIMD_HALFOP(mulx)
+ADVSIMD_TWOHALFOP(mulx)
+
+/* fused multiply-accumulate */
+uint32_t HELPER(advsimd_muladdh)(uint32_t a, uint32_t b, uint32_t c,
+                                 void *fpstp)
+{
+    float_status *fpst = fpstp;
+    return float16_muladd(a, b, c, 0, fpst);
+}
+
+uint32_t HELPER(advsimd_muladd2h)(uint32_t two_a, uint32_t two_b,
+                                  uint32_t two_c, void *fpstp)
+{
+    float_status *fpst = fpstp;
+    float16  a1, a2, b1, b2, c1, c2;
+    uint32_t r1, r2;
+    a1 = extract32(two_a, 0, 16);
+    a2 = extract32(two_a, 16, 16);
+    b1 = extract32(two_b, 0, 16);
+    b2 = extract32(two_b, 16, 16);
+    c1 = extract32(two_c, 0, 16);
+    c2 = extract32(two_c, 16, 16);
+    r1 = float16_muladd(a1, b1, c1, 0, fpst);
+    r2 = float16_muladd(a2, b2, c2, 0, fpst);
+    return deposit32(r1, 16, 16, r2);
+}
+
+/*
+ * Floating point comparisons produce an integer result. Softfloat
+ * routines return float_relation types which we convert to the 0/-1
+ * Neon requires.
+ */
+
+#define ADVSIMD_CMPRES(test) (test) ? 0xffff : 0
+
+uint32_t HELPER(advsimd_ceq_f16)(uint32_t a, uint32_t b, void *fpstp)
+{
+    float_status *fpst = fpstp;
+    int compare = float16_compare_quiet(a, b, fpst);
+    return ADVSIMD_CMPRES(compare == float_relation_equal);
+}
+
+uint32_t HELPER(advsimd_cge_f16)(uint32_t a, uint32_t b, void *fpstp)
+{
+    float_status *fpst = fpstp;
+    int compare = float16_compare(a, b, fpst);
+    return ADVSIMD_CMPRES(compare == float_relation_greater ||
+                          compare == float_relation_equal);
+}
+
+uint32_t HELPER(advsimd_cgt_f16)(uint32_t a, uint32_t b, void *fpstp)
+{
+    float_status *fpst = fpstp;
+    int compare = float16_compare(a, b, fpst);
+    return ADVSIMD_CMPRES(compare == float_relation_greater);
+}
+
+uint32_t HELPER(advsimd_acge_f16)(uint32_t a, uint32_t b, void *fpstp)
+{
+    float_status *fpst = fpstp;
+    float16 f0 = float16_abs(a);
+    float16 f1 = float16_abs(b);
+    int compare = float16_compare(f0, f1, fpst);
+    return ADVSIMD_CMPRES(compare == float_relation_greater ||
+                          compare == float_relation_equal);
+}
+
+uint32_t HELPER(advsimd_acgt_f16)(uint32_t a, uint32_t b, void *fpstp)
+{
+    float_status *fpst = fpstp;
+    float16 f0 = float16_abs(a);
+    float16 f1 = float16_abs(b);
+    int compare = float16_compare(f0, f1, fpst);
+    return ADVSIMD_CMPRES(compare == float_relation_greater);
+}
+
+/* round to integral */
+uint32_t HELPER(advsimd_rinth_exact)(uint32_t x, void *fp_status)
+{
+    return float16_round_to_int(x, fp_status);
+}
+
+uint32_t HELPER(advsimd_rinth)(uint32_t x, void *fp_status)
+{
+    int old_flags = get_float_exception_flags(fp_status), new_flags;
+    float16 ret;
+
+    ret = float16_round_to_int(x, fp_status);
+
+    /* Suppress any inexact exceptions the conversion produced */
+    if (!(old_flags & float_flag_inexact)) {
+        new_flags = get_float_exception_flags(fp_status);
+        set_float_exception_flags(new_flags & ~float_flag_inexact, fp_status);
+    }
+
+    return ret;
+}
+
+/*
+ * Half-precision floating point conversion functions
+ *
+ * There are a multitude of conversion functions with various
+ * different rounding modes. This is dealt with by the calling code
+ * setting the mode appropriately before calling the helper.
+ */
+
+uint32_t HELPER(advsimd_f16tosinth)(uint32_t a, void *fpstp)
+{
+    float_status *fpst = fpstp;
+
+    /* Invalid if we are passed a NaN */
+    if (float16_is_any_nan(a)) {
+        float_raise(float_flag_invalid, fpst);
+        return 0;
+    }
+    return float16_to_int16(a, fpst);
+}
+
+uint32_t HELPER(advsimd_f16touinth)(uint32_t a, void *fpstp)
+{
+    float_status *fpst = fpstp;
+
+    /* Invalid if we are passed a NaN */
+    if (float16_is_any_nan(a)) {
+        float_raise(float_flag_invalid, fpst);
+        return 0;
+    }
+    return float16_to_uint16(a, fpst);
+}
+
+static int el_from_spsr(uint32_t spsr)
+{
+    /* Return the exception level that this SPSR is requesting a return to,
+     * or -1 if it is invalid (an illegal return)
+     */
+    if (spsr & PSTATE_nRW) {
+        switch (spsr & CPSR_M) {
+        case ARM_CPU_MODE_USR:
+            return 0;
+        case ARM_CPU_MODE_HYP:
+            return 2;
+        case ARM_CPU_MODE_FIQ:
+        case ARM_CPU_MODE_IRQ:
+        case ARM_CPU_MODE_SVC:
+        case ARM_CPU_MODE_ABT:
+        case ARM_CPU_MODE_UND:
+        case ARM_CPU_MODE_SYS:
+            return 1;
+        case ARM_CPU_MODE_MON:
+            /* Returning to Mon from AArch64 is never possible,
+             * so this is an illegal return.
+             */
+        default:
+            return -1;
+        }
+    } else {
+        if (extract32(spsr, 1, 1)) {
+            /* Return with reserved M[1] bit set */
+            return -1;
+        }
+        if (extract32(spsr, 0, 4) == 1) {
+            /* return to EL0 with M[0] bit set */
+            return -1;
+        }
+        return extract32(spsr, 2, 2);
+    }
+}
+
+static void cpsr_write_from_spsr_elx(CPUARMState *env,
+                                     uint32_t val)
+{
+    uint32_t mask;
+
+    /* Save SPSR_ELx.SS into PSTATE. */
+    env->pstate = (env->pstate & ~PSTATE_SS) | (val & PSTATE_SS);
+    val &= ~PSTATE_SS;
+
+    /* Move DIT to the correct location for CPSR */
+    if (val & PSTATE_DIT) {
+        val &= ~PSTATE_DIT;
+        val |= CPSR_DIT;
+    }
+
+    mask = aarch32_cpsr_valid_mask(env->features, \
+        &env_archcpu(env)->isar);
+    cpsr_write(env, val, mask, CPSRWriteRaw);
+}
+
+void HELPER(exception_return)(CPUARMState *env, uint64_t new_pc)
+{
+    int cur_el = arm_current_el(env);
+    unsigned int spsr_idx = aarch64_banked_spsr_index(cur_el);
+    uint32_t spsr = env->banked_spsr[spsr_idx];
+    int new_el;
+    bool return_to_aa64 = (spsr & PSTATE_nRW) == 0;
+
+    aarch64_save_sp(env, cur_el);
+
+    arm_clear_exclusive(env);
+
+    /* We must squash the PSTATE.SS bit to zero unless both of the
+     * following hold:
+     *  1. debug exceptions are currently disabled
+     *  2. singlestep will be active in the EL we return to
+     * We check 1 here and 2 after we've done the pstate/cpsr write() to
+     * transition to the EL we're going to.
+     */
+    if (arm_generate_debug_exceptions(env)) {
+        spsr &= ~PSTATE_SS;
+    }
+
+    new_el = el_from_spsr(spsr);
+    if (new_el == -1) {
+        goto illegal_return;
+    }
+    if (new_el > cur_el || (new_el == 2 && !arm_is_el2_enabled(env))) {
+        /* Disallow return to an EL which is unimplemented or higher
+         * than the current one.
+         */
+        goto illegal_return;
+    }
+
+    if (new_el != 0 && arm_el_is_aa64(env, new_el) != return_to_aa64) {
+        /* Return to an EL which is configured for a different register width */
+        goto illegal_return;
+    }
+
+    if (new_el == 1 && (arm_hcr_el2_eff(env) & HCR_TGE)) {
+        goto illegal_return;
+    }
+
+    qemu_mutex_lock_iothread();
+    arm_call_pre_el_change_hook(env_archcpu(env));
+    qemu_mutex_unlock_iothread();
+
+    if (!return_to_aa64) {
+        env->aarch64 = false;
+        /* We do a raw CPSR write because aarch64_sync_64_to_32()
+         * will sort the register banks out for us, and we've already
+         * caught all the bad-mode cases in el_from_spsr().
+         */
+        cpsr_write_from_spsr_elx(env, spsr);
+        if (!arm_singlestep_active(env)) {
+            env->pstate &= ~PSTATE_SS;
+        }
+        aarch64_sync_64_to_32(env);
+
+        if (spsr & CPSR_T) {
+            env->regs[15] = new_pc & ~0x1;
+        } else {
+            env->regs[15] = new_pc & ~0x3;
+        }
+        helper_rebuild_hflags_a32(env, new_el);
+        qemu_log_mask(CPU_LOG_INT, "Exception return from AArch64 EL%d to "
+                      "AArch32 EL%d PC 0x%" PRIx32 "\n",
+                      cur_el, new_el, env->regs[15]);
+    } else {
+        int tbii;
+
+        env->aarch64 = true;
+        spsr &= aarch64_pstate_valid_mask(&env_archcpu(env)->isar);
+        pstate_write(env, spsr);
+        if (!arm_singlestep_active(env)) {
+            env->pstate &= ~PSTATE_SS;
+        }
+        aarch64_restore_sp(env, new_el);
+        helper_rebuild_hflags_a64(env, new_el);
+
+        /*
+         * Apply TBI to the exception return address.  We had to delay this
+         * until after we selected the new EL, so that we could select the
+         * correct TBI+TBID bits.  This is made easier by waiting until after
+         * the hflags rebuild, since we can pull the composite TBII field
+         * from there.
+         */
+        tbii = EX_TBFLAG_A64(env->hflags, TBII);
+        if ((tbii >> extract64(new_pc, 55, 1)) & 1) {
+            /* TBI is enabled. */
+            int core_mmu_idx = cpu_mmu_index(env, false);
+            if (regime_has_2_ranges(core_to_aa64_mmu_idx(core_mmu_idx))) {
+                new_pc = sextract64(new_pc, 0, 56);
+            } else {
+                new_pc = extract64(new_pc, 0, 56);
+            }
+        }
+        env->pc = new_pc;
+
+        qemu_log_mask(CPU_LOG_INT, "Exception return from AArch64 EL%d to "
+                      "AArch64 EL%d PC 0x%" PRIx64 "\n",
+                      cur_el, new_el, env->pc);
+    }
+
+    /*
+     * Note that cur_el can never be 0.  If new_el is 0, then
+     * el0_a64 is return_to_aa64, else el0_a64 is ignored.
+     */
+    aarch64_sve_change_el(env, cur_el, new_el, return_to_aa64);
+
+    qemu_mutex_lock_iothread();
+    arm_call_el_change_hook(env_archcpu(env));
+    qemu_mutex_unlock_iothread();
+
+    return;
+
+illegal_return:
+    /* Illegal return events of various kinds have architecturally
+     * mandated behaviour:
+     * restore NZCV and DAIF from SPSR_ELx
+     * set PSTATE.IL
+     * restore PC from ELR_ELx
+     * no change to exception level, execution state or stack pointer
+     */
+    env->pstate |= PSTATE_IL;
+    env->pc = new_pc;
+    spsr &= PSTATE_NZCV | PSTATE_DAIF;
+    spsr |= pstate_read(env) & ~(PSTATE_NZCV | PSTATE_DAIF);
+    pstate_write(env, spsr);
+    if (!arm_singlestep_active(env)) {
+        env->pstate &= ~PSTATE_SS;
+    }
+    helper_rebuild_hflags_a64(env, cur_el);
+    qemu_log_mask(LOG_GUEST_ERROR, "Illegal exception return at EL%d: "
+                  "resuming execution at 0x%" PRIx64 "\n", cur_el, env->pc);
+}
+
+/*
+ * Square Root and Reciprocal square root
+ */
+
+uint32_t HELPER(sqrt_f16)(uint32_t a, void *fpstp)
+{
+    float_status *s = fpstp;
+
+    return float16_sqrt(a, s);
+}
+
+void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
+{
+    /*
+     * Implement DC ZVA, which zeroes a fixed-length block of memory.
+     * Note that we do not implement the (architecturally mandated)
+     * alignment fault for attempts to use this on Device memory
+     * (which matches the usual QEMU behaviour of not implementing either
+     * alignment faults or any memory attribute handling).
+     */
+    int blocklen = 4 << env_archcpu(env)->dcz_blocksize;
+    uint64_t vaddr = vaddr_in & ~(blocklen - 1);
+    int mmu_idx = cpu_mmu_index(env, false);
+    void *mem;
+
+    /*
+     * Trapless lookup.  In addition to actual invalid page, may
+     * return NULL for I/O, watchpoints, clean pages, etc.
+     */
+    mem = tlb_vaddr_to_host(env, vaddr, MMU_DATA_STORE, mmu_idx);
+
+#ifndef CONFIG_USER_ONLY
+    if (unlikely(!mem)) {
+        uintptr_t ra = GETPC();
+
+        /*
+         * Trap if accessing an invalid page.  DC_ZVA requires that we supply
+         * the original pointer for an invalid page.  But watchpoints require
+         * that we probe the actual space.  So do both.
+         */
+        (void) probe_write(env, vaddr_in, 1, mmu_idx, ra);
+        mem = probe_write(env, vaddr, blocklen, mmu_idx, ra);
+
+        if (unlikely(!mem)) {
+            /*
+             * The only remaining reason for mem == NULL is I/O.
+             * Just do a series of byte writes as the architecture demands.
+             */
+            for (int i = 0; i < blocklen; i++) {
+                cpu_stb_mmuidx_ra(env, vaddr + i, 0, mmu_idx, ra);
+            }
+            return;
+        }
+    }
+#endif
+
+    memset(mem, 0, blocklen);
+}