summary refs log tree commit diff stats
path: root/target/arm/tcg/sve_helper.c
diff options
context:
space:
mode:
Diffstat (limited to 'target/arm/tcg/sve_helper.c')
-rw-r--r--target/arm/tcg/sve_helper.c7483
1 files changed, 7483 insertions, 0 deletions
diff --git a/target/arm/tcg/sve_helper.c b/target/arm/tcg/sve_helper.c
new file mode 100644
index 0000000000..521fc9b969
--- /dev/null
+++ b/target/arm/tcg/sve_helper.c
@@ -0,0 +1,7483 @@
+/*
+ * ARM SVE Operations
+ *
+ * Copyright (c) 2018 Linaro, Ltd.
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, see <http://www.gnu.org/licenses/>.
+ */
+
+#include "qemu/osdep.h"
+#include "cpu.h"
+#include "internals.h"
+#include "exec/exec-all.h"
+#include "exec/helper-proto.h"
+#include "tcg/tcg-gvec-desc.h"
+#include "fpu/softfloat.h"
+#include "tcg/tcg.h"
+#include "vec_internal.h"
+#include "sve_ldst_internal.h"
+
+
+/* Return a value for NZCV as per the ARM PredTest pseudofunction.
+ *
+ * The return value has bit 31 set if N is set, bit 1 set if Z is clear,
+ * and bit 0 set if C is set.  Compare the definitions of these variables
+ * within CPUARMState.
+ */
+
+/* For no G bits set, NZCV = C.  */
+#define PREDTEST_INIT  1
+
+/* This is an iterative function, called for each Pd and Pg word
+ * moving forward.
+ */
+static uint32_t iter_predtest_fwd(uint64_t d, uint64_t g, uint32_t flags)
+{
+    if (likely(g)) {
+        /* Compute N from first D & G.
+           Use bit 2 to signal first G bit seen.  */
+        if (!(flags & 4)) {
+            flags |= ((d & (g & -g)) != 0) << 31;
+            flags |= 4;
+        }
+
+        /* Accumulate Z from each D & G.  */
+        flags |= ((d & g) != 0) << 1;
+
+        /* Compute C from last !(D & G).  Replace previous.  */
+        flags = deposit32(flags, 0, 1, (d & pow2floor(g)) == 0);
+    }
+    return flags;
+}
+
+/* This is an iterative function, called for each Pd and Pg word
+ * moving backward.
+ */
+static uint32_t iter_predtest_bwd(uint64_t d, uint64_t g, uint32_t flags)
+{
+    if (likely(g)) {
+        /* Compute C from first (i.e last) !(D & G).
+           Use bit 2 to signal first G bit seen.  */
+        if (!(flags & 4)) {
+            flags += 4 - 1; /* add bit 2, subtract C from PREDTEST_INIT */
+            flags |= (d & pow2floor(g)) == 0;
+        }
+
+        /* Accumulate Z from each D & G.  */
+        flags |= ((d & g) != 0) << 1;
+
+        /* Compute N from last (i.e first) D & G.  Replace previous.  */
+        flags = deposit32(flags, 31, 1, (d & (g & -g)) != 0);
+    }
+    return flags;
+}
+
+/* The same for a single word predicate.  */
+uint32_t HELPER(sve_predtest1)(uint64_t d, uint64_t g)
+{
+    return iter_predtest_fwd(d, g, PREDTEST_INIT);
+}
+
+/* The same for a multi-word predicate.  */
+uint32_t HELPER(sve_predtest)(void *vd, void *vg, uint32_t words)
+{
+    uint32_t flags = PREDTEST_INIT;
+    uint64_t *d = vd, *g = vg;
+    uintptr_t i = 0;
+
+    do {
+        flags = iter_predtest_fwd(d[i], g[i], flags);
+    } while (++i < words);
+
+    return flags;
+}
+
+/* Similarly for single word elements.  */
+static inline uint64_t expand_pred_s(uint8_t byte)
+{
+    static const uint64_t word[] = {
+        [0x01] = 0x00000000ffffffffull,
+        [0x10] = 0xffffffff00000000ull,
+        [0x11] = 0xffffffffffffffffull,
+    };
+    return word[byte & 0x11];
+}
+
+#define LOGICAL_PPPP(NAME, FUNC) \
+void HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, uint32_t desc)  \
+{                                                                         \
+    uintptr_t opr_sz = simd_oprsz(desc);                                  \
+    uint64_t *d = vd, *n = vn, *m = vm, *g = vg;                          \
+    uintptr_t i;                                                          \
+    for (i = 0; i < opr_sz / 8; ++i) {                                    \
+        d[i] = FUNC(n[i], m[i], g[i]);                                    \
+    }                                                                     \
+}
+
+#define DO_AND(N, M, G)  (((N) & (M)) & (G))
+#define DO_BIC(N, M, G)  (((N) & ~(M)) & (G))
+#define DO_EOR(N, M, G)  (((N) ^ (M)) & (G))
+#define DO_ORR(N, M, G)  (((N) | (M)) & (G))
+#define DO_ORN(N, M, G)  (((N) | ~(M)) & (G))
+#define DO_NOR(N, M, G)  (~((N) | (M)) & (G))
+#define DO_NAND(N, M, G) (~((N) & (M)) & (G))
+#define DO_SEL(N, M, G)  (((N) & (G)) | ((M) & ~(G)))
+
+LOGICAL_PPPP(sve_and_pppp, DO_AND)
+LOGICAL_PPPP(sve_bic_pppp, DO_BIC)
+LOGICAL_PPPP(sve_eor_pppp, DO_EOR)
+LOGICAL_PPPP(sve_sel_pppp, DO_SEL)
+LOGICAL_PPPP(sve_orr_pppp, DO_ORR)
+LOGICAL_PPPP(sve_orn_pppp, DO_ORN)
+LOGICAL_PPPP(sve_nor_pppp, DO_NOR)
+LOGICAL_PPPP(sve_nand_pppp, DO_NAND)
+
+#undef DO_AND
+#undef DO_BIC
+#undef DO_EOR
+#undef DO_ORR
+#undef DO_ORN
+#undef DO_NOR
+#undef DO_NAND
+#undef DO_SEL
+#undef LOGICAL_PPPP
+
+/* Fully general three-operand expander, controlled by a predicate.
+ * This is complicated by the host-endian storage of the register file.
+ */
+/* ??? I don't expect the compiler could ever vectorize this itself.
+ * With some tables we can convert bit masks to byte masks, and with
+ * extra care wrt byte/word ordering we could use gcc generic vectors
+ * and do 16 bytes at a time.
+ */
+#define DO_ZPZZ(NAME, TYPE, H, OP)                                       \
+void HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, uint32_t desc) \
+{                                                                       \
+    intptr_t i, opr_sz = simd_oprsz(desc);                              \
+    for (i = 0; i < opr_sz; ) {                                         \
+        uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3));                 \
+        do {                                                            \
+            if (pg & 1) {                                               \
+                TYPE nn = *(TYPE *)(vn + H(i));                         \
+                TYPE mm = *(TYPE *)(vm + H(i));                         \
+                *(TYPE *)(vd + H(i)) = OP(nn, mm);                      \
+            }                                                           \
+            i += sizeof(TYPE), pg >>= sizeof(TYPE);                     \
+        } while (i & 15);                                               \
+    }                                                                   \
+}
+
+/* Similarly, specialized for 64-bit operands.  */
+#define DO_ZPZZ_D(NAME, TYPE, OP)                                \
+void HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, uint32_t desc) \
+{                                                               \
+    intptr_t i, opr_sz = simd_oprsz(desc) / 8;                  \
+    TYPE *d = vd, *n = vn, *m = vm;                             \
+    uint8_t *pg = vg;                                           \
+    for (i = 0; i < opr_sz; i += 1) {                           \
+        if (pg[H1(i)] & 1) {                                    \
+            TYPE nn = n[i], mm = m[i];                          \
+            d[i] = OP(nn, mm);                                  \
+        }                                                       \
+    }                                                           \
+}
+
+#define DO_AND(N, M)  (N & M)
+#define DO_EOR(N, M)  (N ^ M)
+#define DO_ORR(N, M)  (N | M)
+#define DO_BIC(N, M)  (N & ~M)
+#define DO_ADD(N, M)  (N + M)
+#define DO_SUB(N, M)  (N - M)
+#define DO_MAX(N, M)  ((N) >= (M) ? (N) : (M))
+#define DO_MIN(N, M)  ((N) >= (M) ? (M) : (N))
+#define DO_ABD(N, M)  ((N) >= (M) ? (N) - (M) : (M) - (N))
+#define DO_MUL(N, M)  (N * M)
+
+
+/*
+ * We must avoid the C undefined behaviour cases: division by
+ * zero and signed division of INT_MIN by -1. Both of these
+ * have architecturally defined required results for Arm.
+ * We special case all signed divisions by -1 to avoid having
+ * to deduce the minimum integer for the type involved.
+ */
+#define DO_SDIV(N, M) (unlikely(M == 0) ? 0 : unlikely(M == -1) ? -N : N / M)
+#define DO_UDIV(N, M) (unlikely(M == 0) ? 0 : N / M)
+
+DO_ZPZZ(sve_and_zpzz_b, uint8_t, H1, DO_AND)
+DO_ZPZZ(sve_and_zpzz_h, uint16_t, H1_2, DO_AND)
+DO_ZPZZ(sve_and_zpzz_s, uint32_t, H1_4, DO_AND)
+DO_ZPZZ_D(sve_and_zpzz_d, uint64_t, DO_AND)
+
+DO_ZPZZ(sve_orr_zpzz_b, uint8_t, H1, DO_ORR)
+DO_ZPZZ(sve_orr_zpzz_h, uint16_t, H1_2, DO_ORR)
+DO_ZPZZ(sve_orr_zpzz_s, uint32_t, H1_4, DO_ORR)
+DO_ZPZZ_D(sve_orr_zpzz_d, uint64_t, DO_ORR)
+
+DO_ZPZZ(sve_eor_zpzz_b, uint8_t, H1, DO_EOR)
+DO_ZPZZ(sve_eor_zpzz_h, uint16_t, H1_2, DO_EOR)
+DO_ZPZZ(sve_eor_zpzz_s, uint32_t, H1_4, DO_EOR)
+DO_ZPZZ_D(sve_eor_zpzz_d, uint64_t, DO_EOR)
+
+DO_ZPZZ(sve_bic_zpzz_b, uint8_t, H1, DO_BIC)
+DO_ZPZZ(sve_bic_zpzz_h, uint16_t, H1_2, DO_BIC)
+DO_ZPZZ(sve_bic_zpzz_s, uint32_t, H1_4, DO_BIC)
+DO_ZPZZ_D(sve_bic_zpzz_d, uint64_t, DO_BIC)
+
+DO_ZPZZ(sve_add_zpzz_b, uint8_t, H1, DO_ADD)
+DO_ZPZZ(sve_add_zpzz_h, uint16_t, H1_2, DO_ADD)
+DO_ZPZZ(sve_add_zpzz_s, uint32_t, H1_4, DO_ADD)
+DO_ZPZZ_D(sve_add_zpzz_d, uint64_t, DO_ADD)
+
+DO_ZPZZ(sve_sub_zpzz_b, uint8_t, H1, DO_SUB)
+DO_ZPZZ(sve_sub_zpzz_h, uint16_t, H1_2, DO_SUB)
+DO_ZPZZ(sve_sub_zpzz_s, uint32_t, H1_4, DO_SUB)
+DO_ZPZZ_D(sve_sub_zpzz_d, uint64_t, DO_SUB)
+
+DO_ZPZZ(sve_smax_zpzz_b, int8_t, H1, DO_MAX)
+DO_ZPZZ(sve_smax_zpzz_h, int16_t, H1_2, DO_MAX)
+DO_ZPZZ(sve_smax_zpzz_s, int32_t, H1_4, DO_MAX)
+DO_ZPZZ_D(sve_smax_zpzz_d, int64_t, DO_MAX)
+
+DO_ZPZZ(sve_umax_zpzz_b, uint8_t, H1, DO_MAX)
+DO_ZPZZ(sve_umax_zpzz_h, uint16_t, H1_2, DO_MAX)
+DO_ZPZZ(sve_umax_zpzz_s, uint32_t, H1_4, DO_MAX)
+DO_ZPZZ_D(sve_umax_zpzz_d, uint64_t, DO_MAX)
+
+DO_ZPZZ(sve_smin_zpzz_b, int8_t,  H1, DO_MIN)
+DO_ZPZZ(sve_smin_zpzz_h, int16_t,  H1_2, DO_MIN)
+DO_ZPZZ(sve_smin_zpzz_s, int32_t,  H1_4, DO_MIN)
+DO_ZPZZ_D(sve_smin_zpzz_d, int64_t,  DO_MIN)
+
+DO_ZPZZ(sve_umin_zpzz_b, uint8_t, H1, DO_MIN)
+DO_ZPZZ(sve_umin_zpzz_h, uint16_t, H1_2, DO_MIN)
+DO_ZPZZ(sve_umin_zpzz_s, uint32_t, H1_4, DO_MIN)
+DO_ZPZZ_D(sve_umin_zpzz_d, uint64_t, DO_MIN)
+
+DO_ZPZZ(sve_sabd_zpzz_b, int8_t,  H1, DO_ABD)
+DO_ZPZZ(sve_sabd_zpzz_h, int16_t,  H1_2, DO_ABD)
+DO_ZPZZ(sve_sabd_zpzz_s, int32_t,  H1_4, DO_ABD)
+DO_ZPZZ_D(sve_sabd_zpzz_d, int64_t,  DO_ABD)
+
+DO_ZPZZ(sve_uabd_zpzz_b, uint8_t, H1, DO_ABD)
+DO_ZPZZ(sve_uabd_zpzz_h, uint16_t, H1_2, DO_ABD)
+DO_ZPZZ(sve_uabd_zpzz_s, uint32_t, H1_4, DO_ABD)
+DO_ZPZZ_D(sve_uabd_zpzz_d, uint64_t, DO_ABD)
+
+/* Because the computation type is at least twice as large as required,
+   these work for both signed and unsigned source types.  */
+static inline uint8_t do_mulh_b(int32_t n, int32_t m)
+{
+    return (n * m) >> 8;
+}
+
+static inline uint16_t do_mulh_h(int32_t n, int32_t m)
+{
+    return (n * m) >> 16;
+}
+
+static inline uint32_t do_mulh_s(int64_t n, int64_t m)
+{
+    return (n * m) >> 32;
+}
+
+static inline uint64_t do_smulh_d(uint64_t n, uint64_t m)
+{
+    uint64_t lo, hi;
+    muls64(&lo, &hi, n, m);
+    return hi;
+}
+
+static inline uint64_t do_umulh_d(uint64_t n, uint64_t m)
+{
+    uint64_t lo, hi;
+    mulu64(&lo, &hi, n, m);
+    return hi;
+}
+
+DO_ZPZZ(sve_mul_zpzz_b, uint8_t, H1, DO_MUL)
+DO_ZPZZ(sve_mul_zpzz_h, uint16_t, H1_2, DO_MUL)
+DO_ZPZZ(sve_mul_zpzz_s, uint32_t, H1_4, DO_MUL)
+DO_ZPZZ_D(sve_mul_zpzz_d, uint64_t, DO_MUL)
+
+DO_ZPZZ(sve_smulh_zpzz_b, int8_t, H1, do_mulh_b)
+DO_ZPZZ(sve_smulh_zpzz_h, int16_t, H1_2, do_mulh_h)
+DO_ZPZZ(sve_smulh_zpzz_s, int32_t, H1_4, do_mulh_s)
+DO_ZPZZ_D(sve_smulh_zpzz_d, uint64_t, do_smulh_d)
+
+DO_ZPZZ(sve_umulh_zpzz_b, uint8_t, H1, do_mulh_b)
+DO_ZPZZ(sve_umulh_zpzz_h, uint16_t, H1_2, do_mulh_h)
+DO_ZPZZ(sve_umulh_zpzz_s, uint32_t, H1_4, do_mulh_s)
+DO_ZPZZ_D(sve_umulh_zpzz_d, uint64_t, do_umulh_d)
+
+DO_ZPZZ(sve_sdiv_zpzz_s, int32_t, H1_4, DO_SDIV)
+DO_ZPZZ_D(sve_sdiv_zpzz_d, int64_t, DO_SDIV)
+
+DO_ZPZZ(sve_udiv_zpzz_s, uint32_t, H1_4, DO_UDIV)
+DO_ZPZZ_D(sve_udiv_zpzz_d, uint64_t, DO_UDIV)
+
+/* Note that all bits of the shift are significant
+   and not modulo the element size.  */
+#define DO_ASR(N, M)  (N >> MIN(M, sizeof(N) * 8 - 1))
+#define DO_LSR(N, M)  (M < sizeof(N) * 8 ? N >> M : 0)
+#define DO_LSL(N, M)  (M < sizeof(N) * 8 ? N << M : 0)
+
+DO_ZPZZ(sve_asr_zpzz_b, int8_t, H1, DO_ASR)
+DO_ZPZZ(sve_lsr_zpzz_b, uint8_t, H1_2, DO_LSR)
+DO_ZPZZ(sve_lsl_zpzz_b, uint8_t, H1_4, DO_LSL)
+
+DO_ZPZZ(sve_asr_zpzz_h, int16_t, H1, DO_ASR)
+DO_ZPZZ(sve_lsr_zpzz_h, uint16_t, H1_2, DO_LSR)
+DO_ZPZZ(sve_lsl_zpzz_h, uint16_t, H1_4, DO_LSL)
+
+DO_ZPZZ(sve_asr_zpzz_s, int32_t, H1, DO_ASR)
+DO_ZPZZ(sve_lsr_zpzz_s, uint32_t, H1_2, DO_LSR)
+DO_ZPZZ(sve_lsl_zpzz_s, uint32_t, H1_4, DO_LSL)
+
+DO_ZPZZ_D(sve_asr_zpzz_d, int64_t, DO_ASR)
+DO_ZPZZ_D(sve_lsr_zpzz_d, uint64_t, DO_LSR)
+DO_ZPZZ_D(sve_lsl_zpzz_d, uint64_t, DO_LSL)
+
+static inline uint16_t do_sadalp_h(int16_t n, int16_t m)
+{
+    int8_t n1 = n, n2 = n >> 8;
+    return m + n1 + n2;
+}
+
+static inline uint32_t do_sadalp_s(int32_t n, int32_t m)
+{
+    int16_t n1 = n, n2 = n >> 16;
+    return m + n1 + n2;
+}
+
+static inline uint64_t do_sadalp_d(int64_t n, int64_t m)
+{
+    int32_t n1 = n, n2 = n >> 32;
+    return m + n1 + n2;
+}
+
+DO_ZPZZ(sve2_sadalp_zpzz_h, int16_t, H1_2, do_sadalp_h)
+DO_ZPZZ(sve2_sadalp_zpzz_s, int32_t, H1_4, do_sadalp_s)
+DO_ZPZZ_D(sve2_sadalp_zpzz_d, int64_t, do_sadalp_d)
+
+static inline uint16_t do_uadalp_h(uint16_t n, uint16_t m)
+{
+    uint8_t n1 = n, n2 = n >> 8;
+    return m + n1 + n2;
+}
+
+static inline uint32_t do_uadalp_s(uint32_t n, uint32_t m)
+{
+    uint16_t n1 = n, n2 = n >> 16;
+    return m + n1 + n2;
+}
+
+static inline uint64_t do_uadalp_d(uint64_t n, uint64_t m)
+{
+    uint32_t n1 = n, n2 = n >> 32;
+    return m + n1 + n2;
+}
+
+DO_ZPZZ(sve2_uadalp_zpzz_h, uint16_t, H1_2, do_uadalp_h)
+DO_ZPZZ(sve2_uadalp_zpzz_s, uint32_t, H1_4, do_uadalp_s)
+DO_ZPZZ_D(sve2_uadalp_zpzz_d, uint64_t, do_uadalp_d)
+
+#define do_srshl_b(n, m)  do_sqrshl_bhs(n, m, 8, true, NULL)
+#define do_srshl_h(n, m)  do_sqrshl_bhs(n, m, 16, true, NULL)
+#define do_srshl_s(n, m)  do_sqrshl_bhs(n, m, 32, true, NULL)
+#define do_srshl_d(n, m)  do_sqrshl_d(n, m, true, NULL)
+
+DO_ZPZZ(sve2_srshl_zpzz_b, int8_t, H1, do_srshl_b)
+DO_ZPZZ(sve2_srshl_zpzz_h, int16_t, H1_2, do_srshl_h)
+DO_ZPZZ(sve2_srshl_zpzz_s, int32_t, H1_4, do_srshl_s)
+DO_ZPZZ_D(sve2_srshl_zpzz_d, int64_t, do_srshl_d)
+
+#define do_urshl_b(n, m)  do_uqrshl_bhs(n, (int8_t)m, 8, true, NULL)
+#define do_urshl_h(n, m)  do_uqrshl_bhs(n, (int16_t)m, 16, true, NULL)
+#define do_urshl_s(n, m)  do_uqrshl_bhs(n, m, 32, true, NULL)
+#define do_urshl_d(n, m)  do_uqrshl_d(n, m, true, NULL)
+
+DO_ZPZZ(sve2_urshl_zpzz_b, uint8_t, H1, do_urshl_b)
+DO_ZPZZ(sve2_urshl_zpzz_h, uint16_t, H1_2, do_urshl_h)
+DO_ZPZZ(sve2_urshl_zpzz_s, uint32_t, H1_4, do_urshl_s)
+DO_ZPZZ_D(sve2_urshl_zpzz_d, uint64_t, do_urshl_d)
+
+/*
+ * Unlike the NEON and AdvSIMD versions, there is no QC bit to set.
+ * We pass in a pointer to a dummy saturation field to trigger
+ * the saturating arithmetic but discard the information about
+ * whether it has occurred.
+ */
+#define do_sqshl_b(n, m) \
+   ({ uint32_t discard; do_sqrshl_bhs(n, m, 8, false, &discard); })
+#define do_sqshl_h(n, m) \
+   ({ uint32_t discard; do_sqrshl_bhs(n, m, 16, false, &discard); })
+#define do_sqshl_s(n, m) \
+   ({ uint32_t discard; do_sqrshl_bhs(n, m, 32, false, &discard); })
+#define do_sqshl_d(n, m) \
+   ({ uint32_t discard; do_sqrshl_d(n, m, false, &discard); })
+
+DO_ZPZZ(sve2_sqshl_zpzz_b, int8_t, H1_2, do_sqshl_b)
+DO_ZPZZ(sve2_sqshl_zpzz_h, int16_t, H1_2, do_sqshl_h)
+DO_ZPZZ(sve2_sqshl_zpzz_s, int32_t, H1_4, do_sqshl_s)
+DO_ZPZZ_D(sve2_sqshl_zpzz_d, int64_t, do_sqshl_d)
+
+#define do_uqshl_b(n, m) \
+   ({ uint32_t discard; do_uqrshl_bhs(n, (int8_t)m, 8, false, &discard); })
+#define do_uqshl_h(n, m) \
+   ({ uint32_t discard; do_uqrshl_bhs(n, (int16_t)m, 16, false, &discard); })
+#define do_uqshl_s(n, m) \
+   ({ uint32_t discard; do_uqrshl_bhs(n, m, 32, false, &discard); })
+#define do_uqshl_d(n, m) \
+   ({ uint32_t discard; do_uqrshl_d(n, m, false, &discard); })
+
+DO_ZPZZ(sve2_uqshl_zpzz_b, uint8_t, H1_2, do_uqshl_b)
+DO_ZPZZ(sve2_uqshl_zpzz_h, uint16_t, H1_2, do_uqshl_h)
+DO_ZPZZ(sve2_uqshl_zpzz_s, uint32_t, H1_4, do_uqshl_s)
+DO_ZPZZ_D(sve2_uqshl_zpzz_d, uint64_t, do_uqshl_d)
+
+#define do_sqrshl_b(n, m) \
+   ({ uint32_t discard; do_sqrshl_bhs(n, m, 8, true, &discard); })
+#define do_sqrshl_h(n, m) \
+   ({ uint32_t discard; do_sqrshl_bhs(n, m, 16, true, &discard); })
+#define do_sqrshl_s(n, m) \
+   ({ uint32_t discard; do_sqrshl_bhs(n, m, 32, true, &discard); })
+#define do_sqrshl_d(n, m) \
+   ({ uint32_t discard; do_sqrshl_d(n, m, true, &discard); })
+
+DO_ZPZZ(sve2_sqrshl_zpzz_b, int8_t, H1_2, do_sqrshl_b)
+DO_ZPZZ(sve2_sqrshl_zpzz_h, int16_t, H1_2, do_sqrshl_h)
+DO_ZPZZ(sve2_sqrshl_zpzz_s, int32_t, H1_4, do_sqrshl_s)
+DO_ZPZZ_D(sve2_sqrshl_zpzz_d, int64_t, do_sqrshl_d)
+
+#undef do_sqrshl_d
+
+#define do_uqrshl_b(n, m) \
+   ({ uint32_t discard; do_uqrshl_bhs(n, (int8_t)m, 8, true, &discard); })
+#define do_uqrshl_h(n, m) \
+   ({ uint32_t discard; do_uqrshl_bhs(n, (int16_t)m, 16, true, &discard); })
+#define do_uqrshl_s(n, m) \
+   ({ uint32_t discard; do_uqrshl_bhs(n, m, 32, true, &discard); })
+#define do_uqrshl_d(n, m) \
+   ({ uint32_t discard; do_uqrshl_d(n, m, true, &discard); })
+
+DO_ZPZZ(sve2_uqrshl_zpzz_b, uint8_t, H1_2, do_uqrshl_b)
+DO_ZPZZ(sve2_uqrshl_zpzz_h, uint16_t, H1_2, do_uqrshl_h)
+DO_ZPZZ(sve2_uqrshl_zpzz_s, uint32_t, H1_4, do_uqrshl_s)
+DO_ZPZZ_D(sve2_uqrshl_zpzz_d, uint64_t, do_uqrshl_d)
+
+#undef do_uqrshl_d
+
+#define DO_HADD_BHS(n, m)  (((int64_t)n + m) >> 1)
+#define DO_HADD_D(n, m)    ((n >> 1) + (m >> 1) + (n & m & 1))
+
+DO_ZPZZ(sve2_shadd_zpzz_b, int8_t, H1, DO_HADD_BHS)
+DO_ZPZZ(sve2_shadd_zpzz_h, int16_t, H1_2, DO_HADD_BHS)
+DO_ZPZZ(sve2_shadd_zpzz_s, int32_t, H1_4, DO_HADD_BHS)
+DO_ZPZZ_D(sve2_shadd_zpzz_d, int64_t, DO_HADD_D)
+
+DO_ZPZZ(sve2_uhadd_zpzz_b, uint8_t, H1, DO_HADD_BHS)
+DO_ZPZZ(sve2_uhadd_zpzz_h, uint16_t, H1_2, DO_HADD_BHS)
+DO_ZPZZ(sve2_uhadd_zpzz_s, uint32_t, H1_4, DO_HADD_BHS)
+DO_ZPZZ_D(sve2_uhadd_zpzz_d, uint64_t, DO_HADD_D)
+
+#define DO_RHADD_BHS(n, m)  (((int64_t)n + m + 1) >> 1)
+#define DO_RHADD_D(n, m)    ((n >> 1) + (m >> 1) + ((n | m) & 1))
+
+DO_ZPZZ(sve2_srhadd_zpzz_b, int8_t, H1, DO_RHADD_BHS)
+DO_ZPZZ(sve2_srhadd_zpzz_h, int16_t, H1_2, DO_RHADD_BHS)
+DO_ZPZZ(sve2_srhadd_zpzz_s, int32_t, H1_4, DO_RHADD_BHS)
+DO_ZPZZ_D(sve2_srhadd_zpzz_d, int64_t, DO_RHADD_D)
+
+DO_ZPZZ(sve2_urhadd_zpzz_b, uint8_t, H1, DO_RHADD_BHS)
+DO_ZPZZ(sve2_urhadd_zpzz_h, uint16_t, H1_2, DO_RHADD_BHS)
+DO_ZPZZ(sve2_urhadd_zpzz_s, uint32_t, H1_4, DO_RHADD_BHS)
+DO_ZPZZ_D(sve2_urhadd_zpzz_d, uint64_t, DO_RHADD_D)
+
+#define DO_HSUB_BHS(n, m)  (((int64_t)n - m) >> 1)
+#define DO_HSUB_D(n, m)    ((n >> 1) - (m >> 1) - (~n & m & 1))
+
+DO_ZPZZ(sve2_shsub_zpzz_b, int8_t, H1, DO_HSUB_BHS)
+DO_ZPZZ(sve2_shsub_zpzz_h, int16_t, H1_2, DO_HSUB_BHS)
+DO_ZPZZ(sve2_shsub_zpzz_s, int32_t, H1_4, DO_HSUB_BHS)
+DO_ZPZZ_D(sve2_shsub_zpzz_d, int64_t, DO_HSUB_D)
+
+DO_ZPZZ(sve2_uhsub_zpzz_b, uint8_t, H1, DO_HSUB_BHS)
+DO_ZPZZ(sve2_uhsub_zpzz_h, uint16_t, H1_2, DO_HSUB_BHS)
+DO_ZPZZ(sve2_uhsub_zpzz_s, uint32_t, H1_4, DO_HSUB_BHS)
+DO_ZPZZ_D(sve2_uhsub_zpzz_d, uint64_t, DO_HSUB_D)
+
+static inline int32_t do_sat_bhs(int64_t val, int64_t min, int64_t max)
+{
+    return val >= max ? max : val <= min ? min : val;
+}
+
+#define DO_SQADD_B(n, m) do_sat_bhs((int64_t)n + m, INT8_MIN, INT8_MAX)
+#define DO_SQADD_H(n, m) do_sat_bhs((int64_t)n + m, INT16_MIN, INT16_MAX)
+#define DO_SQADD_S(n, m) do_sat_bhs((int64_t)n + m, INT32_MIN, INT32_MAX)
+
+static inline int64_t do_sqadd_d(int64_t n, int64_t m)
+{
+    int64_t r = n + m;
+    if (((r ^ n) & ~(n ^ m)) < 0) {
+        /* Signed overflow.  */
+        return r < 0 ? INT64_MAX : INT64_MIN;
+    }
+    return r;
+}
+
+DO_ZPZZ(sve2_sqadd_zpzz_b, int8_t, H1, DO_SQADD_B)
+DO_ZPZZ(sve2_sqadd_zpzz_h, int16_t, H1_2, DO_SQADD_H)
+DO_ZPZZ(sve2_sqadd_zpzz_s, int32_t, H1_4, DO_SQADD_S)
+DO_ZPZZ_D(sve2_sqadd_zpzz_d, int64_t, do_sqadd_d)
+
+#define DO_UQADD_B(n, m) do_sat_bhs((int64_t)n + m, 0, UINT8_MAX)
+#define DO_UQADD_H(n, m) do_sat_bhs((int64_t)n + m, 0, UINT16_MAX)
+#define DO_UQADD_S(n, m) do_sat_bhs((int64_t)n + m, 0, UINT32_MAX)
+
+static inline uint64_t do_uqadd_d(uint64_t n, uint64_t m)
+{
+    uint64_t r = n + m;
+    return r < n ? UINT64_MAX : r;
+}
+
+DO_ZPZZ(sve2_uqadd_zpzz_b, uint8_t, H1, DO_UQADD_B)
+DO_ZPZZ(sve2_uqadd_zpzz_h, uint16_t, H1_2, DO_UQADD_H)
+DO_ZPZZ(sve2_uqadd_zpzz_s, uint32_t, H1_4, DO_UQADD_S)
+DO_ZPZZ_D(sve2_uqadd_zpzz_d, uint64_t, do_uqadd_d)
+
+#define DO_SQSUB_B(n, m) do_sat_bhs((int64_t)n - m, INT8_MIN, INT8_MAX)
+#define DO_SQSUB_H(n, m) do_sat_bhs((int64_t)n - m, INT16_MIN, INT16_MAX)
+#define DO_SQSUB_S(n, m) do_sat_bhs((int64_t)n - m, INT32_MIN, INT32_MAX)
+
+static inline int64_t do_sqsub_d(int64_t n, int64_t m)
+{
+    int64_t r = n - m;
+    if (((r ^ n) & (n ^ m)) < 0) {
+        /* Signed overflow.  */
+        return r < 0 ? INT64_MAX : INT64_MIN;
+    }
+    return r;
+}
+
+DO_ZPZZ(sve2_sqsub_zpzz_b, int8_t, H1, DO_SQSUB_B)
+DO_ZPZZ(sve2_sqsub_zpzz_h, int16_t, H1_2, DO_SQSUB_H)
+DO_ZPZZ(sve2_sqsub_zpzz_s, int32_t, H1_4, DO_SQSUB_S)
+DO_ZPZZ_D(sve2_sqsub_zpzz_d, int64_t, do_sqsub_d)
+
+#define DO_UQSUB_B(n, m) do_sat_bhs((int64_t)n - m, 0, UINT8_MAX)
+#define DO_UQSUB_H(n, m) do_sat_bhs((int64_t)n - m, 0, UINT16_MAX)
+#define DO_UQSUB_S(n, m) do_sat_bhs((int64_t)n - m, 0, UINT32_MAX)
+
+static inline uint64_t do_uqsub_d(uint64_t n, uint64_t m)
+{
+    return n > m ? n - m : 0;
+}
+
+DO_ZPZZ(sve2_uqsub_zpzz_b, uint8_t, H1, DO_UQSUB_B)
+DO_ZPZZ(sve2_uqsub_zpzz_h, uint16_t, H1_2, DO_UQSUB_H)
+DO_ZPZZ(sve2_uqsub_zpzz_s, uint32_t, H1_4, DO_UQSUB_S)
+DO_ZPZZ_D(sve2_uqsub_zpzz_d, uint64_t, do_uqsub_d)
+
+#define DO_SUQADD_B(n, m) \
+    do_sat_bhs((int64_t)(int8_t)n + m, INT8_MIN, INT8_MAX)
+#define DO_SUQADD_H(n, m) \
+    do_sat_bhs((int64_t)(int16_t)n + m, INT16_MIN, INT16_MAX)
+#define DO_SUQADD_S(n, m) \
+    do_sat_bhs((int64_t)(int32_t)n + m, INT32_MIN, INT32_MAX)
+
+static inline int64_t do_suqadd_d(int64_t n, uint64_t m)
+{
+    uint64_t r = n + m;
+
+    if (n < 0) {
+        /* Note that m - abs(n) cannot underflow. */
+        if (r > INT64_MAX) {
+            /* Result is either very large positive or negative. */
+            if (m > -n) {
+                /* m > abs(n), so r is a very large positive. */
+                return INT64_MAX;
+            }
+            /* Result is negative. */
+        }
+    } else {
+        /* Both inputs are positive: check for overflow.  */
+        if (r < m || r > INT64_MAX) {
+            return INT64_MAX;
+        }
+    }
+    return r;
+}
+
+DO_ZPZZ(sve2_suqadd_zpzz_b, uint8_t, H1, DO_SUQADD_B)
+DO_ZPZZ(sve2_suqadd_zpzz_h, uint16_t, H1_2, DO_SUQADD_H)
+DO_ZPZZ(sve2_suqadd_zpzz_s, uint32_t, H1_4, DO_SUQADD_S)
+DO_ZPZZ_D(sve2_suqadd_zpzz_d, uint64_t, do_suqadd_d)
+
+#define DO_USQADD_B(n, m) \
+    do_sat_bhs((int64_t)n + (int8_t)m, 0, UINT8_MAX)
+#define DO_USQADD_H(n, m) \
+    do_sat_bhs((int64_t)n + (int16_t)m, 0, UINT16_MAX)
+#define DO_USQADD_S(n, m) \
+    do_sat_bhs((int64_t)n + (int32_t)m, 0, UINT32_MAX)
+
+static inline uint64_t do_usqadd_d(uint64_t n, int64_t m)
+{
+    uint64_t r = n + m;
+
+    if (m < 0) {
+        return n < -m ? 0 : r;
+    }
+    return r < n ? UINT64_MAX : r;
+}
+
+DO_ZPZZ(sve2_usqadd_zpzz_b, uint8_t, H1, DO_USQADD_B)
+DO_ZPZZ(sve2_usqadd_zpzz_h, uint16_t, H1_2, DO_USQADD_H)
+DO_ZPZZ(sve2_usqadd_zpzz_s, uint32_t, H1_4, DO_USQADD_S)
+DO_ZPZZ_D(sve2_usqadd_zpzz_d, uint64_t, do_usqadd_d)
+
+#undef DO_ZPZZ
+#undef DO_ZPZZ_D
+
+/*
+ * Three operand expander, operating on element pairs.
+ * If the slot I is even, the elements from from VN {I, I+1}.
+ * If the slot I is odd, the elements from from VM {I-1, I}.
+ * Load all of the input elements in each pair before overwriting output.
+ */
+#define DO_ZPZZ_PAIR(NAME, TYPE, H, OP) \
+void HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, uint32_t desc) \
+{                                                               \
+    intptr_t i, opr_sz = simd_oprsz(desc);                      \
+    for (i = 0; i < opr_sz; ) {                                 \
+        uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3));         \
+        do {                                                    \
+            TYPE n0 = *(TYPE *)(vn + H(i));                     \
+            TYPE m0 = *(TYPE *)(vm + H(i));                     \
+            TYPE n1 = *(TYPE *)(vn + H(i + sizeof(TYPE)));      \
+            TYPE m1 = *(TYPE *)(vm + H(i + sizeof(TYPE)));      \
+            if (pg & 1) {                                       \
+                *(TYPE *)(vd + H(i)) = OP(n0, n1);              \
+            }                                                   \
+            i += sizeof(TYPE), pg >>= sizeof(TYPE);             \
+            if (pg & 1) {                                       \
+                *(TYPE *)(vd + H(i)) = OP(m0, m1);              \
+            }                                                   \
+            i += sizeof(TYPE), pg >>= sizeof(TYPE);             \
+        } while (i & 15);                                       \
+    }                                                           \
+}
+
+/* Similarly, specialized for 64-bit operands.  */
+#define DO_ZPZZ_PAIR_D(NAME, TYPE, OP) \
+void HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, uint32_t desc) \
+{                                                               \
+    intptr_t i, opr_sz = simd_oprsz(desc) / 8;                  \
+    TYPE *d = vd, *n = vn, *m = vm;                             \
+    uint8_t *pg = vg;                                           \
+    for (i = 0; i < opr_sz; i += 2) {                           \
+        TYPE n0 = n[i], n1 = n[i + 1];                          \
+        TYPE m0 = m[i], m1 = m[i + 1];                          \
+        if (pg[H1(i)] & 1) {                                    \
+            d[i] = OP(n0, n1);                                  \
+        }                                                       \
+        if (pg[H1(i + 1)] & 1) {                                \
+            d[i + 1] = OP(m0, m1);                              \
+        }                                                       \
+    }                                                           \
+}
+
+DO_ZPZZ_PAIR(sve2_addp_zpzz_b, uint8_t, H1, DO_ADD)
+DO_ZPZZ_PAIR(sve2_addp_zpzz_h, uint16_t, H1_2, DO_ADD)
+DO_ZPZZ_PAIR(sve2_addp_zpzz_s, uint32_t, H1_4, DO_ADD)
+DO_ZPZZ_PAIR_D(sve2_addp_zpzz_d, uint64_t, DO_ADD)
+
+DO_ZPZZ_PAIR(sve2_umaxp_zpzz_b, uint8_t, H1, DO_MAX)
+DO_ZPZZ_PAIR(sve2_umaxp_zpzz_h, uint16_t, H1_2, DO_MAX)
+DO_ZPZZ_PAIR(sve2_umaxp_zpzz_s, uint32_t, H1_4, DO_MAX)
+DO_ZPZZ_PAIR_D(sve2_umaxp_zpzz_d, uint64_t, DO_MAX)
+
+DO_ZPZZ_PAIR(sve2_uminp_zpzz_b, uint8_t, H1, DO_MIN)
+DO_ZPZZ_PAIR(sve2_uminp_zpzz_h, uint16_t, H1_2, DO_MIN)
+DO_ZPZZ_PAIR(sve2_uminp_zpzz_s, uint32_t, H1_4, DO_MIN)
+DO_ZPZZ_PAIR_D(sve2_uminp_zpzz_d, uint64_t, DO_MIN)
+
+DO_ZPZZ_PAIR(sve2_smaxp_zpzz_b, int8_t, H1, DO_MAX)
+DO_ZPZZ_PAIR(sve2_smaxp_zpzz_h, int16_t, H1_2, DO_MAX)
+DO_ZPZZ_PAIR(sve2_smaxp_zpzz_s, int32_t, H1_4, DO_MAX)
+DO_ZPZZ_PAIR_D(sve2_smaxp_zpzz_d, int64_t, DO_MAX)
+
+DO_ZPZZ_PAIR(sve2_sminp_zpzz_b, int8_t, H1, DO_MIN)
+DO_ZPZZ_PAIR(sve2_sminp_zpzz_h, int16_t, H1_2, DO_MIN)
+DO_ZPZZ_PAIR(sve2_sminp_zpzz_s, int32_t, H1_4, DO_MIN)
+DO_ZPZZ_PAIR_D(sve2_sminp_zpzz_d, int64_t, DO_MIN)
+
+#undef DO_ZPZZ_PAIR
+#undef DO_ZPZZ_PAIR_D
+
+#define DO_ZPZZ_PAIR_FP(NAME, TYPE, H, OP)                              \
+void HELPER(NAME)(void *vd, void *vn, void *vm, void *vg,               \
+                  void *status, uint32_t desc)                          \
+{                                                                       \
+    intptr_t i, opr_sz = simd_oprsz(desc);                              \
+    for (i = 0; i < opr_sz; ) {                                         \
+        uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3));                 \
+        do {                                                            \
+            TYPE n0 = *(TYPE *)(vn + H(i));                             \
+            TYPE m0 = *(TYPE *)(vm + H(i));                             \
+            TYPE n1 = *(TYPE *)(vn + H(i + sizeof(TYPE)));              \
+            TYPE m1 = *(TYPE *)(vm + H(i + sizeof(TYPE)));              \
+            if (pg & 1) {                                               \
+                *(TYPE *)(vd + H(i)) = OP(n0, n1, status);              \
+            }                                                           \
+            i += sizeof(TYPE), pg >>= sizeof(TYPE);                     \
+            if (pg & 1) {                                               \
+                *(TYPE *)(vd + H(i)) = OP(m0, m1, status);              \
+            }                                                           \
+            i += sizeof(TYPE), pg >>= sizeof(TYPE);                     \
+        } while (i & 15);                                               \
+    }                                                                   \
+}
+
+DO_ZPZZ_PAIR_FP(sve2_faddp_zpzz_h, float16, H1_2, float16_add)
+DO_ZPZZ_PAIR_FP(sve2_faddp_zpzz_s, float32, H1_4, float32_add)
+DO_ZPZZ_PAIR_FP(sve2_faddp_zpzz_d, float64, H1_8, float64_add)
+
+DO_ZPZZ_PAIR_FP(sve2_fmaxnmp_zpzz_h, float16, H1_2, float16_maxnum)
+DO_ZPZZ_PAIR_FP(sve2_fmaxnmp_zpzz_s, float32, H1_4, float32_maxnum)
+DO_ZPZZ_PAIR_FP(sve2_fmaxnmp_zpzz_d, float64, H1_8, float64_maxnum)
+
+DO_ZPZZ_PAIR_FP(sve2_fminnmp_zpzz_h, float16, H1_2, float16_minnum)
+DO_ZPZZ_PAIR_FP(sve2_fminnmp_zpzz_s, float32, H1_4, float32_minnum)
+DO_ZPZZ_PAIR_FP(sve2_fminnmp_zpzz_d, float64, H1_8, float64_minnum)
+
+DO_ZPZZ_PAIR_FP(sve2_fmaxp_zpzz_h, float16, H1_2, float16_max)
+DO_ZPZZ_PAIR_FP(sve2_fmaxp_zpzz_s, float32, H1_4, float32_max)
+DO_ZPZZ_PAIR_FP(sve2_fmaxp_zpzz_d, float64, H1_8, float64_max)
+
+DO_ZPZZ_PAIR_FP(sve2_fminp_zpzz_h, float16, H1_2, float16_min)
+DO_ZPZZ_PAIR_FP(sve2_fminp_zpzz_s, float32, H1_4, float32_min)
+DO_ZPZZ_PAIR_FP(sve2_fminp_zpzz_d, float64, H1_8, float64_min)
+
+#undef DO_ZPZZ_PAIR_FP
+
+/* Three-operand expander, controlled by a predicate, in which the
+ * third operand is "wide".  That is, for D = N op M, the same 64-bit
+ * value of M is used with all of the narrower values of N.
+ */
+#define DO_ZPZW(NAME, TYPE, TYPEW, H, OP)                               \
+void HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, uint32_t desc) \
+{                                                                       \
+    intptr_t i, opr_sz = simd_oprsz(desc);                              \
+    for (i = 0; i < opr_sz; ) {                                         \
+        uint8_t pg = *(uint8_t *)(vg + H1(i >> 3));                     \
+        TYPEW mm = *(TYPEW *)(vm + i);                                  \
+        do {                                                            \
+            if (pg & 1) {                                               \
+                TYPE nn = *(TYPE *)(vn + H(i));                         \
+                *(TYPE *)(vd + H(i)) = OP(nn, mm);                      \
+            }                                                           \
+            i += sizeof(TYPE), pg >>= sizeof(TYPE);                     \
+        } while (i & 7);                                                \
+    }                                                                   \
+}
+
+DO_ZPZW(sve_asr_zpzw_b, int8_t, uint64_t, H1, DO_ASR)
+DO_ZPZW(sve_lsr_zpzw_b, uint8_t, uint64_t, H1, DO_LSR)
+DO_ZPZW(sve_lsl_zpzw_b, uint8_t, uint64_t, H1, DO_LSL)
+
+DO_ZPZW(sve_asr_zpzw_h, int16_t, uint64_t, H1_2, DO_ASR)
+DO_ZPZW(sve_lsr_zpzw_h, uint16_t, uint64_t, H1_2, DO_LSR)
+DO_ZPZW(sve_lsl_zpzw_h, uint16_t, uint64_t, H1_2, DO_LSL)
+
+DO_ZPZW(sve_asr_zpzw_s, int32_t, uint64_t, H1_4, DO_ASR)
+DO_ZPZW(sve_lsr_zpzw_s, uint32_t, uint64_t, H1_4, DO_LSR)
+DO_ZPZW(sve_lsl_zpzw_s, uint32_t, uint64_t, H1_4, DO_LSL)
+
+#undef DO_ZPZW
+
+/* Fully general two-operand expander, controlled by a predicate.
+ */
+#define DO_ZPZ(NAME, TYPE, H, OP)                               \
+void HELPER(NAME)(void *vd, void *vn, void *vg, uint32_t desc)  \
+{                                                               \
+    intptr_t i, opr_sz = simd_oprsz(desc);                      \
+    for (i = 0; i < opr_sz; ) {                                 \
+        uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3));         \
+        do {                                                    \
+            if (pg & 1) {                                       \
+                TYPE nn = *(TYPE *)(vn + H(i));                 \
+                *(TYPE *)(vd + H(i)) = OP(nn);                  \
+            }                                                   \
+            i += sizeof(TYPE), pg >>= sizeof(TYPE);             \
+        } while (i & 15);                                       \
+    }                                                           \
+}
+
+/* Similarly, specialized for 64-bit operands.  */
+#define DO_ZPZ_D(NAME, TYPE, OP)                                \
+void HELPER(NAME)(void *vd, void *vn, void *vg, uint32_t desc)  \
+{                                                               \
+    intptr_t i, opr_sz = simd_oprsz(desc) / 8;                  \
+    TYPE *d = vd, *n = vn;                                      \
+    uint8_t *pg = vg;                                           \
+    for (i = 0; i < opr_sz; i += 1) {                           \
+        if (pg[H1(i)] & 1) {                                    \
+            TYPE nn = n[i];                                     \
+            d[i] = OP(nn);                                      \
+        }                                                       \
+    }                                                           \
+}
+
+#define DO_CLS_B(N)   (clrsb32(N) - 24)
+#define DO_CLS_H(N)   (clrsb32(N) - 16)
+
+DO_ZPZ(sve_cls_b, int8_t, H1, DO_CLS_B)
+DO_ZPZ(sve_cls_h, int16_t, H1_2, DO_CLS_H)
+DO_ZPZ(sve_cls_s, int32_t, H1_4, clrsb32)
+DO_ZPZ_D(sve_cls_d, int64_t, clrsb64)
+
+#define DO_CLZ_B(N)   (clz32(N) - 24)
+#define DO_CLZ_H(N)   (clz32(N) - 16)
+
+DO_ZPZ(sve_clz_b, uint8_t, H1, DO_CLZ_B)
+DO_ZPZ(sve_clz_h, uint16_t, H1_2, DO_CLZ_H)
+DO_ZPZ(sve_clz_s, uint32_t, H1_4, clz32)
+DO_ZPZ_D(sve_clz_d, uint64_t, clz64)
+
+DO_ZPZ(sve_cnt_zpz_b, uint8_t, H1, ctpop8)
+DO_ZPZ(sve_cnt_zpz_h, uint16_t, H1_2, ctpop16)
+DO_ZPZ(sve_cnt_zpz_s, uint32_t, H1_4, ctpop32)
+DO_ZPZ_D(sve_cnt_zpz_d, uint64_t, ctpop64)
+
+#define DO_CNOT(N)    (N == 0)
+
+DO_ZPZ(sve_cnot_b, uint8_t, H1, DO_CNOT)
+DO_ZPZ(sve_cnot_h, uint16_t, H1_2, DO_CNOT)
+DO_ZPZ(sve_cnot_s, uint32_t, H1_4, DO_CNOT)
+DO_ZPZ_D(sve_cnot_d, uint64_t, DO_CNOT)
+
+#define DO_FABS(N)    (N & ((__typeof(N))-1 >> 1))
+
+DO_ZPZ(sve_fabs_h, uint16_t, H1_2, DO_FABS)
+DO_ZPZ(sve_fabs_s, uint32_t, H1_4, DO_FABS)
+DO_ZPZ_D(sve_fabs_d, uint64_t, DO_FABS)
+
+#define DO_FNEG(N)    (N ^ ~((__typeof(N))-1 >> 1))
+
+DO_ZPZ(sve_fneg_h, uint16_t, H1_2, DO_FNEG)
+DO_ZPZ(sve_fneg_s, uint32_t, H1_4, DO_FNEG)
+DO_ZPZ_D(sve_fneg_d, uint64_t, DO_FNEG)
+
+#define DO_NOT(N)    (~N)
+
+DO_ZPZ(sve_not_zpz_b, uint8_t, H1, DO_NOT)
+DO_ZPZ(sve_not_zpz_h, uint16_t, H1_2, DO_NOT)
+DO_ZPZ(sve_not_zpz_s, uint32_t, H1_4, DO_NOT)
+DO_ZPZ_D(sve_not_zpz_d, uint64_t, DO_NOT)
+
+#define DO_SXTB(N)    ((int8_t)N)
+#define DO_SXTH(N)    ((int16_t)N)
+#define DO_SXTS(N)    ((int32_t)N)
+#define DO_UXTB(N)    ((uint8_t)N)
+#define DO_UXTH(N)    ((uint16_t)N)
+#define DO_UXTS(N)    ((uint32_t)N)
+
+DO_ZPZ(sve_sxtb_h, uint16_t, H1_2, DO_SXTB)
+DO_ZPZ(sve_sxtb_s, uint32_t, H1_4, DO_SXTB)
+DO_ZPZ(sve_sxth_s, uint32_t, H1_4, DO_SXTH)
+DO_ZPZ_D(sve_sxtb_d, uint64_t, DO_SXTB)
+DO_ZPZ_D(sve_sxth_d, uint64_t, DO_SXTH)
+DO_ZPZ_D(sve_sxtw_d, uint64_t, DO_SXTS)
+
+DO_ZPZ(sve_uxtb_h, uint16_t, H1_2, DO_UXTB)
+DO_ZPZ(sve_uxtb_s, uint32_t, H1_4, DO_UXTB)
+DO_ZPZ(sve_uxth_s, uint32_t, H1_4, DO_UXTH)
+DO_ZPZ_D(sve_uxtb_d, uint64_t, DO_UXTB)
+DO_ZPZ_D(sve_uxth_d, uint64_t, DO_UXTH)
+DO_ZPZ_D(sve_uxtw_d, uint64_t, DO_UXTS)
+
+#define DO_ABS(N)    (N < 0 ? -N : N)
+
+DO_ZPZ(sve_abs_b, int8_t, H1, DO_ABS)
+DO_ZPZ(sve_abs_h, int16_t, H1_2, DO_ABS)
+DO_ZPZ(sve_abs_s, int32_t, H1_4, DO_ABS)
+DO_ZPZ_D(sve_abs_d, int64_t, DO_ABS)
+
+#define DO_NEG(N)    (-N)
+
+DO_ZPZ(sve_neg_b, uint8_t, H1, DO_NEG)
+DO_ZPZ(sve_neg_h, uint16_t, H1_2, DO_NEG)
+DO_ZPZ(sve_neg_s, uint32_t, H1_4, DO_NEG)
+DO_ZPZ_D(sve_neg_d, uint64_t, DO_NEG)
+
+DO_ZPZ(sve_revb_h, uint16_t, H1_2, bswap16)
+DO_ZPZ(sve_revb_s, uint32_t, H1_4, bswap32)
+DO_ZPZ_D(sve_revb_d, uint64_t, bswap64)
+
+DO_ZPZ(sve_revh_s, uint32_t, H1_4, hswap32)
+DO_ZPZ_D(sve_revh_d, uint64_t, hswap64)
+
+DO_ZPZ_D(sve_revw_d, uint64_t, wswap64)
+
+void HELPER(sme_revd_q)(void *vd, void *vn, void *vg, uint32_t desc)
+{
+    intptr_t i, opr_sz = simd_oprsz(desc) / 8;
+    uint64_t *d = vd, *n = vn;
+    uint8_t *pg = vg;
+
+    for (i = 0; i < opr_sz; i += 2) {
+        if (pg[H1(i)] & 1) {
+            uint64_t n0 = n[i + 0];
+            uint64_t n1 = n[i + 1];
+            d[i + 0] = n1;
+            d[i + 1] = n0;
+        }
+    }
+}
+
+DO_ZPZ(sve_rbit_b, uint8_t, H1, revbit8)
+DO_ZPZ(sve_rbit_h, uint16_t, H1_2, revbit16)
+DO_ZPZ(sve_rbit_s, uint32_t, H1_4, revbit32)
+DO_ZPZ_D(sve_rbit_d, uint64_t, revbit64)
+
+#define DO_SQABS(X) \
+    ({ __typeof(X) x_ = (X), min_ = 1ull << (sizeof(X) * 8 - 1); \
+       x_ >= 0 ? x_ : x_ == min_ ? -min_ - 1 : -x_; })
+
+DO_ZPZ(sve2_sqabs_b, int8_t, H1, DO_SQABS)
+DO_ZPZ(sve2_sqabs_h, int16_t, H1_2, DO_SQABS)
+DO_ZPZ(sve2_sqabs_s, int32_t, H1_4, DO_SQABS)
+DO_ZPZ_D(sve2_sqabs_d, int64_t, DO_SQABS)
+
+#define DO_SQNEG(X) \
+    ({ __typeof(X) x_ = (X), min_ = 1ull << (sizeof(X) * 8 - 1); \
+       x_ == min_ ? -min_ - 1 : -x_; })
+
+DO_ZPZ(sve2_sqneg_b, uint8_t, H1, DO_SQNEG)
+DO_ZPZ(sve2_sqneg_h, uint16_t, H1_2, DO_SQNEG)
+DO_ZPZ(sve2_sqneg_s, uint32_t, H1_4, DO_SQNEG)
+DO_ZPZ_D(sve2_sqneg_d, uint64_t, DO_SQNEG)
+
+DO_ZPZ(sve2_urecpe_s, uint32_t, H1_4, helper_recpe_u32)
+DO_ZPZ(sve2_ursqrte_s, uint32_t, H1_4, helper_rsqrte_u32)
+
+/* Three-operand expander, unpredicated, in which the third operand is "wide".
+ */
+#define DO_ZZW(NAME, TYPE, TYPEW, H, OP)                       \
+void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \
+{                                                              \
+    intptr_t i, opr_sz = simd_oprsz(desc);                     \
+    for (i = 0; i < opr_sz; ) {                                \
+        TYPEW mm = *(TYPEW *)(vm + i);                         \
+        do {                                                   \
+            TYPE nn = *(TYPE *)(vn + H(i));                    \
+            *(TYPE *)(vd + H(i)) = OP(nn, mm);                 \
+            i += sizeof(TYPE);                                 \
+        } while (i & 7);                                       \
+    }                                                          \
+}
+
+DO_ZZW(sve_asr_zzw_b, int8_t, uint64_t, H1, DO_ASR)
+DO_ZZW(sve_lsr_zzw_b, uint8_t, uint64_t, H1, DO_LSR)
+DO_ZZW(sve_lsl_zzw_b, uint8_t, uint64_t, H1, DO_LSL)
+
+DO_ZZW(sve_asr_zzw_h, int16_t, uint64_t, H1_2, DO_ASR)
+DO_ZZW(sve_lsr_zzw_h, uint16_t, uint64_t, H1_2, DO_LSR)
+DO_ZZW(sve_lsl_zzw_h, uint16_t, uint64_t, H1_2, DO_LSL)
+
+DO_ZZW(sve_asr_zzw_s, int32_t, uint64_t, H1_4, DO_ASR)
+DO_ZZW(sve_lsr_zzw_s, uint32_t, uint64_t, H1_4, DO_LSR)
+DO_ZZW(sve_lsl_zzw_s, uint32_t, uint64_t, H1_4, DO_LSL)
+
+#undef DO_ZZW
+
+#undef DO_CLS_B
+#undef DO_CLS_H
+#undef DO_CLZ_B
+#undef DO_CLZ_H
+#undef DO_CNOT
+#undef DO_FABS
+#undef DO_FNEG
+#undef DO_ABS
+#undef DO_NEG
+#undef DO_ZPZ
+#undef DO_ZPZ_D
+
+/*
+ * Three-operand expander, unpredicated, in which the two inputs are
+ * selected from the top or bottom half of the wide column.
+ */
+#define DO_ZZZ_TB(NAME, TYPEW, TYPEN, HW, HN, OP) \
+void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc)          \
+{                                                                       \
+    intptr_t i, opr_sz = simd_oprsz(desc);                              \
+    int sel1 = extract32(desc, SIMD_DATA_SHIFT, 1) * sizeof(TYPEN);     \
+    int sel2 = extract32(desc, SIMD_DATA_SHIFT + 1, 1) * sizeof(TYPEN); \
+    for (i = 0; i < opr_sz; i += sizeof(TYPEW)) {                       \
+        TYPEW nn = *(TYPEN *)(vn + HN(i + sel1));                       \
+        TYPEW mm = *(TYPEN *)(vm + HN(i + sel2));                       \
+        *(TYPEW *)(vd + HW(i)) = OP(nn, mm);                            \
+    }                                                                   \
+}
+
+DO_ZZZ_TB(sve2_saddl_h, int16_t, int8_t, H1_2, H1, DO_ADD)
+DO_ZZZ_TB(sve2_saddl_s, int32_t, int16_t, H1_4, H1_2, DO_ADD)
+DO_ZZZ_TB(sve2_saddl_d, int64_t, int32_t, H1_8, H1_4, DO_ADD)
+
+DO_ZZZ_TB(sve2_ssubl_h, int16_t, int8_t, H1_2, H1, DO_SUB)
+DO_ZZZ_TB(sve2_ssubl_s, int32_t, int16_t, H1_4, H1_2, DO_SUB)
+DO_ZZZ_TB(sve2_ssubl_d, int64_t, int32_t, H1_8, H1_4, DO_SUB)
+
+DO_ZZZ_TB(sve2_sabdl_h, int16_t, int8_t, H1_2, H1, DO_ABD)
+DO_ZZZ_TB(sve2_sabdl_s, int32_t, int16_t, H1_4, H1_2, DO_ABD)
+DO_ZZZ_TB(sve2_sabdl_d, int64_t, int32_t, H1_8, H1_4, DO_ABD)
+
+DO_ZZZ_TB(sve2_uaddl_h, uint16_t, uint8_t, H1_2, H1, DO_ADD)
+DO_ZZZ_TB(sve2_uaddl_s, uint32_t, uint16_t, H1_4, H1_2, DO_ADD)
+DO_ZZZ_TB(sve2_uaddl_d, uint64_t, uint32_t, H1_8, H1_4, DO_ADD)
+
+DO_ZZZ_TB(sve2_usubl_h, uint16_t, uint8_t, H1_2, H1, DO_SUB)
+DO_ZZZ_TB(sve2_usubl_s, uint32_t, uint16_t, H1_4, H1_2, DO_SUB)
+DO_ZZZ_TB(sve2_usubl_d, uint64_t, uint32_t, H1_8, H1_4, DO_SUB)
+
+DO_ZZZ_TB(sve2_uabdl_h, uint16_t, uint8_t, H1_2, H1, DO_ABD)
+DO_ZZZ_TB(sve2_uabdl_s, uint32_t, uint16_t, H1_4, H1_2, DO_ABD)
+DO_ZZZ_TB(sve2_uabdl_d, uint64_t, uint32_t, H1_8, H1_4, DO_ABD)
+
+DO_ZZZ_TB(sve2_smull_zzz_h, int16_t, int8_t, H1_2, H1, DO_MUL)
+DO_ZZZ_TB(sve2_smull_zzz_s, int32_t, int16_t, H1_4, H1_2, DO_MUL)
+DO_ZZZ_TB(sve2_smull_zzz_d, int64_t, int32_t, H1_8, H1_4, DO_MUL)
+
+DO_ZZZ_TB(sve2_umull_zzz_h, uint16_t, uint8_t, H1_2, H1, DO_MUL)
+DO_ZZZ_TB(sve2_umull_zzz_s, uint32_t, uint16_t, H1_4, H1_2, DO_MUL)
+DO_ZZZ_TB(sve2_umull_zzz_d, uint64_t, uint32_t, H1_8, H1_4, DO_MUL)
+
+/* Note that the multiply cannot overflow, but the doubling can. */
+static inline int16_t do_sqdmull_h(int16_t n, int16_t m)
+{
+    int16_t val = n * m;
+    return DO_SQADD_H(val, val);
+}
+
+static inline int32_t do_sqdmull_s(int32_t n, int32_t m)
+{
+    int32_t val = n * m;
+    return DO_SQADD_S(val, val);
+}
+
+static inline int64_t do_sqdmull_d(int64_t n, int64_t m)
+{
+    int64_t val = n * m;
+    return do_sqadd_d(val, val);
+}
+
+DO_ZZZ_TB(sve2_sqdmull_zzz_h, int16_t, int8_t, H1_2, H1, do_sqdmull_h)
+DO_ZZZ_TB(sve2_sqdmull_zzz_s, int32_t, int16_t, H1_4, H1_2, do_sqdmull_s)
+DO_ZZZ_TB(sve2_sqdmull_zzz_d, int64_t, int32_t, H1_8, H1_4, do_sqdmull_d)
+
+#undef DO_ZZZ_TB
+
+#define DO_ZZZ_WTB(NAME, TYPEW, TYPEN, HW, HN, OP) \
+void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \
+{                                                              \
+    intptr_t i, opr_sz = simd_oprsz(desc);                     \
+    int sel2 = extract32(desc, SIMD_DATA_SHIFT, 1) * sizeof(TYPEN); \
+    for (i = 0; i < opr_sz; i += sizeof(TYPEW)) {              \
+        TYPEW nn = *(TYPEW *)(vn + HW(i));                     \
+        TYPEW mm = *(TYPEN *)(vm + HN(i + sel2));              \
+        *(TYPEW *)(vd + HW(i)) = OP(nn, mm);                   \
+    }                                                          \
+}
+
+DO_ZZZ_WTB(sve2_saddw_h, int16_t, int8_t, H1_2, H1, DO_ADD)
+DO_ZZZ_WTB(sve2_saddw_s, int32_t, int16_t, H1_4, H1_2, DO_ADD)
+DO_ZZZ_WTB(sve2_saddw_d, int64_t, int32_t, H1_8, H1_4, DO_ADD)
+
+DO_ZZZ_WTB(sve2_ssubw_h, int16_t, int8_t, H1_2, H1, DO_SUB)
+DO_ZZZ_WTB(sve2_ssubw_s, int32_t, int16_t, H1_4, H1_2, DO_SUB)
+DO_ZZZ_WTB(sve2_ssubw_d, int64_t, int32_t, H1_8, H1_4, DO_SUB)
+
+DO_ZZZ_WTB(sve2_uaddw_h, uint16_t, uint8_t, H1_2, H1, DO_ADD)
+DO_ZZZ_WTB(sve2_uaddw_s, uint32_t, uint16_t, H1_4, H1_2, DO_ADD)
+DO_ZZZ_WTB(sve2_uaddw_d, uint64_t, uint32_t, H1_8, H1_4, DO_ADD)
+
+DO_ZZZ_WTB(sve2_usubw_h, uint16_t, uint8_t, H1_2, H1, DO_SUB)
+DO_ZZZ_WTB(sve2_usubw_s, uint32_t, uint16_t, H1_4, H1_2, DO_SUB)
+DO_ZZZ_WTB(sve2_usubw_d, uint64_t, uint32_t, H1_8, H1_4, DO_SUB)
+
+#undef DO_ZZZ_WTB
+
+#define DO_ZZZ_NTB(NAME, TYPE, H, OP)                                   \
+void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc)          \
+{                                                                       \
+    intptr_t i, opr_sz = simd_oprsz(desc);                              \
+    intptr_t sel1 = extract32(desc, SIMD_DATA_SHIFT, 1) * sizeof(TYPE); \
+    intptr_t sel2 = extract32(desc, SIMD_DATA_SHIFT + 1, 1) * sizeof(TYPE); \
+    for (i = 0; i < opr_sz; i += 2 * sizeof(TYPE)) {                    \
+        TYPE nn = *(TYPE *)(vn + H(i + sel1));                          \
+        TYPE mm = *(TYPE *)(vm + H(i + sel2));                          \
+        *(TYPE *)(vd + H(i + sel1)) = OP(nn, mm);                       \
+    }                                                                   \
+}
+
+DO_ZZZ_NTB(sve2_eoril_b, uint8_t, H1, DO_EOR)
+DO_ZZZ_NTB(sve2_eoril_h, uint16_t, H1_2, DO_EOR)
+DO_ZZZ_NTB(sve2_eoril_s, uint32_t, H1_4, DO_EOR)
+DO_ZZZ_NTB(sve2_eoril_d, uint64_t, H1_8, DO_EOR)
+
+#undef DO_ZZZ_NTB
+
+#define DO_ZZZW_ACC(NAME, TYPEW, TYPEN, HW, HN, OP) \
+void HELPER(NAME)(void *vd, void *vn, void *vm, void *va, uint32_t desc) \
+{                                                               \
+    intptr_t i, opr_sz = simd_oprsz(desc);                      \
+    intptr_t sel1 = simd_data(desc) * sizeof(TYPEN);            \
+    for (i = 0; i < opr_sz; i += sizeof(TYPEW)) {               \
+        TYPEW nn = *(TYPEN *)(vn + HN(i + sel1));               \
+        TYPEW mm = *(TYPEN *)(vm + HN(i + sel1));               \
+        TYPEW aa = *(TYPEW *)(va + HW(i));                      \
+        *(TYPEW *)(vd + HW(i)) = OP(nn, mm) + aa;               \
+    }                                                           \
+}
+
+DO_ZZZW_ACC(sve2_sabal_h, int16_t, int8_t, H1_2, H1, DO_ABD)
+DO_ZZZW_ACC(sve2_sabal_s, int32_t, int16_t, H1_4, H1_2, DO_ABD)
+DO_ZZZW_ACC(sve2_sabal_d, int64_t, int32_t, H1_8, H1_4, DO_ABD)
+
+DO_ZZZW_ACC(sve2_uabal_h, uint16_t, uint8_t, H1_2, H1, DO_ABD)
+DO_ZZZW_ACC(sve2_uabal_s, uint32_t, uint16_t, H1_4, H1_2, DO_ABD)
+DO_ZZZW_ACC(sve2_uabal_d, uint64_t, uint32_t, H1_8, H1_4, DO_ABD)
+
+DO_ZZZW_ACC(sve2_smlal_zzzw_h, int16_t, int8_t, H1_2, H1, DO_MUL)
+DO_ZZZW_ACC(sve2_smlal_zzzw_s, int32_t, int16_t, H1_4, H1_2, DO_MUL)
+DO_ZZZW_ACC(sve2_smlal_zzzw_d, int64_t, int32_t, H1_8, H1_4, DO_MUL)
+
+DO_ZZZW_ACC(sve2_umlal_zzzw_h, uint16_t, uint8_t, H1_2, H1, DO_MUL)
+DO_ZZZW_ACC(sve2_umlal_zzzw_s, uint32_t, uint16_t, H1_4, H1_2, DO_MUL)
+DO_ZZZW_ACC(sve2_umlal_zzzw_d, uint64_t, uint32_t, H1_8, H1_4, DO_MUL)
+
+#define DO_NMUL(N, M)  -(N * M)
+
+DO_ZZZW_ACC(sve2_smlsl_zzzw_h, int16_t, int8_t, H1_2, H1, DO_NMUL)
+DO_ZZZW_ACC(sve2_smlsl_zzzw_s, int32_t, int16_t, H1_4, H1_2, DO_NMUL)
+DO_ZZZW_ACC(sve2_smlsl_zzzw_d, int64_t, int32_t, H1_8, H1_4, DO_NMUL)
+
+DO_ZZZW_ACC(sve2_umlsl_zzzw_h, uint16_t, uint8_t, H1_2, H1, DO_NMUL)
+DO_ZZZW_ACC(sve2_umlsl_zzzw_s, uint32_t, uint16_t, H1_4, H1_2, DO_NMUL)
+DO_ZZZW_ACC(sve2_umlsl_zzzw_d, uint64_t, uint32_t, H1_8, H1_4, DO_NMUL)
+
+#undef DO_ZZZW_ACC
+
+#define DO_XTNB(NAME, TYPE, OP) \
+void HELPER(NAME)(void *vd, void *vn, uint32_t desc)         \
+{                                                            \
+    intptr_t i, opr_sz = simd_oprsz(desc);                   \
+    for (i = 0; i < opr_sz; i += sizeof(TYPE)) {             \
+        TYPE nn = *(TYPE *)(vn + i);                         \
+        nn = OP(nn) & MAKE_64BIT_MASK(0, sizeof(TYPE) * 4);  \
+        *(TYPE *)(vd + i) = nn;                              \
+    }                                                        \
+}
+
+#define DO_XTNT(NAME, TYPE, TYPEN, H, OP)                               \
+void HELPER(NAME)(void *vd, void *vn, uint32_t desc)                    \
+{                                                                       \
+    intptr_t i, opr_sz = simd_oprsz(desc), odd = H(sizeof(TYPEN));      \
+    for (i = 0; i < opr_sz; i += sizeof(TYPE)) {                        \
+        TYPE nn = *(TYPE *)(vn + i);                                    \
+        *(TYPEN *)(vd + i + odd) = OP(nn);                              \
+    }                                                                   \
+}
+
+#define DO_SQXTN_H(n)  do_sat_bhs(n, INT8_MIN, INT8_MAX)
+#define DO_SQXTN_S(n)  do_sat_bhs(n, INT16_MIN, INT16_MAX)
+#define DO_SQXTN_D(n)  do_sat_bhs(n, INT32_MIN, INT32_MAX)
+
+DO_XTNB(sve2_sqxtnb_h, int16_t, DO_SQXTN_H)
+DO_XTNB(sve2_sqxtnb_s, int32_t, DO_SQXTN_S)
+DO_XTNB(sve2_sqxtnb_d, int64_t, DO_SQXTN_D)
+
+DO_XTNT(sve2_sqxtnt_h, int16_t, int8_t, H1, DO_SQXTN_H)
+DO_XTNT(sve2_sqxtnt_s, int32_t, int16_t, H1_2, DO_SQXTN_S)
+DO_XTNT(sve2_sqxtnt_d, int64_t, int32_t, H1_4, DO_SQXTN_D)
+
+#define DO_UQXTN_H(n)  do_sat_bhs(n, 0, UINT8_MAX)
+#define DO_UQXTN_S(n)  do_sat_bhs(n, 0, UINT16_MAX)
+#define DO_UQXTN_D(n)  do_sat_bhs(n, 0, UINT32_MAX)
+
+DO_XTNB(sve2_uqxtnb_h, uint16_t, DO_UQXTN_H)
+DO_XTNB(sve2_uqxtnb_s, uint32_t, DO_UQXTN_S)
+DO_XTNB(sve2_uqxtnb_d, uint64_t, DO_UQXTN_D)
+
+DO_XTNT(sve2_uqxtnt_h, uint16_t, uint8_t, H1, DO_UQXTN_H)
+DO_XTNT(sve2_uqxtnt_s, uint32_t, uint16_t, H1_2, DO_UQXTN_S)
+DO_XTNT(sve2_uqxtnt_d, uint64_t, uint32_t, H1_4, DO_UQXTN_D)
+
+DO_XTNB(sve2_sqxtunb_h, int16_t, DO_UQXTN_H)
+DO_XTNB(sve2_sqxtunb_s, int32_t, DO_UQXTN_S)
+DO_XTNB(sve2_sqxtunb_d, int64_t, DO_UQXTN_D)
+
+DO_XTNT(sve2_sqxtunt_h, int16_t, int8_t, H1, DO_UQXTN_H)
+DO_XTNT(sve2_sqxtunt_s, int32_t, int16_t, H1_2, DO_UQXTN_S)
+DO_XTNT(sve2_sqxtunt_d, int64_t, int32_t, H1_4, DO_UQXTN_D)
+
+#undef DO_XTNB
+#undef DO_XTNT
+
+void HELPER(sve2_adcl_s)(void *vd, void *vn, void *vm, void *va, uint32_t desc)
+{
+    intptr_t i, opr_sz = simd_oprsz(desc);
+    int sel = H4(extract32(desc, SIMD_DATA_SHIFT, 1));
+    uint32_t inv = -extract32(desc, SIMD_DATA_SHIFT + 1, 1);
+    uint32_t *a = va, *n = vn;
+    uint64_t *d = vd, *m = vm;
+
+    for (i = 0; i < opr_sz / 8; ++i) {
+        uint32_t e1 = a[2 * i + H4(0)];
+        uint32_t e2 = n[2 * i + sel] ^ inv;
+        uint64_t c = extract64(m[i], 32, 1);
+        /* Compute and store the entire 33-bit result at once. */
+        d[i] = c + e1 + e2;
+    }
+}
+
+void HELPER(sve2_adcl_d)(void *vd, void *vn, void *vm, void *va, uint32_t desc)
+{
+    intptr_t i, opr_sz = simd_oprsz(desc);
+    int sel = extract32(desc, SIMD_DATA_SHIFT, 1);
+    uint64_t inv = -(uint64_t)extract32(desc, SIMD_DATA_SHIFT + 1, 1);
+    uint64_t *d = vd, *a = va, *n = vn, *m = vm;
+
+    for (i = 0; i < opr_sz / 8; i += 2) {
+        Int128 e1 = int128_make64(a[i]);
+        Int128 e2 = int128_make64(n[i + sel] ^ inv);
+        Int128 c = int128_make64(m[i + 1] & 1);
+        Int128 r = int128_add(int128_add(e1, e2), c);
+        d[i + 0] = int128_getlo(r);
+        d[i + 1] = int128_gethi(r);
+    }
+}
+
+#define DO_SQDMLAL(NAME, TYPEW, TYPEN, HW, HN, DMUL_OP, SUM_OP) \
+void HELPER(NAME)(void *vd, void *vn, void *vm, void *va, uint32_t desc) \
+{                                                                       \
+    intptr_t i, opr_sz = simd_oprsz(desc);                              \
+    int sel1 = extract32(desc, SIMD_DATA_SHIFT, 1) * sizeof(TYPEN);     \
+    int sel2 = extract32(desc, SIMD_DATA_SHIFT + 1, 1) * sizeof(TYPEN); \
+    for (i = 0; i < opr_sz; i += sizeof(TYPEW)) {                       \
+        TYPEW nn = *(TYPEN *)(vn + HN(i + sel1));                       \
+        TYPEW mm = *(TYPEN *)(vm + HN(i + sel2));                       \
+        TYPEW aa = *(TYPEW *)(va + HW(i));                              \
+        *(TYPEW *)(vd + HW(i)) = SUM_OP(aa, DMUL_OP(nn, mm));           \
+    }                                                                   \
+}
+
+DO_SQDMLAL(sve2_sqdmlal_zzzw_h, int16_t, int8_t, H1_2, H1,
+           do_sqdmull_h, DO_SQADD_H)
+DO_SQDMLAL(sve2_sqdmlal_zzzw_s, int32_t, int16_t, H1_4, H1_2,
+           do_sqdmull_s, DO_SQADD_S)
+DO_SQDMLAL(sve2_sqdmlal_zzzw_d, int64_t, int32_t, H1_8, H1_4,
+           do_sqdmull_d, do_sqadd_d)
+
+DO_SQDMLAL(sve2_sqdmlsl_zzzw_h, int16_t, int8_t, H1_2, H1,
+           do_sqdmull_h, DO_SQSUB_H)
+DO_SQDMLAL(sve2_sqdmlsl_zzzw_s, int32_t, int16_t, H1_4, H1_2,
+           do_sqdmull_s, DO_SQSUB_S)
+DO_SQDMLAL(sve2_sqdmlsl_zzzw_d, int64_t, int32_t, H1_8, H1_4,
+           do_sqdmull_d, do_sqsub_d)
+
+#undef DO_SQDMLAL
+
+#define DO_CMLA_FUNC(NAME, TYPE, H, OP) \
+void HELPER(NAME)(void *vd, void *vn, void *vm, void *va, uint32_t desc) \
+{                                                               \
+    intptr_t i, opr_sz = simd_oprsz(desc) / sizeof(TYPE);       \
+    int rot = simd_data(desc);                                  \
+    int sel_a = rot & 1, sel_b = sel_a ^ 1;                     \
+    bool sub_r = rot == 1 || rot == 2;                          \
+    bool sub_i = rot >= 2;                                      \
+    TYPE *d = vd, *n = vn, *m = vm, *a = va;                    \
+    for (i = 0; i < opr_sz; i += 2) {                           \
+        TYPE elt1_a = n[H(i + sel_a)];                          \
+        TYPE elt2_a = m[H(i + sel_a)];                          \
+        TYPE elt2_b = m[H(i + sel_b)];                          \
+        d[H(i)] = OP(elt1_a, elt2_a, a[H(i)], sub_r);           \
+        d[H(i + 1)] = OP(elt1_a, elt2_b, a[H(i + 1)], sub_i);   \
+    }                                                           \
+}
+
+#define DO_CMLA(N, M, A, S) (A + (N * M) * (S ? -1 : 1))
+
+DO_CMLA_FUNC(sve2_cmla_zzzz_b, uint8_t, H1, DO_CMLA)
+DO_CMLA_FUNC(sve2_cmla_zzzz_h, uint16_t, H2, DO_CMLA)
+DO_CMLA_FUNC(sve2_cmla_zzzz_s, uint32_t, H4, DO_CMLA)
+DO_CMLA_FUNC(sve2_cmla_zzzz_d, uint64_t, H8, DO_CMLA)
+
+#define DO_SQRDMLAH_B(N, M, A, S) \
+    do_sqrdmlah_b(N, M, A, S, true)
+#define DO_SQRDMLAH_H(N, M, A, S) \
+    ({ uint32_t discard; do_sqrdmlah_h(N, M, A, S, true, &discard); })
+#define DO_SQRDMLAH_S(N, M, A, S) \
+    ({ uint32_t discard; do_sqrdmlah_s(N, M, A, S, true, &discard); })
+#define DO_SQRDMLAH_D(N, M, A, S) \
+    do_sqrdmlah_d(N, M, A, S, true)
+
+DO_CMLA_FUNC(sve2_sqrdcmlah_zzzz_b, int8_t, H1, DO_SQRDMLAH_B)
+DO_CMLA_FUNC(sve2_sqrdcmlah_zzzz_h, int16_t, H2, DO_SQRDMLAH_H)
+DO_CMLA_FUNC(sve2_sqrdcmlah_zzzz_s, int32_t, H4, DO_SQRDMLAH_S)
+DO_CMLA_FUNC(sve2_sqrdcmlah_zzzz_d, int64_t, H8, DO_SQRDMLAH_D)
+
+#define DO_CMLA_IDX_FUNC(NAME, TYPE, H, OP) \
+void HELPER(NAME)(void *vd, void *vn, void *vm, void *va, uint32_t desc)    \
+{                                                                           \
+    intptr_t i, j, oprsz = simd_oprsz(desc);                                \
+    int rot = extract32(desc, SIMD_DATA_SHIFT, 2);                          \
+    int idx = extract32(desc, SIMD_DATA_SHIFT + 2, 2) * 2;                  \
+    int sel_a = rot & 1, sel_b = sel_a ^ 1;                                 \
+    bool sub_r = rot == 1 || rot == 2;                                      \
+    bool sub_i = rot >= 2;                                                  \
+    TYPE *d = vd, *n = vn, *m = vm, *a = va;                                \
+    for (i = 0; i < oprsz / sizeof(TYPE); i += 16 / sizeof(TYPE)) {         \
+        TYPE elt2_a = m[H(i + idx + sel_a)];                                \
+        TYPE elt2_b = m[H(i + idx + sel_b)];                                \
+        for (j = 0; j < 16 / sizeof(TYPE); j += 2) {                        \
+            TYPE elt1_a = n[H(i + j + sel_a)];                              \
+            d[H2(i + j)] = OP(elt1_a, elt2_a, a[H(i + j)], sub_r);          \
+            d[H2(i + j + 1)] = OP(elt1_a, elt2_b, a[H(i + j + 1)], sub_i);  \
+        }                                                                   \
+    }                                                                       \
+}
+
+DO_CMLA_IDX_FUNC(sve2_cmla_idx_h, int16_t, H2, DO_CMLA)
+DO_CMLA_IDX_FUNC(sve2_cmla_idx_s, int32_t, H4, DO_CMLA)
+
+DO_CMLA_IDX_FUNC(sve2_sqrdcmlah_idx_h, int16_t, H2, DO_SQRDMLAH_H)
+DO_CMLA_IDX_FUNC(sve2_sqrdcmlah_idx_s, int32_t, H4, DO_SQRDMLAH_S)
+
+#undef DO_CMLA
+#undef DO_CMLA_FUNC
+#undef DO_CMLA_IDX_FUNC
+#undef DO_SQRDMLAH_B
+#undef DO_SQRDMLAH_H
+#undef DO_SQRDMLAH_S
+#undef DO_SQRDMLAH_D
+
+/* Note N and M are 4 elements bundled into one unit. */
+static int32_t do_cdot_s(uint32_t n, uint32_t m, int32_t a,
+                         int sel_a, int sel_b, int sub_i)
+{
+    for (int i = 0; i <= 1; i++) {
+        int32_t elt1_r = (int8_t)(n >> (16 * i));
+        int32_t elt1_i = (int8_t)(n >> (16 * i + 8));
+        int32_t elt2_a = (int8_t)(m >> (16 * i + 8 * sel_a));
+        int32_t elt2_b = (int8_t)(m >> (16 * i + 8 * sel_b));
+
+        a += elt1_r * elt2_a + elt1_i * elt2_b * sub_i;
+    }
+    return a;
+}
+
+static int64_t do_cdot_d(uint64_t n, uint64_t m, int64_t a,
+                         int sel_a, int sel_b, int sub_i)
+{
+    for (int i = 0; i <= 1; i++) {
+        int64_t elt1_r = (int16_t)(n >> (32 * i + 0));
+        int64_t elt1_i = (int16_t)(n >> (32 * i + 16));
+        int64_t elt2_a = (int16_t)(m >> (32 * i + 16 * sel_a));
+        int64_t elt2_b = (int16_t)(m >> (32 * i + 16 * sel_b));
+
+        a += elt1_r * elt2_a + elt1_i * elt2_b * sub_i;
+    }
+    return a;
+}
+
+void HELPER(sve2_cdot_zzzz_s)(void *vd, void *vn, void *vm,
+                              void *va, uint32_t desc)
+{
+    int opr_sz = simd_oprsz(desc);
+    int rot = simd_data(desc);
+    int sel_a = rot & 1;
+    int sel_b = sel_a ^ 1;
+    int sub_i = (rot == 0 || rot == 3 ? -1 : 1);
+    uint32_t *d = vd, *n = vn, *m = vm, *a = va;
+
+    for (int e = 0; e < opr_sz / 4; e++) {
+        d[e] = do_cdot_s(n[e], m[e], a[e], sel_a, sel_b, sub_i);
+    }
+}
+
+void HELPER(sve2_cdot_zzzz_d)(void *vd, void *vn, void *vm,
+                              void *va, uint32_t desc)
+{
+    int opr_sz = simd_oprsz(desc);
+    int rot = simd_data(desc);
+    int sel_a = rot & 1;
+    int sel_b = sel_a ^ 1;
+    int sub_i = (rot == 0 || rot == 3 ? -1 : 1);
+    uint64_t *d = vd, *n = vn, *m = vm, *a = va;
+
+    for (int e = 0; e < opr_sz / 8; e++) {
+        d[e] = do_cdot_d(n[e], m[e], a[e], sel_a, sel_b, sub_i);
+    }
+}
+
+void HELPER(sve2_cdot_idx_s)(void *vd, void *vn, void *vm,
+                             void *va, uint32_t desc)
+{
+    int opr_sz = simd_oprsz(desc);
+    int rot = extract32(desc, SIMD_DATA_SHIFT, 2);
+    int idx = H4(extract32(desc, SIMD_DATA_SHIFT + 2, 2));
+    int sel_a = rot & 1;
+    int sel_b = sel_a ^ 1;
+    int sub_i = (rot == 0 || rot == 3 ? -1 : 1);
+    uint32_t *d = vd, *n = vn, *m = vm, *a = va;
+
+    for (int seg = 0; seg < opr_sz / 4; seg += 4) {
+        uint32_t seg_m = m[seg + idx];
+        for (int e = 0; e < 4; e++) {
+            d[seg + e] = do_cdot_s(n[seg + e], seg_m, a[seg + e],
+                                   sel_a, sel_b, sub_i);
+        }
+    }
+}
+
+void HELPER(sve2_cdot_idx_d)(void *vd, void *vn, void *vm,
+                             void *va, uint32_t desc)
+{
+    int seg, opr_sz = simd_oprsz(desc);
+    int rot = extract32(desc, SIMD_DATA_SHIFT, 2);
+    int idx = extract32(desc, SIMD_DATA_SHIFT + 2, 2);
+    int sel_a = rot & 1;
+    int sel_b = sel_a ^ 1;
+    int sub_i = (rot == 0 || rot == 3 ? -1 : 1);
+    uint64_t *d = vd, *n = vn, *m = vm, *a = va;
+
+    for (seg = 0; seg < opr_sz / 8; seg += 2) {
+        uint64_t seg_m = m[seg + idx];
+        for (int e = 0; e < 2; e++) {
+            d[seg + e] = do_cdot_d(n[seg + e], seg_m, a[seg + e],
+                                   sel_a, sel_b, sub_i);
+        }
+    }
+}
+
+#define DO_ZZXZ(NAME, TYPE, H, OP) \
+void HELPER(NAME)(void *vd, void *vn, void *vm, void *va, uint32_t desc) \
+{                                                                       \
+    intptr_t oprsz = simd_oprsz(desc), segment = 16 / sizeof(TYPE);     \
+    intptr_t i, j, idx = simd_data(desc);                               \
+    TYPE *d = vd, *a = va, *n = vn, *m = (TYPE *)vm + H(idx);           \
+    for (i = 0; i < oprsz / sizeof(TYPE); i += segment) {               \
+        TYPE mm = m[i];                                                 \
+        for (j = 0; j < segment; j++) {                                 \
+            d[i + j] = OP(n[i + j], mm, a[i + j]);                      \
+        }                                                               \
+    }                                                                   \
+}
+
+#define DO_SQRDMLAH_H(N, M, A) \
+    ({ uint32_t discard; do_sqrdmlah_h(N, M, A, false, true, &discard); })
+#define DO_SQRDMLAH_S(N, M, A) \
+    ({ uint32_t discard; do_sqrdmlah_s(N, M, A, false, true, &discard); })
+#define DO_SQRDMLAH_D(N, M, A) do_sqrdmlah_d(N, M, A, false, true)
+
+DO_ZZXZ(sve2_sqrdmlah_idx_h, int16_t, H2, DO_SQRDMLAH_H)
+DO_ZZXZ(sve2_sqrdmlah_idx_s, int32_t, H4, DO_SQRDMLAH_S)
+DO_ZZXZ(sve2_sqrdmlah_idx_d, int64_t, H8, DO_SQRDMLAH_D)
+
+#define DO_SQRDMLSH_H(N, M, A) \
+    ({ uint32_t discard; do_sqrdmlah_h(N, M, A, true, true, &discard); })
+#define DO_SQRDMLSH_S(N, M, A) \
+    ({ uint32_t discard; do_sqrdmlah_s(N, M, A, true, true, &discard); })
+#define DO_SQRDMLSH_D(N, M, A) do_sqrdmlah_d(N, M, A, true, true)
+
+DO_ZZXZ(sve2_sqrdmlsh_idx_h, int16_t, H2, DO_SQRDMLSH_H)
+DO_ZZXZ(sve2_sqrdmlsh_idx_s, int32_t, H4, DO_SQRDMLSH_S)
+DO_ZZXZ(sve2_sqrdmlsh_idx_d, int64_t, H8, DO_SQRDMLSH_D)
+
+#undef DO_ZZXZ
+
+#define DO_ZZXW(NAME, TYPEW, TYPEN, HW, HN, OP) \
+void HELPER(NAME)(void *vd, void *vn, void *vm, void *va, uint32_t desc)  \
+{                                                                         \
+    intptr_t i, j, oprsz = simd_oprsz(desc);                              \
+    intptr_t sel = extract32(desc, SIMD_DATA_SHIFT, 1) * sizeof(TYPEN);   \
+    intptr_t idx = extract32(desc, SIMD_DATA_SHIFT + 1, 3) * sizeof(TYPEN); \
+    for (i = 0; i < oprsz; i += 16) {                                     \
+        TYPEW mm = *(TYPEN *)(vm + HN(i + idx));                          \
+        for (j = 0; j < 16; j += sizeof(TYPEW)) {                         \
+            TYPEW nn = *(TYPEN *)(vn + HN(i + j + sel));                  \
+            TYPEW aa = *(TYPEW *)(va + HW(i + j));                        \
+            *(TYPEW *)(vd + HW(i + j)) = OP(nn, mm, aa);                  \
+        }                                                                 \
+    }                                                                     \
+}
+
+#define DO_MLA(N, M, A)  (A + N * M)
+
+DO_ZZXW(sve2_smlal_idx_s, int32_t, int16_t, H1_4, H1_2, DO_MLA)
+DO_ZZXW(sve2_smlal_idx_d, int64_t, int32_t, H1_8, H1_4, DO_MLA)
+DO_ZZXW(sve2_umlal_idx_s, uint32_t, uint16_t, H1_4, H1_2, DO_MLA)
+DO_ZZXW(sve2_umlal_idx_d, uint64_t, uint32_t, H1_8, H1_4, DO_MLA)
+
+#define DO_MLS(N, M, A)  (A - N * M)
+
+DO_ZZXW(sve2_smlsl_idx_s, int32_t, int16_t, H1_4, H1_2, DO_MLS)
+DO_ZZXW(sve2_smlsl_idx_d, int64_t, int32_t, H1_8, H1_4, DO_MLS)
+DO_ZZXW(sve2_umlsl_idx_s, uint32_t, uint16_t, H1_4, H1_2, DO_MLS)
+DO_ZZXW(sve2_umlsl_idx_d, uint64_t, uint32_t, H1_8, H1_4, DO_MLS)
+
+#define DO_SQDMLAL_S(N, M, A)  DO_SQADD_S(A, do_sqdmull_s(N, M))
+#define DO_SQDMLAL_D(N, M, A)  do_sqadd_d(A, do_sqdmull_d(N, M))
+
+DO_ZZXW(sve2_sqdmlal_idx_s, int32_t, int16_t, H1_4, H1_2, DO_SQDMLAL_S)
+DO_ZZXW(sve2_sqdmlal_idx_d, int64_t, int32_t, H1_8, H1_4, DO_SQDMLAL_D)
+
+#define DO_SQDMLSL_S(N, M, A)  DO_SQSUB_S(A, do_sqdmull_s(N, M))
+#define DO_SQDMLSL_D(N, M, A)  do_sqsub_d(A, do_sqdmull_d(N, M))
+
+DO_ZZXW(sve2_sqdmlsl_idx_s, int32_t, int16_t, H1_4, H1_2, DO_SQDMLSL_S)
+DO_ZZXW(sve2_sqdmlsl_idx_d, int64_t, int32_t, H1_8, H1_4, DO_SQDMLSL_D)
+
+#undef DO_MLA
+#undef DO_MLS
+#undef DO_ZZXW
+
+#define DO_ZZX(NAME, TYPEW, TYPEN, HW, HN, OP) \
+void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc)            \
+{                                                                         \
+    intptr_t i, j, oprsz = simd_oprsz(desc);                              \
+    intptr_t sel = extract32(desc, SIMD_DATA_SHIFT, 1) * sizeof(TYPEN);   \
+    intptr_t idx = extract32(desc, SIMD_DATA_SHIFT + 1, 3) * sizeof(TYPEN); \
+    for (i = 0; i < oprsz; i += 16) {                                     \
+        TYPEW mm = *(TYPEN *)(vm + HN(i + idx));                          \
+        for (j = 0; j < 16; j += sizeof(TYPEW)) {                         \
+            TYPEW nn = *(TYPEN *)(vn + HN(i + j + sel));                  \
+            *(TYPEW *)(vd + HW(i + j)) = OP(nn, mm);                      \
+        }                                                                 \
+    }                                                                     \
+}
+
+DO_ZZX(sve2_sqdmull_idx_s, int32_t, int16_t, H1_4, H1_2, do_sqdmull_s)
+DO_ZZX(sve2_sqdmull_idx_d, int64_t, int32_t, H1_8, H1_4, do_sqdmull_d)
+
+DO_ZZX(sve2_smull_idx_s, int32_t, int16_t, H1_4, H1_2, DO_MUL)
+DO_ZZX(sve2_smull_idx_d, int64_t, int32_t, H1_8, H1_4, DO_MUL)
+
+DO_ZZX(sve2_umull_idx_s, uint32_t, uint16_t, H1_4, H1_2, DO_MUL)
+DO_ZZX(sve2_umull_idx_d, uint64_t, uint32_t, H1_8, H1_4, DO_MUL)
+
+#undef DO_ZZX
+
+#define DO_BITPERM(NAME, TYPE, OP) \
+void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \
+{                                                              \
+    intptr_t i, opr_sz = simd_oprsz(desc);                     \
+    for (i = 0; i < opr_sz; i += sizeof(TYPE)) {               \
+        TYPE nn = *(TYPE *)(vn + i);                           \
+        TYPE mm = *(TYPE *)(vm + i);                           \
+        *(TYPE *)(vd + i) = OP(nn, mm, sizeof(TYPE) * 8);      \
+    }                                                          \
+}
+
+static uint64_t bitextract(uint64_t data, uint64_t mask, int n)
+{
+    uint64_t res = 0;
+    int db, rb = 0;
+
+    for (db = 0; db < n; ++db) {
+        if ((mask >> db) & 1) {
+            res |= ((data >> db) & 1) << rb;
+            ++rb;
+        }
+    }
+    return res;
+}
+
+DO_BITPERM(sve2_bext_b, uint8_t, bitextract)
+DO_BITPERM(sve2_bext_h, uint16_t, bitextract)
+DO_BITPERM(sve2_bext_s, uint32_t, bitextract)
+DO_BITPERM(sve2_bext_d, uint64_t, bitextract)
+
+static uint64_t bitdeposit(uint64_t data, uint64_t mask, int n)
+{
+    uint64_t res = 0;
+    int rb, db = 0;
+
+    for (rb = 0; rb < n; ++rb) {
+        if ((mask >> rb) & 1) {
+            res |= ((data >> db) & 1) << rb;
+            ++db;
+        }
+    }
+    return res;
+}
+
+DO_BITPERM(sve2_bdep_b, uint8_t, bitdeposit)
+DO_BITPERM(sve2_bdep_h, uint16_t, bitdeposit)
+DO_BITPERM(sve2_bdep_s, uint32_t, bitdeposit)
+DO_BITPERM(sve2_bdep_d, uint64_t, bitdeposit)
+
+static uint64_t bitgroup(uint64_t data, uint64_t mask, int n)
+{
+    uint64_t resm = 0, resu = 0;
+    int db, rbm = 0, rbu = 0;
+
+    for (db = 0; db < n; ++db) {
+        uint64_t val = (data >> db) & 1;
+        if ((mask >> db) & 1) {
+            resm |= val << rbm++;
+        } else {
+            resu |= val << rbu++;
+        }
+    }
+
+    return resm | (resu << rbm);
+}
+
+DO_BITPERM(sve2_bgrp_b, uint8_t, bitgroup)
+DO_BITPERM(sve2_bgrp_h, uint16_t, bitgroup)
+DO_BITPERM(sve2_bgrp_s, uint32_t, bitgroup)
+DO_BITPERM(sve2_bgrp_d, uint64_t, bitgroup)
+
+#undef DO_BITPERM
+
+#define DO_CADD(NAME, TYPE, H, ADD_OP, SUB_OP)                  \
+void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc)  \
+{                                                               \
+    intptr_t i, opr_sz = simd_oprsz(desc);                      \
+    int sub_r = simd_data(desc);                                \
+    if (sub_r) {                                                \
+        for (i = 0; i < opr_sz; i += 2 * sizeof(TYPE)) {        \
+            TYPE acc_r = *(TYPE *)(vn + H(i));                  \
+            TYPE acc_i = *(TYPE *)(vn + H(i + sizeof(TYPE)));   \
+            TYPE el2_r = *(TYPE *)(vm + H(i));                  \
+            TYPE el2_i = *(TYPE *)(vm + H(i + sizeof(TYPE)));   \
+            acc_r = ADD_OP(acc_r, el2_i);                       \
+            acc_i = SUB_OP(acc_i, el2_r);                       \
+            *(TYPE *)(vd + H(i)) = acc_r;                       \
+            *(TYPE *)(vd + H(i + sizeof(TYPE))) = acc_i;        \
+        }                                                       \
+    } else {                                                    \
+        for (i = 0; i < opr_sz; i += 2 * sizeof(TYPE)) {        \
+            TYPE acc_r = *(TYPE *)(vn + H(i));                  \
+            TYPE acc_i = *(TYPE *)(vn + H(i + sizeof(TYPE)));   \
+            TYPE el2_r = *(TYPE *)(vm + H(i));                  \
+            TYPE el2_i = *(TYPE *)(vm + H(i + sizeof(TYPE)));   \
+            acc_r = SUB_OP(acc_r, el2_i);                       \
+            acc_i = ADD_OP(acc_i, el2_r);                       \
+            *(TYPE *)(vd + H(i)) = acc_r;                       \
+            *(TYPE *)(vd + H(i + sizeof(TYPE))) = acc_i;        \
+        }                                                       \
+    }                                                           \
+}
+
+DO_CADD(sve2_cadd_b, int8_t, H1, DO_ADD, DO_SUB)
+DO_CADD(sve2_cadd_h, int16_t, H1_2, DO_ADD, DO_SUB)
+DO_CADD(sve2_cadd_s, int32_t, H1_4, DO_ADD, DO_SUB)
+DO_CADD(sve2_cadd_d, int64_t, H1_8, DO_ADD, DO_SUB)
+
+DO_CADD(sve2_sqcadd_b, int8_t, H1, DO_SQADD_B, DO_SQSUB_B)
+DO_CADD(sve2_sqcadd_h, int16_t, H1_2, DO_SQADD_H, DO_SQSUB_H)
+DO_CADD(sve2_sqcadd_s, int32_t, H1_4, DO_SQADD_S, DO_SQSUB_S)
+DO_CADD(sve2_sqcadd_d, int64_t, H1_8, do_sqadd_d, do_sqsub_d)
+
+#undef DO_CADD
+
+#define DO_ZZI_SHLL(NAME, TYPEW, TYPEN, HW, HN) \
+void HELPER(NAME)(void *vd, void *vn, uint32_t desc)           \
+{                                                              \
+    intptr_t i, opr_sz = simd_oprsz(desc);                     \
+    intptr_t sel = (simd_data(desc) & 1) * sizeof(TYPEN);      \
+    int shift = simd_data(desc) >> 1;                          \
+    for (i = 0; i < opr_sz; i += sizeof(TYPEW)) {              \
+        TYPEW nn = *(TYPEN *)(vn + HN(i + sel));               \
+        *(TYPEW *)(vd + HW(i)) = nn << shift;                  \
+    }                                                          \
+}
+
+DO_ZZI_SHLL(sve2_sshll_h, int16_t, int8_t, H1_2, H1)
+DO_ZZI_SHLL(sve2_sshll_s, int32_t, int16_t, H1_4, H1_2)
+DO_ZZI_SHLL(sve2_sshll_d, int64_t, int32_t, H1_8, H1_4)
+
+DO_ZZI_SHLL(sve2_ushll_h, uint16_t, uint8_t, H1_2, H1)
+DO_ZZI_SHLL(sve2_ushll_s, uint32_t, uint16_t, H1_4, H1_2)
+DO_ZZI_SHLL(sve2_ushll_d, uint64_t, uint32_t, H1_8, H1_4)
+
+#undef DO_ZZI_SHLL
+
+/* Two-operand reduction expander, controlled by a predicate.
+ * The difference between TYPERED and TYPERET has to do with
+ * sign-extension.  E.g. for SMAX, TYPERED must be signed,
+ * but TYPERET must be unsigned so that e.g. a 32-bit value
+ * is not sign-extended to the ABI uint64_t return type.
+ */
+/* ??? If we were to vectorize this by hand the reduction ordering
+ * would change.  For integer operands, this is perfectly fine.
+ */
+#define DO_VPZ(NAME, TYPEELT, TYPERED, TYPERET, H, INIT, OP) \
+uint64_t HELPER(NAME)(void *vn, void *vg, uint32_t desc)   \
+{                                                          \
+    intptr_t i, opr_sz = simd_oprsz(desc);                 \
+    TYPERED ret = INIT;                                    \
+    for (i = 0; i < opr_sz; ) {                            \
+        uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3));    \
+        do {                                               \
+            if (pg & 1) {                                  \
+                TYPEELT nn = *(TYPEELT *)(vn + H(i));      \
+                ret = OP(ret, nn);                         \
+            }                                              \
+            i += sizeof(TYPEELT), pg >>= sizeof(TYPEELT);  \
+        } while (i & 15);                                  \
+    }                                                      \
+    return (TYPERET)ret;                                   \
+}
+
+#define DO_VPZ_D(NAME, TYPEE, TYPER, INIT, OP)             \
+uint64_t HELPER(NAME)(void *vn, void *vg, uint32_t desc)   \
+{                                                          \
+    intptr_t i, opr_sz = simd_oprsz(desc) / 8;             \
+    TYPEE *n = vn;                                         \
+    uint8_t *pg = vg;                                      \
+    TYPER ret = INIT;                                      \
+    for (i = 0; i < opr_sz; i += 1) {                      \
+        if (pg[H1(i)] & 1) {                               \
+            TYPEE nn = n[i];                               \
+            ret = OP(ret, nn);                             \
+        }                                                  \
+    }                                                      \
+    return ret;                                            \
+}
+
+DO_VPZ(sve_orv_b, uint8_t, uint8_t, uint8_t, H1, 0, DO_ORR)
+DO_VPZ(sve_orv_h, uint16_t, uint16_t, uint16_t, H1_2, 0, DO_ORR)
+DO_VPZ(sve_orv_s, uint32_t, uint32_t, uint32_t, H1_4, 0, DO_ORR)
+DO_VPZ_D(sve_orv_d, uint64_t, uint64_t, 0, DO_ORR)
+
+DO_VPZ(sve_eorv_b, uint8_t, uint8_t, uint8_t, H1, 0, DO_EOR)
+DO_VPZ(sve_eorv_h, uint16_t, uint16_t, uint16_t, H1_2, 0, DO_EOR)
+DO_VPZ(sve_eorv_s, uint32_t, uint32_t, uint32_t, H1_4, 0, DO_EOR)
+DO_VPZ_D(sve_eorv_d, uint64_t, uint64_t, 0, DO_EOR)
+
+DO_VPZ(sve_andv_b, uint8_t, uint8_t, uint8_t, H1, -1, DO_AND)
+DO_VPZ(sve_andv_h, uint16_t, uint16_t, uint16_t, H1_2, -1, DO_AND)
+DO_VPZ(sve_andv_s, uint32_t, uint32_t, uint32_t, H1_4, -1, DO_AND)
+DO_VPZ_D(sve_andv_d, uint64_t, uint64_t, -1, DO_AND)
+
+DO_VPZ(sve_saddv_b, int8_t, uint64_t, uint64_t, H1, 0, DO_ADD)
+DO_VPZ(sve_saddv_h, int16_t, uint64_t, uint64_t, H1_2, 0, DO_ADD)
+DO_VPZ(sve_saddv_s, int32_t, uint64_t, uint64_t, H1_4, 0, DO_ADD)
+
+DO_VPZ(sve_uaddv_b, uint8_t, uint64_t, uint64_t, H1, 0, DO_ADD)
+DO_VPZ(sve_uaddv_h, uint16_t, uint64_t, uint64_t, H1_2, 0, DO_ADD)
+DO_VPZ(sve_uaddv_s, uint32_t, uint64_t, uint64_t, H1_4, 0, DO_ADD)
+DO_VPZ_D(sve_uaddv_d, uint64_t, uint64_t, 0, DO_ADD)
+
+DO_VPZ(sve_smaxv_b, int8_t, int8_t, uint8_t, H1, INT8_MIN, DO_MAX)
+DO_VPZ(sve_smaxv_h, int16_t, int16_t, uint16_t, H1_2, INT16_MIN, DO_MAX)
+DO_VPZ(sve_smaxv_s, int32_t, int32_t, uint32_t, H1_4, INT32_MIN, DO_MAX)
+DO_VPZ_D(sve_smaxv_d, int64_t, int64_t, INT64_MIN, DO_MAX)
+
+DO_VPZ(sve_umaxv_b, uint8_t, uint8_t, uint8_t, H1, 0, DO_MAX)
+DO_VPZ(sve_umaxv_h, uint16_t, uint16_t, uint16_t, H1_2, 0, DO_MAX)
+DO_VPZ(sve_umaxv_s, uint32_t, uint32_t, uint32_t, H1_4, 0, DO_MAX)
+DO_VPZ_D(sve_umaxv_d, uint64_t, uint64_t, 0, DO_MAX)
+
+DO_VPZ(sve_sminv_b, int8_t, int8_t, uint8_t, H1, INT8_MAX, DO_MIN)
+DO_VPZ(sve_sminv_h, int16_t, int16_t, uint16_t, H1_2, INT16_MAX, DO_MIN)
+DO_VPZ(sve_sminv_s, int32_t, int32_t, uint32_t, H1_4, INT32_MAX, DO_MIN)
+DO_VPZ_D(sve_sminv_d, int64_t, int64_t, INT64_MAX, DO_MIN)
+
+DO_VPZ(sve_uminv_b, uint8_t, uint8_t, uint8_t, H1, -1, DO_MIN)
+DO_VPZ(sve_uminv_h, uint16_t, uint16_t, uint16_t, H1_2, -1, DO_MIN)
+DO_VPZ(sve_uminv_s, uint32_t, uint32_t, uint32_t, H1_4, -1, DO_MIN)
+DO_VPZ_D(sve_uminv_d, uint64_t, uint64_t, -1, DO_MIN)
+
+#undef DO_VPZ
+#undef DO_VPZ_D
+
+/* Two vector operand, one scalar operand, unpredicated.  */
+#define DO_ZZI(NAME, TYPE, OP)                                       \
+void HELPER(NAME)(void *vd, void *vn, uint64_t s64, uint32_t desc)   \
+{                                                                    \
+    intptr_t i, opr_sz = simd_oprsz(desc) / sizeof(TYPE);            \
+    TYPE s = s64, *d = vd, *n = vn;                                  \
+    for (i = 0; i < opr_sz; ++i) {                                   \
+        d[i] = OP(n[i], s);                                          \
+    }                                                                \
+}
+
+#define DO_SUBR(X, Y)   (Y - X)
+
+DO_ZZI(sve_subri_b, uint8_t, DO_SUBR)
+DO_ZZI(sve_subri_h, uint16_t, DO_SUBR)
+DO_ZZI(sve_subri_s, uint32_t, DO_SUBR)
+DO_ZZI(sve_subri_d, uint64_t, DO_SUBR)
+
+DO_ZZI(sve_smaxi_b, int8_t, DO_MAX)
+DO_ZZI(sve_smaxi_h, int16_t, DO_MAX)
+DO_ZZI(sve_smaxi_s, int32_t, DO_MAX)
+DO_ZZI(sve_smaxi_d, int64_t, DO_MAX)
+
+DO_ZZI(sve_smini_b, int8_t, DO_MIN)
+DO_ZZI(sve_smini_h, int16_t, DO_MIN)
+DO_ZZI(sve_smini_s, int32_t, DO_MIN)
+DO_ZZI(sve_smini_d, int64_t, DO_MIN)
+
+DO_ZZI(sve_umaxi_b, uint8_t, DO_MAX)
+DO_ZZI(sve_umaxi_h, uint16_t, DO_MAX)
+DO_ZZI(sve_umaxi_s, uint32_t, DO_MAX)
+DO_ZZI(sve_umaxi_d, uint64_t, DO_MAX)
+
+DO_ZZI(sve_umini_b, uint8_t, DO_MIN)
+DO_ZZI(sve_umini_h, uint16_t, DO_MIN)
+DO_ZZI(sve_umini_s, uint32_t, DO_MIN)
+DO_ZZI(sve_umini_d, uint64_t, DO_MIN)
+
+#undef DO_ZZI
+
+#undef DO_AND
+#undef DO_ORR
+#undef DO_EOR
+#undef DO_BIC
+#undef DO_ADD
+#undef DO_SUB
+#undef DO_MAX
+#undef DO_MIN
+#undef DO_ABD
+#undef DO_MUL
+#undef DO_DIV
+#undef DO_ASR
+#undef DO_LSR
+#undef DO_LSL
+#undef DO_SUBR
+
+/* Similar to the ARM LastActiveElement pseudocode function, except the
+   result is multiplied by the element size.  This includes the not found
+   indication; e.g. not found for esz=3 is -8.  */
+static intptr_t last_active_element(uint64_t *g, intptr_t words, intptr_t esz)
+{
+    uint64_t mask = pred_esz_masks[esz];
+    intptr_t i = words;
+
+    do {
+        uint64_t this_g = g[--i] & mask;
+        if (this_g) {
+            return i * 64 + (63 - clz64(this_g));
+        }
+    } while (i > 0);
+    return (intptr_t)-1 << esz;
+}
+
+uint32_t HELPER(sve_pfirst)(void *vd, void *vg, uint32_t pred_desc)
+{
+    intptr_t words = DIV_ROUND_UP(FIELD_EX32(pred_desc, PREDDESC, OPRSZ), 8);
+    uint32_t flags = PREDTEST_INIT;
+    uint64_t *d = vd, *g = vg;
+    intptr_t i = 0;
+
+    do {
+        uint64_t this_d = d[i];
+        uint64_t this_g = g[i];
+
+        if (this_g) {
+            if (!(flags & 4)) {
+                /* Set in D the first bit of G.  */
+                this_d |= this_g & -this_g;
+                d[i] = this_d;
+            }
+            flags = iter_predtest_fwd(this_d, this_g, flags);
+        }
+    } while (++i < words);
+
+    return flags;
+}
+
+uint32_t HELPER(sve_pnext)(void *vd, void *vg, uint32_t pred_desc)
+{
+    intptr_t words = DIV_ROUND_UP(FIELD_EX32(pred_desc, PREDDESC, OPRSZ), 8);
+    intptr_t esz = FIELD_EX32(pred_desc, PREDDESC, ESZ);
+    uint32_t flags = PREDTEST_INIT;
+    uint64_t *d = vd, *g = vg, esz_mask;
+    intptr_t i, next;
+
+    next = last_active_element(vd, words, esz) + (1 << esz);
+    esz_mask = pred_esz_masks[esz];
+
+    /* Similar to the pseudocode for pnext, but scaled by ESZ
+       so that we find the correct bit.  */
+    if (next < words * 64) {
+        uint64_t mask = -1;
+
+        if (next & 63) {
+            mask = ~((1ull << (next & 63)) - 1);
+            next &= -64;
+        }
+        do {
+            uint64_t this_g = g[next / 64] & esz_mask & mask;
+            if (this_g != 0) {
+                next = (next & -64) + ctz64(this_g);
+                break;
+            }
+            next += 64;
+            mask = -1;
+        } while (next < words * 64);
+    }
+
+    i = 0;
+    do {
+        uint64_t this_d = 0;
+        if (i == next / 64) {
+            this_d = 1ull << (next & 63);
+        }
+        d[i] = this_d;
+        flags = iter_predtest_fwd(this_d, g[i] & esz_mask, flags);
+    } while (++i < words);
+
+    return flags;
+}
+
+/*
+ * Copy Zn into Zd, and store zero into inactive elements.
+ * If inv, store zeros into the active elements.
+ */
+void HELPER(sve_movz_b)(void *vd, void *vn, void *vg, uint32_t desc)
+{
+    intptr_t i, opr_sz = simd_oprsz(desc) / 8;
+    uint64_t inv = -(uint64_t)(simd_data(desc) & 1);
+    uint64_t *d = vd, *n = vn;
+    uint8_t *pg = vg;
+
+    for (i = 0; i < opr_sz; i += 1) {
+        d[i] = n[i] & (expand_pred_b(pg[H1(i)]) ^ inv);
+    }
+}
+
+void HELPER(sve_movz_h)(void *vd, void *vn, void *vg, uint32_t desc)
+{
+    intptr_t i, opr_sz = simd_oprsz(desc) / 8;
+    uint64_t inv = -(uint64_t)(simd_data(desc) & 1);
+    uint64_t *d = vd, *n = vn;
+    uint8_t *pg = vg;
+
+    for (i = 0; i < opr_sz; i += 1) {
+        d[i] = n[i] & (expand_pred_h(pg[H1(i)]) ^ inv);
+    }
+}
+
+void HELPER(sve_movz_s)(void *vd, void *vn, void *vg, uint32_t desc)
+{
+    intptr_t i, opr_sz = simd_oprsz(desc) / 8;
+    uint64_t inv = -(uint64_t)(simd_data(desc) & 1);
+    uint64_t *d = vd, *n = vn;
+    uint8_t *pg = vg;
+
+    for (i = 0; i < opr_sz; i += 1) {
+        d[i] = n[i] & (expand_pred_s(pg[H1(i)]) ^ inv);
+    }
+}
+
+void HELPER(sve_movz_d)(void *vd, void *vn, void *vg, uint32_t desc)
+{
+    intptr_t i, opr_sz = simd_oprsz(desc) / 8;
+    uint64_t *d = vd, *n = vn;
+    uint8_t *pg = vg;
+    uint8_t inv = simd_data(desc);
+
+    for (i = 0; i < opr_sz; i += 1) {
+        d[i] = n[i] & -(uint64_t)((pg[H1(i)] ^ inv) & 1);
+    }
+}
+
+/* Three-operand expander, immediate operand, controlled by a predicate.
+ */
+#define DO_ZPZI(NAME, TYPE, H, OP)                              \
+void HELPER(NAME)(void *vd, void *vn, void *vg, uint32_t desc)  \
+{                                                               \
+    intptr_t i, opr_sz = simd_oprsz(desc);                      \
+    TYPE imm = simd_data(desc);                                 \
+    for (i = 0; i < opr_sz; ) {                                 \
+        uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3));         \
+        do {                                                    \
+            if (pg & 1) {                                       \
+                TYPE nn = *(TYPE *)(vn + H(i));                 \
+                *(TYPE *)(vd + H(i)) = OP(nn, imm);             \
+            }                                                   \
+            i += sizeof(TYPE), pg >>= sizeof(TYPE);             \
+        } while (i & 15);                                       \
+    }                                                           \
+}
+
+/* Similarly, specialized for 64-bit operands.  */
+#define DO_ZPZI_D(NAME, TYPE, OP)                               \
+void HELPER(NAME)(void *vd, void *vn, void *vg, uint32_t desc)  \
+{                                                               \
+    intptr_t i, opr_sz = simd_oprsz(desc) / 8;                  \
+    TYPE *d = vd, *n = vn;                                      \
+    TYPE imm = simd_data(desc);                                 \
+    uint8_t *pg = vg;                                           \
+    for (i = 0; i < opr_sz; i += 1) {                           \
+        if (pg[H1(i)] & 1) {                                    \
+            TYPE nn = n[i];                                     \
+            d[i] = OP(nn, imm);                                 \
+        }                                                       \
+    }                                                           \
+}
+
+#define DO_SHR(N, M)  (N >> M)
+#define DO_SHL(N, M)  (N << M)
+
+/* Arithmetic shift right for division.  This rounds negative numbers
+   toward zero as per signed division.  Therefore before shifting,
+   when N is negative, add 2**M-1.  */
+#define DO_ASRD(N, M) ((N + (N < 0 ? ((__typeof(N))1 << M) - 1 : 0)) >> M)
+
+static inline uint64_t do_urshr(uint64_t x, unsigned sh)
+{
+    if (likely(sh < 64)) {
+        return (x >> sh) + ((x >> (sh - 1)) & 1);
+    } else if (sh == 64) {
+        return x >> 63;
+    } else {
+        return 0;
+    }
+}
+
+static inline int64_t do_srshr(int64_t x, unsigned sh)
+{
+    if (likely(sh < 64)) {
+        return (x >> sh) + ((x >> (sh - 1)) & 1);
+    } else {
+        /* Rounding the sign bit always produces 0. */
+        return 0;
+    }
+}
+
+DO_ZPZI(sve_asr_zpzi_b, int8_t, H1, DO_SHR)
+DO_ZPZI(sve_asr_zpzi_h, int16_t, H1_2, DO_SHR)
+DO_ZPZI(sve_asr_zpzi_s, int32_t, H1_4, DO_SHR)
+DO_ZPZI_D(sve_asr_zpzi_d, int64_t, DO_SHR)
+
+DO_ZPZI(sve_lsr_zpzi_b, uint8_t, H1, DO_SHR)
+DO_ZPZI(sve_lsr_zpzi_h, uint16_t, H1_2, DO_SHR)
+DO_ZPZI(sve_lsr_zpzi_s, uint32_t, H1_4, DO_SHR)
+DO_ZPZI_D(sve_lsr_zpzi_d, uint64_t, DO_SHR)
+
+DO_ZPZI(sve_lsl_zpzi_b, uint8_t, H1, DO_SHL)
+DO_ZPZI(sve_lsl_zpzi_h, uint16_t, H1_2, DO_SHL)
+DO_ZPZI(sve_lsl_zpzi_s, uint32_t, H1_4, DO_SHL)
+DO_ZPZI_D(sve_lsl_zpzi_d, uint64_t, DO_SHL)
+
+DO_ZPZI(sve_asrd_b, int8_t, H1, DO_ASRD)
+DO_ZPZI(sve_asrd_h, int16_t, H1_2, DO_ASRD)
+DO_ZPZI(sve_asrd_s, int32_t, H1_4, DO_ASRD)
+DO_ZPZI_D(sve_asrd_d, int64_t, DO_ASRD)
+
+/* SVE2 bitwise shift by immediate */
+DO_ZPZI(sve2_sqshl_zpzi_b, int8_t, H1, do_sqshl_b)
+DO_ZPZI(sve2_sqshl_zpzi_h, int16_t, H1_2, do_sqshl_h)
+DO_ZPZI(sve2_sqshl_zpzi_s, int32_t, H1_4, do_sqshl_s)
+DO_ZPZI_D(sve2_sqshl_zpzi_d, int64_t, do_sqshl_d)
+
+DO_ZPZI(sve2_uqshl_zpzi_b, uint8_t, H1, do_uqshl_b)
+DO_ZPZI(sve2_uqshl_zpzi_h, uint16_t, H1_2, do_uqshl_h)
+DO_ZPZI(sve2_uqshl_zpzi_s, uint32_t, H1_4, do_uqshl_s)
+DO_ZPZI_D(sve2_uqshl_zpzi_d, uint64_t, do_uqshl_d)
+
+DO_ZPZI(sve2_srshr_b, int8_t, H1, do_srshr)
+DO_ZPZI(sve2_srshr_h, int16_t, H1_2, do_srshr)
+DO_ZPZI(sve2_srshr_s, int32_t, H1_4, do_srshr)
+DO_ZPZI_D(sve2_srshr_d, int64_t, do_srshr)
+
+DO_ZPZI(sve2_urshr_b, uint8_t, H1, do_urshr)
+DO_ZPZI(sve2_urshr_h, uint16_t, H1_2, do_urshr)
+DO_ZPZI(sve2_urshr_s, uint32_t, H1_4, do_urshr)
+DO_ZPZI_D(sve2_urshr_d, uint64_t, do_urshr)
+
+#define do_suqrshl_b(n, m) \
+   ({ uint32_t discard; do_suqrshl_bhs(n, (int8_t)m, 8, false, &discard); })
+#define do_suqrshl_h(n, m) \
+   ({ uint32_t discard; do_suqrshl_bhs(n, (int16_t)m, 16, false, &discard); })
+#define do_suqrshl_s(n, m) \
+   ({ uint32_t discard; do_suqrshl_bhs(n, m, 32, false, &discard); })
+#define do_suqrshl_d(n, m) \
+   ({ uint32_t discard; do_suqrshl_d(n, m, false, &discard); })
+
+DO_ZPZI(sve2_sqshlu_b, int8_t, H1, do_suqrshl_b)
+DO_ZPZI(sve2_sqshlu_h, int16_t, H1_2, do_suqrshl_h)
+DO_ZPZI(sve2_sqshlu_s, int32_t, H1_4, do_suqrshl_s)
+DO_ZPZI_D(sve2_sqshlu_d, int64_t, do_suqrshl_d)
+
+#undef DO_ASRD
+#undef DO_ZPZI
+#undef DO_ZPZI_D
+
+#define DO_SHRNB(NAME, TYPEW, TYPEN, OP) \
+void HELPER(NAME)(void *vd, void *vn, uint32_t desc)         \
+{                                                            \
+    intptr_t i, opr_sz = simd_oprsz(desc);                   \
+    int shift = simd_data(desc);                             \
+    for (i = 0; i < opr_sz; i += sizeof(TYPEW)) {            \
+        TYPEW nn = *(TYPEW *)(vn + i);                       \
+        *(TYPEW *)(vd + i) = (TYPEN)OP(nn, shift);           \
+    }                                                        \
+}
+
+#define DO_SHRNT(NAME, TYPEW, TYPEN, HW, HN, OP)                  \
+void HELPER(NAME)(void *vd, void *vn, uint32_t desc)              \
+{                                                                 \
+    intptr_t i, opr_sz = simd_oprsz(desc);                        \
+    int shift = simd_data(desc);                                  \
+    for (i = 0; i < opr_sz; i += sizeof(TYPEW)) {                 \
+        TYPEW nn = *(TYPEW *)(vn + HW(i));                        \
+        *(TYPEN *)(vd + HN(i + sizeof(TYPEN))) = OP(nn, shift);   \
+    }                                                             \
+}
+
+DO_SHRNB(sve2_shrnb_h, uint16_t, uint8_t, DO_SHR)
+DO_SHRNB(sve2_shrnb_s, uint32_t, uint16_t, DO_SHR)
+DO_SHRNB(sve2_shrnb_d, uint64_t, uint32_t, DO_SHR)
+
+DO_SHRNT(sve2_shrnt_h, uint16_t, uint8_t, H1_2, H1, DO_SHR)
+DO_SHRNT(sve2_shrnt_s, uint32_t, uint16_t, H1_4, H1_2, DO_SHR)
+DO_SHRNT(sve2_shrnt_d, uint64_t, uint32_t, H1_8, H1_4, DO_SHR)
+
+DO_SHRNB(sve2_rshrnb_h, uint16_t, uint8_t, do_urshr)
+DO_SHRNB(sve2_rshrnb_s, uint32_t, uint16_t, do_urshr)
+DO_SHRNB(sve2_rshrnb_d, uint64_t, uint32_t, do_urshr)
+
+DO_SHRNT(sve2_rshrnt_h, uint16_t, uint8_t, H1_2, H1, do_urshr)
+DO_SHRNT(sve2_rshrnt_s, uint32_t, uint16_t, H1_4, H1_2, do_urshr)
+DO_SHRNT(sve2_rshrnt_d, uint64_t, uint32_t, H1_8, H1_4, do_urshr)
+
+#define DO_SQSHRUN_H(x, sh) do_sat_bhs((int64_t)(x) >> sh, 0, UINT8_MAX)
+#define DO_SQSHRUN_S(x, sh) do_sat_bhs((int64_t)(x) >> sh, 0, UINT16_MAX)
+#define DO_SQSHRUN_D(x, sh) \
+    do_sat_bhs((int64_t)(x) >> (sh < 64 ? sh : 63), 0, UINT32_MAX)
+
+DO_SHRNB(sve2_sqshrunb_h, int16_t, uint8_t, DO_SQSHRUN_H)
+DO_SHRNB(sve2_sqshrunb_s, int32_t, uint16_t, DO_SQSHRUN_S)
+DO_SHRNB(sve2_sqshrunb_d, int64_t, uint32_t, DO_SQSHRUN_D)
+
+DO_SHRNT(sve2_sqshrunt_h, int16_t, uint8_t, H1_2, H1, DO_SQSHRUN_H)
+DO_SHRNT(sve2_sqshrunt_s, int32_t, uint16_t, H1_4, H1_2, DO_SQSHRUN_S)
+DO_SHRNT(sve2_sqshrunt_d, int64_t, uint32_t, H1_8, H1_4, DO_SQSHRUN_D)
+
+#define DO_SQRSHRUN_H(x, sh) do_sat_bhs(do_srshr(x, sh), 0, UINT8_MAX)
+#define DO_SQRSHRUN_S(x, sh) do_sat_bhs(do_srshr(x, sh), 0, UINT16_MAX)
+#define DO_SQRSHRUN_D(x, sh) do_sat_bhs(do_srshr(x, sh), 0, UINT32_MAX)
+
+DO_SHRNB(sve2_sqrshrunb_h, int16_t, uint8_t, DO_SQRSHRUN_H)
+DO_SHRNB(sve2_sqrshrunb_s, int32_t, uint16_t, DO_SQRSHRUN_S)
+DO_SHRNB(sve2_sqrshrunb_d, int64_t, uint32_t, DO_SQRSHRUN_D)
+
+DO_SHRNT(sve2_sqrshrunt_h, int16_t, uint8_t, H1_2, H1, DO_SQRSHRUN_H)
+DO_SHRNT(sve2_sqrshrunt_s, int32_t, uint16_t, H1_4, H1_2, DO_SQRSHRUN_S)
+DO_SHRNT(sve2_sqrshrunt_d, int64_t, uint32_t, H1_8, H1_4, DO_SQRSHRUN_D)
+
+#define DO_SQSHRN_H(x, sh) do_sat_bhs(x >> sh, INT8_MIN, INT8_MAX)
+#define DO_SQSHRN_S(x, sh) do_sat_bhs(x >> sh, INT16_MIN, INT16_MAX)
+#define DO_SQSHRN_D(x, sh) do_sat_bhs(x >> sh, INT32_MIN, INT32_MAX)
+
+DO_SHRNB(sve2_sqshrnb_h, int16_t, uint8_t, DO_SQSHRN_H)
+DO_SHRNB(sve2_sqshrnb_s, int32_t, uint16_t, DO_SQSHRN_S)
+DO_SHRNB(sve2_sqshrnb_d, int64_t, uint32_t, DO_SQSHRN_D)
+
+DO_SHRNT(sve2_sqshrnt_h, int16_t, uint8_t, H1_2, H1, DO_SQSHRN_H)
+DO_SHRNT(sve2_sqshrnt_s, int32_t, uint16_t, H1_4, H1_2, DO_SQSHRN_S)
+DO_SHRNT(sve2_sqshrnt_d, int64_t, uint32_t, H1_8, H1_4, DO_SQSHRN_D)
+
+#define DO_SQRSHRN_H(x, sh) do_sat_bhs(do_srshr(x, sh), INT8_MIN, INT8_MAX)
+#define DO_SQRSHRN_S(x, sh) do_sat_bhs(do_srshr(x, sh), INT16_MIN, INT16_MAX)
+#define DO_SQRSHRN_D(x, sh) do_sat_bhs(do_srshr(x, sh), INT32_MIN, INT32_MAX)
+
+DO_SHRNB(sve2_sqrshrnb_h, int16_t, uint8_t, DO_SQRSHRN_H)
+DO_SHRNB(sve2_sqrshrnb_s, int32_t, uint16_t, DO_SQRSHRN_S)
+DO_SHRNB(sve2_sqrshrnb_d, int64_t, uint32_t, DO_SQRSHRN_D)
+
+DO_SHRNT(sve2_sqrshrnt_h, int16_t, uint8_t, H1_2, H1, DO_SQRSHRN_H)
+DO_SHRNT(sve2_sqrshrnt_s, int32_t, uint16_t, H1_4, H1_2, DO_SQRSHRN_S)
+DO_SHRNT(sve2_sqrshrnt_d, int64_t, uint32_t, H1_8, H1_4, DO_SQRSHRN_D)
+
+#define DO_UQSHRN_H(x, sh) MIN(x >> sh, UINT8_MAX)
+#define DO_UQSHRN_S(x, sh) MIN(x >> sh, UINT16_MAX)
+#define DO_UQSHRN_D(x, sh) MIN(x >> sh, UINT32_MAX)
+
+DO_SHRNB(sve2_uqshrnb_h, uint16_t, uint8_t, DO_UQSHRN_H)
+DO_SHRNB(sve2_uqshrnb_s, uint32_t, uint16_t, DO_UQSHRN_S)
+DO_SHRNB(sve2_uqshrnb_d, uint64_t, uint32_t, DO_UQSHRN_D)
+
+DO_SHRNT(sve2_uqshrnt_h, uint16_t, uint8_t, H1_2, H1, DO_UQSHRN_H)
+DO_SHRNT(sve2_uqshrnt_s, uint32_t, uint16_t, H1_4, H1_2, DO_UQSHRN_S)
+DO_SHRNT(sve2_uqshrnt_d, uint64_t, uint32_t, H1_8, H1_4, DO_UQSHRN_D)
+
+#define DO_UQRSHRN_H(x, sh) MIN(do_urshr(x, sh), UINT8_MAX)
+#define DO_UQRSHRN_S(x, sh) MIN(do_urshr(x, sh), UINT16_MAX)
+#define DO_UQRSHRN_D(x, sh) MIN(do_urshr(x, sh), UINT32_MAX)
+
+DO_SHRNB(sve2_uqrshrnb_h, uint16_t, uint8_t, DO_UQRSHRN_H)
+DO_SHRNB(sve2_uqrshrnb_s, uint32_t, uint16_t, DO_UQRSHRN_S)
+DO_SHRNB(sve2_uqrshrnb_d, uint64_t, uint32_t, DO_UQRSHRN_D)
+
+DO_SHRNT(sve2_uqrshrnt_h, uint16_t, uint8_t, H1_2, H1, DO_UQRSHRN_H)
+DO_SHRNT(sve2_uqrshrnt_s, uint32_t, uint16_t, H1_4, H1_2, DO_UQRSHRN_S)
+DO_SHRNT(sve2_uqrshrnt_d, uint64_t, uint32_t, H1_8, H1_4, DO_UQRSHRN_D)
+
+#undef DO_SHRNB
+#undef DO_SHRNT
+
+#define DO_BINOPNB(NAME, TYPEW, TYPEN, SHIFT, OP)                           \
+void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc)              \
+{                                                                           \
+    intptr_t i, opr_sz = simd_oprsz(desc);                                  \
+    for (i = 0; i < opr_sz; i += sizeof(TYPEW)) {                           \
+        TYPEW nn = *(TYPEW *)(vn + i);                                      \
+        TYPEW mm = *(TYPEW *)(vm + i);                                      \
+        *(TYPEW *)(vd + i) = (TYPEN)OP(nn, mm, SHIFT);                      \
+    }                                                                       \
+}
+
+#define DO_BINOPNT(NAME, TYPEW, TYPEN, SHIFT, HW, HN, OP)                   \
+void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc)              \
+{                                                                           \
+    intptr_t i, opr_sz = simd_oprsz(desc);                                  \
+    for (i = 0; i < opr_sz; i += sizeof(TYPEW)) {                           \
+        TYPEW nn = *(TYPEW *)(vn + HW(i));                                  \
+        TYPEW mm = *(TYPEW *)(vm + HW(i));                                  \
+        *(TYPEN *)(vd + HN(i + sizeof(TYPEN))) = OP(nn, mm, SHIFT);         \
+    }                                                                       \
+}
+
+#define DO_ADDHN(N, M, SH)  ((N + M) >> SH)
+#define DO_RADDHN(N, M, SH) ((N + M + ((__typeof(N))1 << (SH - 1))) >> SH)
+#define DO_SUBHN(N, M, SH)  ((N - M) >> SH)
+#define DO_RSUBHN(N, M, SH) ((N - M + ((__typeof(N))1 << (SH - 1))) >> SH)
+
+DO_BINOPNB(sve2_addhnb_h, uint16_t, uint8_t, 8, DO_ADDHN)
+DO_BINOPNB(sve2_addhnb_s, uint32_t, uint16_t, 16, DO_ADDHN)
+DO_BINOPNB(sve2_addhnb_d, uint64_t, uint32_t, 32, DO_ADDHN)
+
+DO_BINOPNT(sve2_addhnt_h, uint16_t, uint8_t, 8, H1_2, H1, DO_ADDHN)
+DO_BINOPNT(sve2_addhnt_s, uint32_t, uint16_t, 16, H1_4, H1_2, DO_ADDHN)
+DO_BINOPNT(sve2_addhnt_d, uint64_t, uint32_t, 32, H1_8, H1_4, DO_ADDHN)
+
+DO_BINOPNB(sve2_raddhnb_h, uint16_t, uint8_t, 8, DO_RADDHN)
+DO_BINOPNB(sve2_raddhnb_s, uint32_t, uint16_t, 16, DO_RADDHN)
+DO_BINOPNB(sve2_raddhnb_d, uint64_t, uint32_t, 32, DO_RADDHN)
+
+DO_BINOPNT(sve2_raddhnt_h, uint16_t, uint8_t, 8, H1_2, H1, DO_RADDHN)
+DO_BINOPNT(sve2_raddhnt_s, uint32_t, uint16_t, 16, H1_4, H1_2, DO_RADDHN)
+DO_BINOPNT(sve2_raddhnt_d, uint64_t, uint32_t, 32, H1_8, H1_4, DO_RADDHN)
+
+DO_BINOPNB(sve2_subhnb_h, uint16_t, uint8_t, 8, DO_SUBHN)
+DO_BINOPNB(sve2_subhnb_s, uint32_t, uint16_t, 16, DO_SUBHN)
+DO_BINOPNB(sve2_subhnb_d, uint64_t, uint32_t, 32, DO_SUBHN)
+
+DO_BINOPNT(sve2_subhnt_h, uint16_t, uint8_t, 8, H1_2, H1, DO_SUBHN)
+DO_BINOPNT(sve2_subhnt_s, uint32_t, uint16_t, 16, H1_4, H1_2, DO_SUBHN)
+DO_BINOPNT(sve2_subhnt_d, uint64_t, uint32_t, 32, H1_8, H1_4, DO_SUBHN)
+
+DO_BINOPNB(sve2_rsubhnb_h, uint16_t, uint8_t, 8, DO_RSUBHN)
+DO_BINOPNB(sve2_rsubhnb_s, uint32_t, uint16_t, 16, DO_RSUBHN)
+DO_BINOPNB(sve2_rsubhnb_d, uint64_t, uint32_t, 32, DO_RSUBHN)
+
+DO_BINOPNT(sve2_rsubhnt_h, uint16_t, uint8_t, 8, H1_2, H1, DO_RSUBHN)
+DO_BINOPNT(sve2_rsubhnt_s, uint32_t, uint16_t, 16, H1_4, H1_2, DO_RSUBHN)
+DO_BINOPNT(sve2_rsubhnt_d, uint64_t, uint32_t, 32, H1_8, H1_4, DO_RSUBHN)
+
+#undef DO_RSUBHN
+#undef DO_SUBHN
+#undef DO_RADDHN
+#undef DO_ADDHN
+
+#undef DO_BINOPNB
+
+/* Fully general four-operand expander, controlled by a predicate.
+ */
+#define DO_ZPZZZ(NAME, TYPE, H, OP)                           \
+void HELPER(NAME)(void *vd, void *va, void *vn, void *vm,     \
+                  void *vg, uint32_t desc)                    \
+{                                                             \
+    intptr_t i, opr_sz = simd_oprsz(desc);                    \
+    for (i = 0; i < opr_sz; ) {                               \
+        uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3));       \
+        do {                                                  \
+            if (pg & 1) {                                     \
+                TYPE nn = *(TYPE *)(vn + H(i));               \
+                TYPE mm = *(TYPE *)(vm + H(i));               \
+                TYPE aa = *(TYPE *)(va + H(i));               \
+                *(TYPE *)(vd + H(i)) = OP(aa, nn, mm);        \
+            }                                                 \
+            i += sizeof(TYPE), pg >>= sizeof(TYPE);           \
+        } while (i & 15);                                     \
+    }                                                         \
+}
+
+/* Similarly, specialized for 64-bit operands.  */
+#define DO_ZPZZZ_D(NAME, TYPE, OP)                            \
+void HELPER(NAME)(void *vd, void *va, void *vn, void *vm,     \
+                  void *vg, uint32_t desc)                    \
+{                                                             \
+    intptr_t i, opr_sz = simd_oprsz(desc) / 8;                \
+    TYPE *d = vd, *a = va, *n = vn, *m = vm;                  \
+    uint8_t *pg = vg;                                         \
+    for (i = 0; i < opr_sz; i += 1) {                         \
+        if (pg[H1(i)] & 1) {                                  \
+            TYPE aa = a[i], nn = n[i], mm = m[i];             \
+            d[i] = OP(aa, nn, mm);                            \
+        }                                                     \
+    }                                                         \
+}
+
+#define DO_MLA(A, N, M)  (A + N * M)
+#define DO_MLS(A, N, M)  (A - N * M)
+
+DO_ZPZZZ(sve_mla_b, uint8_t, H1, DO_MLA)
+DO_ZPZZZ(sve_mls_b, uint8_t, H1, DO_MLS)
+
+DO_ZPZZZ(sve_mla_h, uint16_t, H1_2, DO_MLA)
+DO_ZPZZZ(sve_mls_h, uint16_t, H1_2, DO_MLS)
+
+DO_ZPZZZ(sve_mla_s, uint32_t, H1_4, DO_MLA)
+DO_ZPZZZ(sve_mls_s, uint32_t, H1_4, DO_MLS)
+
+DO_ZPZZZ_D(sve_mla_d, uint64_t, DO_MLA)
+DO_ZPZZZ_D(sve_mls_d, uint64_t, DO_MLS)
+
+#undef DO_MLA
+#undef DO_MLS
+#undef DO_ZPZZZ
+#undef DO_ZPZZZ_D
+
+void HELPER(sve_index_b)(void *vd, uint32_t start,
+                         uint32_t incr, uint32_t desc)
+{
+    intptr_t i, opr_sz = simd_oprsz(desc);
+    uint8_t *d = vd;
+    for (i = 0; i < opr_sz; i += 1) {
+        d[H1(i)] = start + i * incr;
+    }
+}
+
+void HELPER(sve_index_h)(void *vd, uint32_t start,
+                         uint32_t incr, uint32_t desc)
+{
+    intptr_t i, opr_sz = simd_oprsz(desc) / 2;
+    uint16_t *d = vd;
+    for (i = 0; i < opr_sz; i += 1) {
+        d[H2(i)] = start + i * incr;
+    }
+}
+
+void HELPER(sve_index_s)(void *vd, uint32_t start,
+                         uint32_t incr, uint32_t desc)
+{
+    intptr_t i, opr_sz = simd_oprsz(desc) / 4;
+    uint32_t *d = vd;
+    for (i = 0; i < opr_sz; i += 1) {
+        d[H4(i)] = start + i * incr;
+    }
+}
+
+void HELPER(sve_index_d)(void *vd, uint64_t start,
+                         uint64_t incr, uint32_t desc)
+{
+    intptr_t i, opr_sz = simd_oprsz(desc) / 8;
+    uint64_t *d = vd;
+    for (i = 0; i < opr_sz; i += 1) {
+        d[i] = start + i * incr;
+    }
+}
+
+void HELPER(sve_adr_p32)(void *vd, void *vn, void *vm, uint32_t desc)
+{
+    intptr_t i, opr_sz = simd_oprsz(desc) / 4;
+    uint32_t sh = simd_data(desc);
+    uint32_t *d = vd, *n = vn, *m = vm;
+    for (i = 0; i < opr_sz; i += 1) {
+        d[i] = n[i] + (m[i] << sh);
+    }
+}
+
+void HELPER(sve_adr_p64)(void *vd, void *vn, void *vm, uint32_t desc)
+{
+    intptr_t i, opr_sz = simd_oprsz(desc) / 8;
+    uint64_t sh = simd_data(desc);
+    uint64_t *d = vd, *n = vn, *m = vm;
+    for (i = 0; i < opr_sz; i += 1) {
+        d[i] = n[i] + (m[i] << sh);
+    }
+}
+
+void HELPER(sve_adr_s32)(void *vd, void *vn, void *vm, uint32_t desc)
+{
+    intptr_t i, opr_sz = simd_oprsz(desc) / 8;
+    uint64_t sh = simd_data(desc);
+    uint64_t *d = vd, *n = vn, *m = vm;
+    for (i = 0; i < opr_sz; i += 1) {
+        d[i] = n[i] + ((uint64_t)(int32_t)m[i] << sh);
+    }
+}
+
+void HELPER(sve_adr_u32)(void *vd, void *vn, void *vm, uint32_t desc)
+{
+    intptr_t i, opr_sz = simd_oprsz(desc) / 8;
+    uint64_t sh = simd_data(desc);
+    uint64_t *d = vd, *n = vn, *m = vm;
+    for (i = 0; i < opr_sz; i += 1) {
+        d[i] = n[i] + ((uint64_t)(uint32_t)m[i] << sh);
+    }
+}
+
+void HELPER(sve_fexpa_h)(void *vd, void *vn, uint32_t desc)
+{
+    /* These constants are cut-and-paste directly from the ARM pseudocode.  */
+    static const uint16_t coeff[] = {
+        0x0000, 0x0016, 0x002d, 0x0045, 0x005d, 0x0075, 0x008e, 0x00a8,
+        0x00c2, 0x00dc, 0x00f8, 0x0114, 0x0130, 0x014d, 0x016b, 0x0189,
+        0x01a8, 0x01c8, 0x01e8, 0x0209, 0x022b, 0x024e, 0x0271, 0x0295,
+        0x02ba, 0x02e0, 0x0306, 0x032e, 0x0356, 0x037f, 0x03a9, 0x03d4,
+    };
+    intptr_t i, opr_sz = simd_oprsz(desc) / 2;
+    uint16_t *d = vd, *n = vn;
+
+    for (i = 0; i < opr_sz; i++) {
+        uint16_t nn = n[i];
+        intptr_t idx = extract32(nn, 0, 5);
+        uint16_t exp = extract32(nn, 5, 5);
+        d[i] = coeff[idx] | (exp << 10);
+    }
+}
+
+void HELPER(sve_fexpa_s)(void *vd, void *vn, uint32_t desc)
+{
+    /* These constants are cut-and-paste directly from the ARM pseudocode.  */
+    static const uint32_t coeff[] = {
+        0x000000, 0x0164d2, 0x02cd87, 0x043a29,
+        0x05aac3, 0x071f62, 0x08980f, 0x0a14d5,
+        0x0b95c2, 0x0d1adf, 0x0ea43a, 0x1031dc,
+        0x11c3d3, 0x135a2b, 0x14f4f0, 0x16942d,
+        0x1837f0, 0x19e046, 0x1b8d3a, 0x1d3eda,
+        0x1ef532, 0x20b051, 0x227043, 0x243516,
+        0x25fed7, 0x27cd94, 0x29a15b, 0x2b7a3a,
+        0x2d583f, 0x2f3b79, 0x3123f6, 0x3311c4,
+        0x3504f3, 0x36fd92, 0x38fbaf, 0x3aff5b,
+        0x3d08a4, 0x3f179a, 0x412c4d, 0x4346cd,
+        0x45672a, 0x478d75, 0x49b9be, 0x4bec15,
+        0x4e248c, 0x506334, 0x52a81e, 0x54f35b,
+        0x5744fd, 0x599d16, 0x5bfbb8, 0x5e60f5,
+        0x60ccdf, 0x633f89, 0x65b907, 0x68396a,
+        0x6ac0c7, 0x6d4f30, 0x6fe4ba, 0x728177,
+        0x75257d, 0x77d0df, 0x7a83b3, 0x7d3e0c,
+    };
+    intptr_t i, opr_sz = simd_oprsz(desc) / 4;
+    uint32_t *d = vd, *n = vn;
+
+    for (i = 0; i < opr_sz; i++) {
+        uint32_t nn = n[i];
+        intptr_t idx = extract32(nn, 0, 6);
+        uint32_t exp = extract32(nn, 6, 8);
+        d[i] = coeff[idx] | (exp << 23);
+    }
+}
+
+void HELPER(sve_fexpa_d)(void *vd, void *vn, uint32_t desc)
+{
+    /* These constants are cut-and-paste directly from the ARM pseudocode.  */
+    static const uint64_t coeff[] = {
+        0x0000000000000ull, 0x02C9A3E778061ull, 0x059B0D3158574ull,
+        0x0874518759BC8ull, 0x0B5586CF9890Full, 0x0E3EC32D3D1A2ull,
+        0x11301D0125B51ull, 0x1429AAEA92DE0ull, 0x172B83C7D517Bull,
+        0x1A35BEB6FCB75ull, 0x1D4873168B9AAull, 0x2063B88628CD6ull,
+        0x2387A6E756238ull, 0x26B4565E27CDDull, 0x29E9DF51FDEE1ull,
+        0x2D285A6E4030Bull, 0x306FE0A31B715ull, 0x33C08B26416FFull,
+        0x371A7373AA9CBull, 0x3A7DB34E59FF7ull, 0x3DEA64C123422ull,
+        0x4160A21F72E2Aull, 0x44E086061892Dull, 0x486A2B5C13CD0ull,
+        0x4BFDAD5362A27ull, 0x4F9B2769D2CA7ull, 0x5342B569D4F82ull,
+        0x56F4736B527DAull, 0x5AB07DD485429ull, 0x5E76F15AD2148ull,
+        0x6247EB03A5585ull, 0x6623882552225ull, 0x6A09E667F3BCDull,
+        0x6DFB23C651A2Full, 0x71F75E8EC5F74ull, 0x75FEB564267C9ull,
+        0x7A11473EB0187ull, 0x7E2F336CF4E62ull, 0x82589994CCE13ull,
+        0x868D99B4492EDull, 0x8ACE5422AA0DBull, 0x8F1AE99157736ull,
+        0x93737B0CDC5E5ull, 0x97D829FDE4E50ull, 0x9C49182A3F090ull,
+        0xA0C667B5DE565ull, 0xA5503B23E255Dull, 0xA9E6B5579FDBFull,
+        0xAE89F995AD3ADull, 0xB33A2B84F15FBull, 0xB7F76F2FB5E47ull,
+        0xBCC1E904BC1D2ull, 0xC199BDD85529Cull, 0xC67F12E57D14Bull,
+        0xCB720DCEF9069ull, 0xD072D4A07897Cull, 0xD5818DCFBA487ull,
+        0xDA9E603DB3285ull, 0xDFC97337B9B5Full, 0xE502EE78B3FF6ull,
+        0xEA4AFA2A490DAull, 0xEFA1BEE615A27ull, 0xF50765B6E4540ull,
+        0xFA7C1819E90D8ull,
+    };
+    intptr_t i, opr_sz = simd_oprsz(desc) / 8;
+    uint64_t *d = vd, *n = vn;
+
+    for (i = 0; i < opr_sz; i++) {
+        uint64_t nn = n[i];
+        intptr_t idx = extract32(nn, 0, 6);
+        uint64_t exp = extract32(nn, 6, 11);
+        d[i] = coeff[idx] | (exp << 52);
+    }
+}
+
+void HELPER(sve_ftssel_h)(void *vd, void *vn, void *vm, uint32_t desc)
+{
+    intptr_t i, opr_sz = simd_oprsz(desc) / 2;
+    uint16_t *d = vd, *n = vn, *m = vm;
+    for (i = 0; i < opr_sz; i += 1) {
+        uint16_t nn = n[i];
+        uint16_t mm = m[i];
+        if (mm & 1) {
+            nn = float16_one;
+        }
+        d[i] = nn ^ (mm & 2) << 14;
+    }
+}
+
+void HELPER(sve_ftssel_s)(void *vd, void *vn, void *vm, uint32_t desc)
+{
+    intptr_t i, opr_sz = simd_oprsz(desc) / 4;
+    uint32_t *d = vd, *n = vn, *m = vm;
+    for (i = 0; i < opr_sz; i += 1) {
+        uint32_t nn = n[i];
+        uint32_t mm = m[i];
+        if (mm & 1) {
+            nn = float32_one;
+        }
+        d[i] = nn ^ (mm & 2) << 30;
+    }
+}
+
+void HELPER(sve_ftssel_d)(void *vd, void *vn, void *vm, uint32_t desc)
+{
+    intptr_t i, opr_sz = simd_oprsz(desc) / 8;
+    uint64_t *d = vd, *n = vn, *m = vm;
+    for (i = 0; i < opr_sz; i += 1) {
+        uint64_t nn = n[i];
+        uint64_t mm = m[i];
+        if (mm & 1) {
+            nn = float64_one;
+        }
+        d[i] = nn ^ (mm & 2) << 62;
+    }
+}
+
+/*
+ * Signed saturating addition with scalar operand.
+ */
+
+void HELPER(sve_sqaddi_b)(void *d, void *a, int32_t b, uint32_t desc)
+{
+    intptr_t i, oprsz = simd_oprsz(desc);
+
+    for (i = 0; i < oprsz; i += sizeof(int8_t)) {
+        *(int8_t *)(d + i) = DO_SQADD_B(b, *(int8_t *)(a + i));
+    }
+}
+
+void HELPER(sve_sqaddi_h)(void *d, void *a, int32_t b, uint32_t desc)
+{
+    intptr_t i, oprsz = simd_oprsz(desc);
+
+    for (i = 0; i < oprsz; i += sizeof(int16_t)) {
+        *(int16_t *)(d + i) = DO_SQADD_H(b, *(int16_t *)(a + i));
+    }
+}
+
+void HELPER(sve_sqaddi_s)(void *d, void *a, int64_t b, uint32_t desc)
+{
+    intptr_t i, oprsz = simd_oprsz(desc);
+
+    for (i = 0; i < oprsz; i += sizeof(int32_t)) {
+        *(int32_t *)(d + i) = DO_SQADD_S(b, *(int32_t *)(a + i));
+    }
+}
+
+void HELPER(sve_sqaddi_d)(void *d, void *a, int64_t b, uint32_t desc)
+{
+    intptr_t i, oprsz = simd_oprsz(desc);
+
+    for (i = 0; i < oprsz; i += sizeof(int64_t)) {
+        *(int64_t *)(d + i) = do_sqadd_d(b, *(int64_t *)(a + i));
+    }
+}
+
+/*
+ * Unsigned saturating addition with scalar operand.
+ */
+
+void HELPER(sve_uqaddi_b)(void *d, void *a, int32_t b, uint32_t desc)
+{
+    intptr_t i, oprsz = simd_oprsz(desc);
+
+    for (i = 0; i < oprsz; i += sizeof(uint8_t)) {
+        *(uint8_t *)(d + i) = DO_UQADD_B(b, *(uint8_t *)(a + i));
+    }
+}
+
+void HELPER(sve_uqaddi_h)(void *d, void *a, int32_t b, uint32_t desc)
+{
+    intptr_t i, oprsz = simd_oprsz(desc);
+
+    for (i = 0; i < oprsz; i += sizeof(uint16_t)) {
+        *(uint16_t *)(d + i) = DO_UQADD_H(b, *(uint16_t *)(a + i));
+    }
+}
+
+void HELPER(sve_uqaddi_s)(void *d, void *a, int64_t b, uint32_t desc)
+{
+    intptr_t i, oprsz = simd_oprsz(desc);
+
+    for (i = 0; i < oprsz; i += sizeof(uint32_t)) {
+        *(uint32_t *)(d + i) = DO_UQADD_S(b, *(uint32_t *)(a + i));
+    }
+}
+
+void HELPER(sve_uqaddi_d)(void *d, void *a, uint64_t b, uint32_t desc)
+{
+    intptr_t i, oprsz = simd_oprsz(desc);
+
+    for (i = 0; i < oprsz; i += sizeof(uint64_t)) {
+        *(uint64_t *)(d + i) = do_uqadd_d(b, *(uint64_t *)(a + i));
+    }
+}
+
+void HELPER(sve_uqsubi_d)(void *d, void *a, uint64_t b, uint32_t desc)
+{
+    intptr_t i, oprsz = simd_oprsz(desc);
+
+    for (i = 0; i < oprsz; i += sizeof(uint64_t)) {
+        *(uint64_t *)(d + i) = do_uqsub_d(*(uint64_t *)(a + i), b);
+    }
+}
+
+/* Two operand predicated copy immediate with merge.  All valid immediates
+ * can fit within 17 signed bits in the simd_data field.
+ */
+void HELPER(sve_cpy_m_b)(void *vd, void *vn, void *vg,
+                         uint64_t mm, uint32_t desc)
+{
+    intptr_t i, opr_sz = simd_oprsz(desc) / 8;
+    uint64_t *d = vd, *n = vn;
+    uint8_t *pg = vg;
+
+    mm = dup_const(MO_8, mm);
+    for (i = 0; i < opr_sz; i += 1) {
+        uint64_t nn = n[i];
+        uint64_t pp = expand_pred_b(pg[H1(i)]);
+        d[i] = (mm & pp) | (nn & ~pp);
+    }
+}
+
+void HELPER(sve_cpy_m_h)(void *vd, void *vn, void *vg,
+                         uint64_t mm, uint32_t desc)
+{
+    intptr_t i, opr_sz = simd_oprsz(desc) / 8;
+    uint64_t *d = vd, *n = vn;
+    uint8_t *pg = vg;
+
+    mm = dup_const(MO_16, mm);
+    for (i = 0; i < opr_sz; i += 1) {
+        uint64_t nn = n[i];
+        uint64_t pp = expand_pred_h(pg[H1(i)]);
+        d[i] = (mm & pp) | (nn & ~pp);
+    }
+}
+
+void HELPER(sve_cpy_m_s)(void *vd, void *vn, void *vg,
+                         uint64_t mm, uint32_t desc)
+{
+    intptr_t i, opr_sz = simd_oprsz(desc) / 8;
+    uint64_t *d = vd, *n = vn;
+    uint8_t *pg = vg;
+
+    mm = dup_const(MO_32, mm);
+    for (i = 0; i < opr_sz; i += 1) {
+        uint64_t nn = n[i];
+        uint64_t pp = expand_pred_s(pg[H1(i)]);
+        d[i] = (mm & pp) | (nn & ~pp);
+    }
+}
+
+void HELPER(sve_cpy_m_d)(void *vd, void *vn, void *vg,
+                         uint64_t mm, uint32_t desc)
+{
+    intptr_t i, opr_sz = simd_oprsz(desc) / 8;
+    uint64_t *d = vd, *n = vn;
+    uint8_t *pg = vg;
+
+    for (i = 0; i < opr_sz; i += 1) {
+        uint64_t nn = n[i];
+        d[i] = (pg[H1(i)] & 1 ? mm : nn);
+    }
+}
+
+void HELPER(sve_cpy_z_b)(void *vd, void *vg, uint64_t val, uint32_t desc)
+{
+    intptr_t i, opr_sz = simd_oprsz(desc) / 8;
+    uint64_t *d = vd;
+    uint8_t *pg = vg;
+
+    val = dup_const(MO_8, val);
+    for (i = 0; i < opr_sz; i += 1) {
+        d[i] = val & expand_pred_b(pg[H1(i)]);
+    }
+}
+
+void HELPER(sve_cpy_z_h)(void *vd, void *vg, uint64_t val, uint32_t desc)
+{
+    intptr_t i, opr_sz = simd_oprsz(desc) / 8;
+    uint64_t *d = vd;
+    uint8_t *pg = vg;
+
+    val = dup_const(MO_16, val);
+    for (i = 0; i < opr_sz; i += 1) {
+        d[i] = val & expand_pred_h(pg[H1(i)]);
+    }
+}
+
+void HELPER(sve_cpy_z_s)(void *vd, void *vg, uint64_t val, uint32_t desc)
+{
+    intptr_t i, opr_sz = simd_oprsz(desc) / 8;
+    uint64_t *d = vd;
+    uint8_t *pg = vg;
+
+    val = dup_const(MO_32, val);
+    for (i = 0; i < opr_sz; i += 1) {
+        d[i] = val & expand_pred_s(pg[H1(i)]);
+    }
+}
+
+void HELPER(sve_cpy_z_d)(void *vd, void *vg, uint64_t val, uint32_t desc)
+{
+    intptr_t i, opr_sz = simd_oprsz(desc) / 8;
+    uint64_t *d = vd;
+    uint8_t *pg = vg;
+
+    for (i = 0; i < opr_sz; i += 1) {
+        d[i] = (pg[H1(i)] & 1 ? val : 0);
+    }
+}
+
+/* Big-endian hosts need to frob the byte indices.  If the copy
+ * happens to be 8-byte aligned, then no frobbing necessary.
+ */
+static void swap_memmove(void *vd, void *vs, size_t n)
+{
+    uintptr_t d = (uintptr_t)vd;
+    uintptr_t s = (uintptr_t)vs;
+    uintptr_t o = (d | s | n) & 7;
+    size_t i;
+
+#if !HOST_BIG_ENDIAN
+    o = 0;
+#endif
+    switch (o) {
+    case 0:
+        memmove(vd, vs, n);
+        break;
+
+    case 4:
+        if (d < s || d >= s + n) {
+            for (i = 0; i < n; i += 4) {
+                *(uint32_t *)H1_4(d + i) = *(uint32_t *)H1_4(s + i);
+            }
+        } else {
+            for (i = n; i > 0; ) {
+                i -= 4;
+                *(uint32_t *)H1_4(d + i) = *(uint32_t *)H1_4(s + i);
+            }
+        }
+        break;
+
+    case 2:
+    case 6:
+        if (d < s || d >= s + n) {
+            for (i = 0; i < n; i += 2) {
+                *(uint16_t *)H1_2(d + i) = *(uint16_t *)H1_2(s + i);
+            }
+        } else {
+            for (i = n; i > 0; ) {
+                i -= 2;
+                *(uint16_t *)H1_2(d + i) = *(uint16_t *)H1_2(s + i);
+            }
+        }
+        break;
+
+    default:
+        if (d < s || d >= s + n) {
+            for (i = 0; i < n; i++) {
+                *(uint8_t *)H1(d + i) = *(uint8_t *)H1(s + i);
+            }
+        } else {
+            for (i = n; i > 0; ) {
+                i -= 1;
+                *(uint8_t *)H1(d + i) = *(uint8_t *)H1(s + i);
+            }
+        }
+        break;
+    }
+}
+
+/* Similarly for memset of 0.  */
+static void swap_memzero(void *vd, size_t n)
+{
+    uintptr_t d = (uintptr_t)vd;
+    uintptr_t o = (d | n) & 7;
+    size_t i;
+
+    /* Usually, the first bit of a predicate is set, so N is 0.  */
+    if (likely(n == 0)) {
+        return;
+    }
+
+#if !HOST_BIG_ENDIAN
+    o = 0;
+#endif
+    switch (o) {
+    case 0:
+        memset(vd, 0, n);
+        break;
+
+    case 4:
+        for (i = 0; i < n; i += 4) {
+            *(uint32_t *)H1_4(d + i) = 0;
+        }
+        break;
+
+    case 2:
+    case 6:
+        for (i = 0; i < n; i += 2) {
+            *(uint16_t *)H1_2(d + i) = 0;
+        }
+        break;
+
+    default:
+        for (i = 0; i < n; i++) {
+            *(uint8_t *)H1(d + i) = 0;
+        }
+        break;
+    }
+}
+
+void HELPER(sve_ext)(void *vd, void *vn, void *vm, uint32_t desc)
+{
+    intptr_t opr_sz = simd_oprsz(desc);
+    size_t n_ofs = simd_data(desc);
+    size_t n_siz = opr_sz - n_ofs;
+
+    if (vd != vm) {
+        swap_memmove(vd, vn + n_ofs, n_siz);
+        swap_memmove(vd + n_siz, vm, n_ofs);
+    } else if (vd != vn) {
+        swap_memmove(vd + n_siz, vd, n_ofs);
+        swap_memmove(vd, vn + n_ofs, n_siz);
+    } else {
+        /* vd == vn == vm.  Need temp space.  */
+        ARMVectorReg tmp;
+        swap_memmove(&tmp, vm, n_ofs);
+        swap_memmove(vd, vd + n_ofs, n_siz);
+        memcpy(vd + n_siz, &tmp, n_ofs);
+    }
+}
+
+#define DO_INSR(NAME, TYPE, H) \
+void HELPER(NAME)(void *vd, void *vn, uint64_t val, uint32_t desc) \
+{                                                                  \
+    intptr_t opr_sz = simd_oprsz(desc);                            \
+    swap_memmove(vd + sizeof(TYPE), vn, opr_sz - sizeof(TYPE));    \
+    *(TYPE *)(vd + H(0)) = val;                                    \
+}
+
+DO_INSR(sve_insr_b, uint8_t, H1)
+DO_INSR(sve_insr_h, uint16_t, H1_2)
+DO_INSR(sve_insr_s, uint32_t, H1_4)
+DO_INSR(sve_insr_d, uint64_t, H1_8)
+
+#undef DO_INSR
+
+void HELPER(sve_rev_b)(void *vd, void *vn, uint32_t desc)
+{
+    intptr_t i, j, opr_sz = simd_oprsz(desc);
+    for (i = 0, j = opr_sz - 8; i < opr_sz / 2; i += 8, j -= 8) {
+        uint64_t f = *(uint64_t *)(vn + i);
+        uint64_t b = *(uint64_t *)(vn + j);
+        *(uint64_t *)(vd + i) = bswap64(b);
+        *(uint64_t *)(vd + j) = bswap64(f);
+    }
+}
+
+void HELPER(sve_rev_h)(void *vd, void *vn, uint32_t desc)
+{
+    intptr_t i, j, opr_sz = simd_oprsz(desc);
+    for (i = 0, j = opr_sz - 8; i < opr_sz / 2; i += 8, j -= 8) {
+        uint64_t f = *(uint64_t *)(vn + i);
+        uint64_t b = *(uint64_t *)(vn + j);
+        *(uint64_t *)(vd + i) = hswap64(b);
+        *(uint64_t *)(vd + j) = hswap64(f);
+    }
+}
+
+void HELPER(sve_rev_s)(void *vd, void *vn, uint32_t desc)
+{
+    intptr_t i, j, opr_sz = simd_oprsz(desc);
+    for (i = 0, j = opr_sz - 8; i < opr_sz / 2; i += 8, j -= 8) {
+        uint64_t f = *(uint64_t *)(vn + i);
+        uint64_t b = *(uint64_t *)(vn + j);
+        *(uint64_t *)(vd + i) = rol64(b, 32);
+        *(uint64_t *)(vd + j) = rol64(f, 32);
+    }
+}
+
+void HELPER(sve_rev_d)(void *vd, void *vn, uint32_t desc)
+{
+    intptr_t i, j, opr_sz = simd_oprsz(desc);
+    for (i = 0, j = opr_sz - 8; i < opr_sz / 2; i += 8, j -= 8) {
+        uint64_t f = *(uint64_t *)(vn + i);
+        uint64_t b = *(uint64_t *)(vn + j);
+        *(uint64_t *)(vd + i) = b;
+        *(uint64_t *)(vd + j) = f;
+    }
+}
+
+typedef void tb_impl_fn(void *, void *, void *, void *, uintptr_t, bool);
+
+static inline void do_tbl1(void *vd, void *vn, void *vm, uint32_t desc,
+                           bool is_tbx, tb_impl_fn *fn)
+{
+    ARMVectorReg scratch;
+    uintptr_t oprsz = simd_oprsz(desc);
+
+    if (unlikely(vd == vn)) {
+        vn = memcpy(&scratch, vn, oprsz);
+    }
+
+    fn(vd, vn, NULL, vm, oprsz, is_tbx);
+}
+
+static inline void do_tbl2(void *vd, void *vn0, void *vn1, void *vm,
+                           uint32_t desc, bool is_tbx, tb_impl_fn *fn)
+{
+    ARMVectorReg scratch;
+    uintptr_t oprsz = simd_oprsz(desc);
+
+    if (unlikely(vd == vn0)) {
+        vn0 = memcpy(&scratch, vn0, oprsz);
+        if (vd == vn1) {
+            vn1 = vn0;
+        }
+    } else if (unlikely(vd == vn1)) {
+        vn1 = memcpy(&scratch, vn1, oprsz);
+    }
+
+    fn(vd, vn0, vn1, vm, oprsz, is_tbx);
+}
+
+#define DO_TB(SUFF, TYPE, H)                                            \
+static inline void do_tb_##SUFF(void *vd, void *vt0, void *vt1,         \
+                                void *vm, uintptr_t oprsz, bool is_tbx) \
+{                                                                       \
+    TYPE *d = vd, *tbl0 = vt0, *tbl1 = vt1, *indexes = vm;              \
+    uintptr_t i, nelem = oprsz / sizeof(TYPE);                          \
+    for (i = 0; i < nelem; ++i) {                                       \
+        TYPE index = indexes[H1(i)], val = 0;                           \
+        if (index < nelem) {                                            \
+            val = tbl0[H(index)];                                       \
+        } else {                                                        \
+            index -= nelem;                                             \
+            if (tbl1 && index < nelem) {                                \
+                val = tbl1[H(index)];                                   \
+            } else if (is_tbx) {                                        \
+                continue;                                               \
+            }                                                           \
+        }                                                               \
+        d[H(i)] = val;                                                  \
+    }                                                                   \
+}                                                                       \
+void HELPER(sve_tbl_##SUFF)(void *vd, void *vn, void *vm, uint32_t desc) \
+{                                                                       \
+    do_tbl1(vd, vn, vm, desc, false, do_tb_##SUFF);                     \
+}                                                                       \
+void HELPER(sve2_tbl_##SUFF)(void *vd, void *vn0, void *vn1,            \
+                             void *vm, uint32_t desc)                   \
+{                                                                       \
+    do_tbl2(vd, vn0, vn1, vm, desc, false, do_tb_##SUFF);               \
+}                                                                       \
+void HELPER(sve2_tbx_##SUFF)(void *vd, void *vn, void *vm, uint32_t desc) \
+{                                                                       \
+    do_tbl1(vd, vn, vm, desc, true, do_tb_##SUFF);                      \
+}
+
+DO_TB(b, uint8_t, H1)
+DO_TB(h, uint16_t, H2)
+DO_TB(s, uint32_t, H4)
+DO_TB(d, uint64_t, H8)
+
+#undef DO_TB
+
+#define DO_UNPK(NAME, TYPED, TYPES, HD, HS) \
+void HELPER(NAME)(void *vd, void *vn, uint32_t desc)           \
+{                                                              \
+    intptr_t i, opr_sz = simd_oprsz(desc);                     \
+    TYPED *d = vd;                                             \
+    TYPES *n = vn;                                             \
+    ARMVectorReg tmp;                                          \
+    if (unlikely(vn - vd < opr_sz)) {                          \
+        n = memcpy(&tmp, n, opr_sz / 2);                       \
+    }                                                          \
+    for (i = 0; i < opr_sz / sizeof(TYPED); i++) {             \
+        d[HD(i)] = n[HS(i)];                                   \
+    }                                                          \
+}
+
+DO_UNPK(sve_sunpk_h, int16_t, int8_t, H2, H1)
+DO_UNPK(sve_sunpk_s, int32_t, int16_t, H4, H2)
+DO_UNPK(sve_sunpk_d, int64_t, int32_t, H8, H4)
+
+DO_UNPK(sve_uunpk_h, uint16_t, uint8_t, H2, H1)
+DO_UNPK(sve_uunpk_s, uint32_t, uint16_t, H4, H2)
+DO_UNPK(sve_uunpk_d, uint64_t, uint32_t, H8, H4)
+
+#undef DO_UNPK
+
+/* Mask of bits included in the even numbered predicates of width esz.
+ * We also use this for expand_bits/compress_bits, and so extend the
+ * same pattern out to 16-bit units.
+ */
+static const uint64_t even_bit_esz_masks[5] = {
+    0x5555555555555555ull,
+    0x3333333333333333ull,
+    0x0f0f0f0f0f0f0f0full,
+    0x00ff00ff00ff00ffull,
+    0x0000ffff0000ffffull,
+};
+
+/* Zero-extend units of 2**N bits to units of 2**(N+1) bits.
+ * For N==0, this corresponds to the operation that in qemu/bitops.h
+ * we call half_shuffle64; this algorithm is from Hacker's Delight,
+ * section 7-2 Shuffling Bits.
+ */
+static uint64_t expand_bits(uint64_t x, int n)
+{
+    int i;
+
+    x &= 0xffffffffu;
+    for (i = 4; i >= n; i--) {
+        int sh = 1 << i;
+        x = ((x << sh) | x) & even_bit_esz_masks[i];
+    }
+    return x;
+}
+
+/* Compress units of 2**(N+1) bits to units of 2**N bits.
+ * For N==0, this corresponds to the operation that in qemu/bitops.h
+ * we call half_unshuffle64; this algorithm is from Hacker's Delight,
+ * section 7-2 Shuffling Bits, where it is called an inverse half shuffle.
+ */
+static uint64_t compress_bits(uint64_t x, int n)
+{
+    int i;
+
+    for (i = n; i <= 4; i++) {
+        int sh = 1 << i;
+        x &= even_bit_esz_masks[i];
+        x = (x >> sh) | x;
+    }
+    return x & 0xffffffffu;
+}
+
+void HELPER(sve_zip_p)(void *vd, void *vn, void *vm, uint32_t pred_desc)
+{
+    intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ);
+    int esz = FIELD_EX32(pred_desc, PREDDESC, ESZ);
+    intptr_t high = FIELD_EX32(pred_desc, PREDDESC, DATA);
+    int esize = 1 << esz;
+    uint64_t *d = vd;
+    intptr_t i;
+
+    if (oprsz <= 8) {
+        uint64_t nn = *(uint64_t *)vn;
+        uint64_t mm = *(uint64_t *)vm;
+        int half = 4 * oprsz;
+
+        nn = extract64(nn, high * half, half);
+        mm = extract64(mm, high * half, half);
+        nn = expand_bits(nn, esz);
+        mm = expand_bits(mm, esz);
+        d[0] = nn | (mm << esize);
+    } else {
+        ARMPredicateReg tmp;
+
+        /* We produce output faster than we consume input.
+           Therefore we must be mindful of possible overlap.  */
+        if (vd == vn) {
+            vn = memcpy(&tmp, vn, oprsz);
+            if (vd == vm) {
+                vm = vn;
+            }
+        } else if (vd == vm) {
+            vm = memcpy(&tmp, vm, oprsz);
+        }
+        if (high) {
+            high = oprsz >> 1;
+        }
+
+        if ((oprsz & 7) == 0) {
+            uint32_t *n = vn, *m = vm;
+            high >>= 2;
+
+            for (i = 0; i < oprsz / 8; i++) {
+                uint64_t nn = n[H4(high + i)];
+                uint64_t mm = m[H4(high + i)];
+
+                nn = expand_bits(nn, esz);
+                mm = expand_bits(mm, esz);
+                d[i] = nn | (mm << esize);
+            }
+        } else {
+            uint8_t *n = vn, *m = vm;
+            uint16_t *d16 = vd;
+
+            for (i = 0; i < oprsz / 2; i++) {
+                uint16_t nn = n[H1(high + i)];
+                uint16_t mm = m[H1(high + i)];
+
+                nn = expand_bits(nn, esz);
+                mm = expand_bits(mm, esz);
+                d16[H2(i)] = nn | (mm << esize);
+            }
+        }
+    }
+}
+
+void HELPER(sve_uzp_p)(void *vd, void *vn, void *vm, uint32_t pred_desc)
+{
+    intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ);
+    int esz = FIELD_EX32(pred_desc, PREDDESC, ESZ);
+    int odd = FIELD_EX32(pred_desc, PREDDESC, DATA) << esz;
+    uint64_t *d = vd, *n = vn, *m = vm;
+    uint64_t l, h;
+    intptr_t i;
+
+    if (oprsz <= 8) {
+        l = compress_bits(n[0] >> odd, esz);
+        h = compress_bits(m[0] >> odd, esz);
+        d[0] = l | (h << (4 * oprsz));
+    } else {
+        ARMPredicateReg tmp_m;
+        intptr_t oprsz_16 = oprsz / 16;
+
+        if ((vm - vd) < (uintptr_t)oprsz) {
+            m = memcpy(&tmp_m, vm, oprsz);
+        }
+
+        for (i = 0; i < oprsz_16; i++) {
+            l = n[2 * i + 0];
+            h = n[2 * i + 1];
+            l = compress_bits(l >> odd, esz);
+            h = compress_bits(h >> odd, esz);
+            d[i] = l | (h << 32);
+        }
+
+        /*
+         * For VL which is not a multiple of 512, the results from M do not
+         * align nicely with the uint64_t for D.  Put the aligned results
+         * from M into TMP_M and then copy it into place afterward.
+         */
+        if (oprsz & 15) {
+            int final_shift = (oprsz & 15) * 2;
+
+            l = n[2 * i + 0];
+            h = n[2 * i + 1];
+            l = compress_bits(l >> odd, esz);
+            h = compress_bits(h >> odd, esz);
+            d[i] = l | (h << final_shift);
+
+            for (i = 0; i < oprsz_16; i++) {
+                l = m[2 * i + 0];
+                h = m[2 * i + 1];
+                l = compress_bits(l >> odd, esz);
+                h = compress_bits(h >> odd, esz);
+                tmp_m.p[i] = l | (h << 32);
+            }
+            l = m[2 * i + 0];
+            h = m[2 * i + 1];
+            l = compress_bits(l >> odd, esz);
+            h = compress_bits(h >> odd, esz);
+            tmp_m.p[i] = l | (h << final_shift);
+
+            swap_memmove(vd + oprsz / 2, &tmp_m, oprsz / 2);
+        } else {
+            for (i = 0; i < oprsz_16; i++) {
+                l = m[2 * i + 0];
+                h = m[2 * i + 1];
+                l = compress_bits(l >> odd, esz);
+                h = compress_bits(h >> odd, esz);
+                d[oprsz_16 + i] = l | (h << 32);
+            }
+        }
+    }
+}
+
+void HELPER(sve_trn_p)(void *vd, void *vn, void *vm, uint32_t pred_desc)
+{
+    intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ);
+    int esz = FIELD_EX32(pred_desc, PREDDESC, ESZ);
+    int odd = FIELD_EX32(pred_desc, PREDDESC, DATA);
+    uint64_t *d = vd, *n = vn, *m = vm;
+    uint64_t mask;
+    int shr, shl;
+    intptr_t i;
+
+    shl = 1 << esz;
+    shr = 0;
+    mask = even_bit_esz_masks[esz];
+    if (odd) {
+        mask <<= shl;
+        shr = shl;
+        shl = 0;
+    }
+
+    for (i = 0; i < DIV_ROUND_UP(oprsz, 8); i++) {
+        uint64_t nn = (n[i] & mask) >> shr;
+        uint64_t mm = (m[i] & mask) << shl;
+        d[i] = nn + mm;
+    }
+}
+
+/* Reverse units of 2**N bits.  */
+static uint64_t reverse_bits_64(uint64_t x, int n)
+{
+    int i, sh;
+
+    x = bswap64(x);
+    for (i = 2, sh = 4; i >= n; i--, sh >>= 1) {
+        uint64_t mask = even_bit_esz_masks[i];
+        x = ((x & mask) << sh) | ((x >> sh) & mask);
+    }
+    return x;
+}
+
+static uint8_t reverse_bits_8(uint8_t x, int n)
+{
+    static const uint8_t mask[3] = { 0x55, 0x33, 0x0f };
+    int i, sh;
+
+    for (i = 2, sh = 4; i >= n; i--, sh >>= 1) {
+        x = ((x & mask[i]) << sh) | ((x >> sh) & mask[i]);
+    }
+    return x;
+}
+
+void HELPER(sve_rev_p)(void *vd, void *vn, uint32_t pred_desc)
+{
+    intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ);
+    int esz = FIELD_EX32(pred_desc, PREDDESC, ESZ);
+    intptr_t i, oprsz_2 = oprsz / 2;
+
+    if (oprsz <= 8) {
+        uint64_t l = *(uint64_t *)vn;
+        l = reverse_bits_64(l << (64 - 8 * oprsz), esz);
+        *(uint64_t *)vd = l;
+    } else if ((oprsz & 15) == 0) {
+        for (i = 0; i < oprsz_2; i += 8) {
+            intptr_t ih = oprsz - 8 - i;
+            uint64_t l = reverse_bits_64(*(uint64_t *)(vn + i), esz);
+            uint64_t h = reverse_bits_64(*(uint64_t *)(vn + ih), esz);
+            *(uint64_t *)(vd + i) = h;
+            *(uint64_t *)(vd + ih) = l;
+        }
+    } else {
+        for (i = 0; i < oprsz_2; i += 1) {
+            intptr_t il = H1(i);
+            intptr_t ih = H1(oprsz - 1 - i);
+            uint8_t l = reverse_bits_8(*(uint8_t *)(vn + il), esz);
+            uint8_t h = reverse_bits_8(*(uint8_t *)(vn + ih), esz);
+            *(uint8_t *)(vd + il) = h;
+            *(uint8_t *)(vd + ih) = l;
+        }
+    }
+}
+
+void HELPER(sve_punpk_p)(void *vd, void *vn, uint32_t pred_desc)
+{
+    intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ);
+    intptr_t high = FIELD_EX32(pred_desc, PREDDESC, DATA);
+    uint64_t *d = vd;
+    intptr_t i;
+
+    if (oprsz <= 8) {
+        uint64_t nn = *(uint64_t *)vn;
+        int half = 4 * oprsz;
+
+        nn = extract64(nn, high * half, half);
+        nn = expand_bits(nn, 0);
+        d[0] = nn;
+    } else {
+        ARMPredicateReg tmp_n;
+
+        /* We produce output faster than we consume input.
+           Therefore we must be mindful of possible overlap.  */
+        if ((vn - vd) < (uintptr_t)oprsz) {
+            vn = memcpy(&tmp_n, vn, oprsz);
+        }
+        if (high) {
+            high = oprsz >> 1;
+        }
+
+        if ((oprsz & 7) == 0) {
+            uint32_t *n = vn;
+            high >>= 2;
+
+            for (i = 0; i < oprsz / 8; i++) {
+                uint64_t nn = n[H4(high + i)];
+                d[i] = expand_bits(nn, 0);
+            }
+        } else {
+            uint16_t *d16 = vd;
+            uint8_t *n = vn;
+
+            for (i = 0; i < oprsz / 2; i++) {
+                uint16_t nn = n[H1(high + i)];
+                d16[H2(i)] = expand_bits(nn, 0);
+            }
+        }
+    }
+}
+
+#define DO_ZIP(NAME, TYPE, H) \
+void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc)       \
+{                                                                    \
+    intptr_t oprsz = simd_oprsz(desc);                               \
+    intptr_t odd_ofs = simd_data(desc);                              \
+    intptr_t i, oprsz_2 = oprsz / 2;                                 \
+    ARMVectorReg tmp_n, tmp_m;                                       \
+    /* We produce output faster than we consume input.               \
+       Therefore we must be mindful of possible overlap.  */         \
+    if (unlikely((vn - vd) < (uintptr_t)oprsz)) {                    \
+        vn = memcpy(&tmp_n, vn, oprsz);                              \
+    }                                                                \
+    if (unlikely((vm - vd) < (uintptr_t)oprsz)) {                    \
+        vm = memcpy(&tmp_m, vm, oprsz);                              \
+    }                                                                \
+    for (i = 0; i < oprsz_2; i += sizeof(TYPE)) {                    \
+        *(TYPE *)(vd + H(2 * i + 0)) = *(TYPE *)(vn + odd_ofs + H(i)); \
+        *(TYPE *)(vd + H(2 * i + sizeof(TYPE))) =                    \
+            *(TYPE *)(vm + odd_ofs + H(i));                          \
+    }                                                                \
+    if (sizeof(TYPE) == 16 && unlikely(oprsz & 16)) {                \
+        memset(vd + oprsz - 16, 0, 16);                              \
+    }                                                                \
+}
+
+DO_ZIP(sve_zip_b, uint8_t, H1)
+DO_ZIP(sve_zip_h, uint16_t, H1_2)
+DO_ZIP(sve_zip_s, uint32_t, H1_4)
+DO_ZIP(sve_zip_d, uint64_t, H1_8)
+DO_ZIP(sve2_zip_q, Int128, )
+
+#define DO_UZP(NAME, TYPE, H) \
+void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc)         \
+{                                                                      \
+    intptr_t oprsz = simd_oprsz(desc);                                 \
+    intptr_t odd_ofs = simd_data(desc);                                \
+    intptr_t i, p;                                                     \
+    ARMVectorReg tmp_m;                                                \
+    if (unlikely((vm - vd) < (uintptr_t)oprsz)) {                      \
+        vm = memcpy(&tmp_m, vm, oprsz);                                \
+    }                                                                  \
+    i = 0, p = odd_ofs;                                                \
+    do {                                                               \
+        *(TYPE *)(vd + H(i)) = *(TYPE *)(vn + H(p));                   \
+        i += sizeof(TYPE), p += 2 * sizeof(TYPE);                      \
+    } while (p < oprsz);                                               \
+    p -= oprsz;                                                        \
+    do {                                                               \
+        *(TYPE *)(vd + H(i)) = *(TYPE *)(vm + H(p));                   \
+        i += sizeof(TYPE), p += 2 * sizeof(TYPE);                      \
+    } while (p < oprsz);                                               \
+    tcg_debug_assert(i == oprsz);                                      \
+}
+
+DO_UZP(sve_uzp_b, uint8_t, H1)
+DO_UZP(sve_uzp_h, uint16_t, H1_2)
+DO_UZP(sve_uzp_s, uint32_t, H1_4)
+DO_UZP(sve_uzp_d, uint64_t, H1_8)
+DO_UZP(sve2_uzp_q, Int128, )
+
+#define DO_TRN(NAME, TYPE, H) \
+void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc)         \
+{                                                                      \
+    intptr_t oprsz = simd_oprsz(desc);                                 \
+    intptr_t odd_ofs = simd_data(desc);                                \
+    intptr_t i;                                                        \
+    for (i = 0; i < oprsz; i += 2 * sizeof(TYPE)) {                    \
+        TYPE ae = *(TYPE *)(vn + H(i + odd_ofs));                      \
+        TYPE be = *(TYPE *)(vm + H(i + odd_ofs));                      \
+        *(TYPE *)(vd + H(i + 0)) = ae;                                 \
+        *(TYPE *)(vd + H(i + sizeof(TYPE))) = be;                      \
+    }                                                                  \
+    if (sizeof(TYPE) == 16 && unlikely(oprsz & 16)) {                  \
+        memset(vd + oprsz - 16, 0, 16);                                \
+    }                                                                  \
+}
+
+DO_TRN(sve_trn_b, uint8_t, H1)
+DO_TRN(sve_trn_h, uint16_t, H1_2)
+DO_TRN(sve_trn_s, uint32_t, H1_4)
+DO_TRN(sve_trn_d, uint64_t, H1_8)
+DO_TRN(sve2_trn_q, Int128, )
+
+#undef DO_ZIP
+#undef DO_UZP
+#undef DO_TRN
+
+void HELPER(sve_compact_s)(void *vd, void *vn, void *vg, uint32_t desc)
+{
+    intptr_t i, j, opr_sz = simd_oprsz(desc) / 4;
+    uint32_t *d = vd, *n = vn;
+    uint8_t *pg = vg;
+
+    for (i = j = 0; i < opr_sz; i++) {
+        if (pg[H1(i / 2)] & (i & 1 ? 0x10 : 0x01)) {
+            d[H4(j)] = n[H4(i)];
+            j++;
+        }
+    }
+    for (; j < opr_sz; j++) {
+        d[H4(j)] = 0;
+    }
+}
+
+void HELPER(sve_compact_d)(void *vd, void *vn, void *vg, uint32_t desc)
+{
+    intptr_t i, j, opr_sz = simd_oprsz(desc) / 8;
+    uint64_t *d = vd, *n = vn;
+    uint8_t *pg = vg;
+
+    for (i = j = 0; i < opr_sz; i++) {
+        if (pg[H1(i)] & 1) {
+            d[j] = n[i];
+            j++;
+        }
+    }
+    for (; j < opr_sz; j++) {
+        d[j] = 0;
+    }
+}
+
+/* Similar to the ARM LastActiveElement pseudocode function, except the
+ * result is multiplied by the element size.  This includes the not found
+ * indication; e.g. not found for esz=3 is -8.
+ */
+int32_t HELPER(sve_last_active_element)(void *vg, uint32_t pred_desc)
+{
+    intptr_t words = DIV_ROUND_UP(FIELD_EX32(pred_desc, PREDDESC, OPRSZ), 8);
+    intptr_t esz = FIELD_EX32(pred_desc, PREDDESC, ESZ);
+
+    return last_active_element(vg, words, esz);
+}
+
+void HELPER(sve_splice)(void *vd, void *vn, void *vm, void *vg, uint32_t desc)
+{
+    intptr_t opr_sz = simd_oprsz(desc) / 8;
+    int esz = simd_data(desc);
+    uint64_t pg, first_g, last_g, len, mask = pred_esz_masks[esz];
+    intptr_t i, first_i, last_i;
+    ARMVectorReg tmp;
+
+    first_i = last_i = 0;
+    first_g = last_g = 0;
+
+    /* Find the extent of the active elements within VG.  */
+    for (i = QEMU_ALIGN_UP(opr_sz, 8) - 8; i >= 0; i -= 8) {
+        pg = *(uint64_t *)(vg + i) & mask;
+        if (pg) {
+            if (last_g == 0) {
+                last_g = pg;
+                last_i = i;
+            }
+            first_g = pg;
+            first_i = i;
+        }
+    }
+
+    len = 0;
+    if (first_g != 0) {
+        first_i = first_i * 8 + ctz64(first_g);
+        last_i = last_i * 8 + 63 - clz64(last_g);
+        len = last_i - first_i + (1 << esz);
+        if (vd == vm) {
+            vm = memcpy(&tmp, vm, opr_sz * 8);
+        }
+        swap_memmove(vd, vn + first_i, len);
+    }
+    swap_memmove(vd + len, vm, opr_sz * 8 - len);
+}
+
+void HELPER(sve_sel_zpzz_b)(void *vd, void *vn, void *vm,
+                            void *vg, uint32_t desc)
+{
+    intptr_t i, opr_sz = simd_oprsz(desc) / 8;
+    uint64_t *d = vd, *n = vn, *m = vm;
+    uint8_t *pg = vg;
+
+    for (i = 0; i < opr_sz; i += 1) {
+        uint64_t nn = n[i], mm = m[i];
+        uint64_t pp = expand_pred_b(pg[H1(i)]);
+        d[i] = (nn & pp) | (mm & ~pp);
+    }
+}
+
+void HELPER(sve_sel_zpzz_h)(void *vd, void *vn, void *vm,
+                            void *vg, uint32_t desc)
+{
+    intptr_t i, opr_sz = simd_oprsz(desc) / 8;
+    uint64_t *d = vd, *n = vn, *m = vm;
+    uint8_t *pg = vg;
+
+    for (i = 0; i < opr_sz; i += 1) {
+        uint64_t nn = n[i], mm = m[i];
+        uint64_t pp = expand_pred_h(pg[H1(i)]);
+        d[i] = (nn & pp) | (mm & ~pp);
+    }
+}
+
+void HELPER(sve_sel_zpzz_s)(void *vd, void *vn, void *vm,
+                            void *vg, uint32_t desc)
+{
+    intptr_t i, opr_sz = simd_oprsz(desc) / 8;
+    uint64_t *d = vd, *n = vn, *m = vm;
+    uint8_t *pg = vg;
+
+    for (i = 0; i < opr_sz; i += 1) {
+        uint64_t nn = n[i], mm = m[i];
+        uint64_t pp = expand_pred_s(pg[H1(i)]);
+        d[i] = (nn & pp) | (mm & ~pp);
+    }
+}
+
+void HELPER(sve_sel_zpzz_d)(void *vd, void *vn, void *vm,
+                            void *vg, uint32_t desc)
+{
+    intptr_t i, opr_sz = simd_oprsz(desc) / 8;
+    uint64_t *d = vd, *n = vn, *m = vm;
+    uint8_t *pg = vg;
+
+    for (i = 0; i < opr_sz; i += 1) {
+        uint64_t nn = n[i], mm = m[i];
+        d[i] = (pg[H1(i)] & 1 ? nn : mm);
+    }
+}
+
+void HELPER(sve_sel_zpzz_q)(void *vd, void *vn, void *vm,
+                            void *vg, uint32_t desc)
+{
+    intptr_t i, opr_sz = simd_oprsz(desc) / 16;
+    Int128 *d = vd, *n = vn, *m = vm;
+    uint16_t *pg = vg;
+
+    for (i = 0; i < opr_sz; i += 1) {
+        d[i] = (pg[H2(i)] & 1 ? n : m)[i];
+    }
+}
+
+/* Two operand comparison controlled by a predicate.
+ * ??? It is very tempting to want to be able to expand this inline
+ * with x86 instructions, e.g.
+ *
+ *    vcmpeqw    zm, zn, %ymm0
+ *    vpmovmskb  %ymm0, %eax
+ *    and        $0x5555, %eax
+ *    and        pg, %eax
+ *
+ * or even aarch64, e.g.
+ *
+ *    // mask = 4000 1000 0400 0100 0040 0010 0004 0001
+ *    cmeq       v0.8h, zn, zm
+ *    and        v0.8h, v0.8h, mask
+ *    addv       h0, v0.8h
+ *    and        v0.8b, pg
+ *
+ * However, coming up with an abstraction that allows vector inputs and
+ * a scalar output, and also handles the byte-ordering of sub-uint64_t
+ * scalar outputs, is tricky.
+ */
+#define DO_CMP_PPZZ(NAME, TYPE, OP, H, MASK)                                 \
+uint32_t HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, uint32_t desc) \
+{                                                                            \
+    intptr_t opr_sz = simd_oprsz(desc);                                      \
+    uint32_t flags = PREDTEST_INIT;                                          \
+    intptr_t i = opr_sz;                                                     \
+    do {                                                                     \
+        uint64_t out = 0, pg;                                                \
+        do {                                                                 \
+            i -= sizeof(TYPE), out <<= sizeof(TYPE);                         \
+            TYPE nn = *(TYPE *)(vn + H(i));                                  \
+            TYPE mm = *(TYPE *)(vm + H(i));                                  \
+            out |= nn OP mm;                                                 \
+        } while (i & 63);                                                    \
+        pg = *(uint64_t *)(vg + (i >> 3)) & MASK;                            \
+        out &= pg;                                                           \
+        *(uint64_t *)(vd + (i >> 3)) = out;                                  \
+        flags = iter_predtest_bwd(out, pg, flags);                           \
+    } while (i > 0);                                                         \
+    return flags;                                                            \
+}
+
+#define DO_CMP_PPZZ_B(NAME, TYPE, OP) \
+    DO_CMP_PPZZ(NAME, TYPE, OP, H1,   0xffffffffffffffffull)
+#define DO_CMP_PPZZ_H(NAME, TYPE, OP) \
+    DO_CMP_PPZZ(NAME, TYPE, OP, H1_2, 0x5555555555555555ull)
+#define DO_CMP_PPZZ_S(NAME, TYPE, OP) \
+    DO_CMP_PPZZ(NAME, TYPE, OP, H1_4, 0x1111111111111111ull)
+#define DO_CMP_PPZZ_D(NAME, TYPE, OP) \
+    DO_CMP_PPZZ(NAME, TYPE, OP, H1_8, 0x0101010101010101ull)
+
+DO_CMP_PPZZ_B(sve_cmpeq_ppzz_b, uint8_t,  ==)
+DO_CMP_PPZZ_H(sve_cmpeq_ppzz_h, uint16_t, ==)
+DO_CMP_PPZZ_S(sve_cmpeq_ppzz_s, uint32_t, ==)
+DO_CMP_PPZZ_D(sve_cmpeq_ppzz_d, uint64_t, ==)
+
+DO_CMP_PPZZ_B(sve_cmpne_ppzz_b, uint8_t,  !=)
+DO_CMP_PPZZ_H(sve_cmpne_ppzz_h, uint16_t, !=)
+DO_CMP_PPZZ_S(sve_cmpne_ppzz_s, uint32_t, !=)
+DO_CMP_PPZZ_D(sve_cmpne_ppzz_d, uint64_t, !=)
+
+DO_CMP_PPZZ_B(sve_cmpgt_ppzz_b, int8_t,  >)
+DO_CMP_PPZZ_H(sve_cmpgt_ppzz_h, int16_t, >)
+DO_CMP_PPZZ_S(sve_cmpgt_ppzz_s, int32_t, >)
+DO_CMP_PPZZ_D(sve_cmpgt_ppzz_d, int64_t, >)
+
+DO_CMP_PPZZ_B(sve_cmpge_ppzz_b, int8_t,  >=)
+DO_CMP_PPZZ_H(sve_cmpge_ppzz_h, int16_t, >=)
+DO_CMP_PPZZ_S(sve_cmpge_ppzz_s, int32_t, >=)
+DO_CMP_PPZZ_D(sve_cmpge_ppzz_d, int64_t, >=)
+
+DO_CMP_PPZZ_B(sve_cmphi_ppzz_b, uint8_t,  >)
+DO_CMP_PPZZ_H(sve_cmphi_ppzz_h, uint16_t, >)
+DO_CMP_PPZZ_S(sve_cmphi_ppzz_s, uint32_t, >)
+DO_CMP_PPZZ_D(sve_cmphi_ppzz_d, uint64_t, >)
+
+DO_CMP_PPZZ_B(sve_cmphs_ppzz_b, uint8_t,  >=)
+DO_CMP_PPZZ_H(sve_cmphs_ppzz_h, uint16_t, >=)
+DO_CMP_PPZZ_S(sve_cmphs_ppzz_s, uint32_t, >=)
+DO_CMP_PPZZ_D(sve_cmphs_ppzz_d, uint64_t, >=)
+
+#undef DO_CMP_PPZZ_B
+#undef DO_CMP_PPZZ_H
+#undef DO_CMP_PPZZ_S
+#undef DO_CMP_PPZZ_D
+#undef DO_CMP_PPZZ
+
+/* Similar, but the second source is "wide".  */
+#define DO_CMP_PPZW(NAME, TYPE, TYPEW, OP, H, MASK)                     \
+uint32_t HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, uint32_t desc) \
+{                                                                            \
+    intptr_t opr_sz = simd_oprsz(desc);                                      \
+    uint32_t flags = PREDTEST_INIT;                                          \
+    intptr_t i = opr_sz;                                                     \
+    do {                                                                     \
+        uint64_t out = 0, pg;                                                \
+        do {                                                                 \
+            TYPEW mm = *(TYPEW *)(vm + i - 8);                               \
+            do {                                                             \
+                i -= sizeof(TYPE), out <<= sizeof(TYPE);                     \
+                TYPE nn = *(TYPE *)(vn + H(i));                              \
+                out |= nn OP mm;                                             \
+            } while (i & 7);                                                 \
+        } while (i & 63);                                                    \
+        pg = *(uint64_t *)(vg + (i >> 3)) & MASK;                            \
+        out &= pg;                                                           \
+        *(uint64_t *)(vd + (i >> 3)) = out;                                  \
+        flags = iter_predtest_bwd(out, pg, flags);                           \
+    } while (i > 0);                                                         \
+    return flags;                                                            \
+}
+
+#define DO_CMP_PPZW_B(NAME, TYPE, TYPEW, OP) \
+    DO_CMP_PPZW(NAME, TYPE, TYPEW, OP, H1,   0xffffffffffffffffull)
+#define DO_CMP_PPZW_H(NAME, TYPE, TYPEW, OP) \
+    DO_CMP_PPZW(NAME, TYPE, TYPEW, OP, H1_2, 0x5555555555555555ull)
+#define DO_CMP_PPZW_S(NAME, TYPE, TYPEW, OP) \
+    DO_CMP_PPZW(NAME, TYPE, TYPEW, OP, H1_4, 0x1111111111111111ull)
+
+DO_CMP_PPZW_B(sve_cmpeq_ppzw_b, int8_t,  uint64_t, ==)
+DO_CMP_PPZW_H(sve_cmpeq_ppzw_h, int16_t, uint64_t, ==)
+DO_CMP_PPZW_S(sve_cmpeq_ppzw_s, int32_t, uint64_t, ==)
+
+DO_CMP_PPZW_B(sve_cmpne_ppzw_b, int8_t,  uint64_t, !=)
+DO_CMP_PPZW_H(sve_cmpne_ppzw_h, int16_t, uint64_t, !=)
+DO_CMP_PPZW_S(sve_cmpne_ppzw_s, int32_t, uint64_t, !=)
+
+DO_CMP_PPZW_B(sve_cmpgt_ppzw_b, int8_t,   int64_t, >)
+DO_CMP_PPZW_H(sve_cmpgt_ppzw_h, int16_t,  int64_t, >)
+DO_CMP_PPZW_S(sve_cmpgt_ppzw_s, int32_t,  int64_t, >)
+
+DO_CMP_PPZW_B(sve_cmpge_ppzw_b, int8_t,   int64_t, >=)
+DO_CMP_PPZW_H(sve_cmpge_ppzw_h, int16_t,  int64_t, >=)
+DO_CMP_PPZW_S(sve_cmpge_ppzw_s, int32_t,  int64_t, >=)
+
+DO_CMP_PPZW_B(sve_cmphi_ppzw_b, uint8_t,  uint64_t, >)
+DO_CMP_PPZW_H(sve_cmphi_ppzw_h, uint16_t, uint64_t, >)
+DO_CMP_PPZW_S(sve_cmphi_ppzw_s, uint32_t, uint64_t, >)
+
+DO_CMP_PPZW_B(sve_cmphs_ppzw_b, uint8_t,  uint64_t, >=)
+DO_CMP_PPZW_H(sve_cmphs_ppzw_h, uint16_t, uint64_t, >=)
+DO_CMP_PPZW_S(sve_cmphs_ppzw_s, uint32_t, uint64_t, >=)
+
+DO_CMP_PPZW_B(sve_cmplt_ppzw_b, int8_t,   int64_t, <)
+DO_CMP_PPZW_H(sve_cmplt_ppzw_h, int16_t,  int64_t, <)
+DO_CMP_PPZW_S(sve_cmplt_ppzw_s, int32_t,  int64_t, <)
+
+DO_CMP_PPZW_B(sve_cmple_ppzw_b, int8_t,   int64_t, <=)
+DO_CMP_PPZW_H(sve_cmple_ppzw_h, int16_t,  int64_t, <=)
+DO_CMP_PPZW_S(sve_cmple_ppzw_s, int32_t,  int64_t, <=)
+
+DO_CMP_PPZW_B(sve_cmplo_ppzw_b, uint8_t,  uint64_t, <)
+DO_CMP_PPZW_H(sve_cmplo_ppzw_h, uint16_t, uint64_t, <)
+DO_CMP_PPZW_S(sve_cmplo_ppzw_s, uint32_t, uint64_t, <)
+
+DO_CMP_PPZW_B(sve_cmpls_ppzw_b, uint8_t,  uint64_t, <=)
+DO_CMP_PPZW_H(sve_cmpls_ppzw_h, uint16_t, uint64_t, <=)
+DO_CMP_PPZW_S(sve_cmpls_ppzw_s, uint32_t, uint64_t, <=)
+
+#undef DO_CMP_PPZW_B
+#undef DO_CMP_PPZW_H
+#undef DO_CMP_PPZW_S
+#undef DO_CMP_PPZW
+
+/* Similar, but the second source is immediate.  */
+#define DO_CMP_PPZI(NAME, TYPE, OP, H, MASK)                         \
+uint32_t HELPER(NAME)(void *vd, void *vn, void *vg, uint32_t desc)   \
+{                                                                    \
+    intptr_t opr_sz = simd_oprsz(desc);                              \
+    uint32_t flags = PREDTEST_INIT;                                  \
+    TYPE mm = simd_data(desc);                                       \
+    intptr_t i = opr_sz;                                             \
+    do {                                                             \
+        uint64_t out = 0, pg;                                        \
+        do {                                                         \
+            i -= sizeof(TYPE), out <<= sizeof(TYPE);                 \
+            TYPE nn = *(TYPE *)(vn + H(i));                          \
+            out |= nn OP mm;                                         \
+        } while (i & 63);                                            \
+        pg = *(uint64_t *)(vg + (i >> 3)) & MASK;                    \
+        out &= pg;                                                   \
+        *(uint64_t *)(vd + (i >> 3)) = out;                          \
+        flags = iter_predtest_bwd(out, pg, flags);                   \
+    } while (i > 0);                                                 \
+    return flags;                                                    \
+}
+
+#define DO_CMP_PPZI_B(NAME, TYPE, OP) \
+    DO_CMP_PPZI(NAME, TYPE, OP, H1,   0xffffffffffffffffull)
+#define DO_CMP_PPZI_H(NAME, TYPE, OP) \
+    DO_CMP_PPZI(NAME, TYPE, OP, H1_2, 0x5555555555555555ull)
+#define DO_CMP_PPZI_S(NAME, TYPE, OP) \
+    DO_CMP_PPZI(NAME, TYPE, OP, H1_4, 0x1111111111111111ull)
+#define DO_CMP_PPZI_D(NAME, TYPE, OP) \
+    DO_CMP_PPZI(NAME, TYPE, OP, H1_8, 0x0101010101010101ull)
+
+DO_CMP_PPZI_B(sve_cmpeq_ppzi_b, uint8_t,  ==)
+DO_CMP_PPZI_H(sve_cmpeq_ppzi_h, uint16_t, ==)
+DO_CMP_PPZI_S(sve_cmpeq_ppzi_s, uint32_t, ==)
+DO_CMP_PPZI_D(sve_cmpeq_ppzi_d, uint64_t, ==)
+
+DO_CMP_PPZI_B(sve_cmpne_ppzi_b, uint8_t,  !=)
+DO_CMP_PPZI_H(sve_cmpne_ppzi_h, uint16_t, !=)
+DO_CMP_PPZI_S(sve_cmpne_ppzi_s, uint32_t, !=)
+DO_CMP_PPZI_D(sve_cmpne_ppzi_d, uint64_t, !=)
+
+DO_CMP_PPZI_B(sve_cmpgt_ppzi_b, int8_t,  >)
+DO_CMP_PPZI_H(sve_cmpgt_ppzi_h, int16_t, >)
+DO_CMP_PPZI_S(sve_cmpgt_ppzi_s, int32_t, >)
+DO_CMP_PPZI_D(sve_cmpgt_ppzi_d, int64_t, >)
+
+DO_CMP_PPZI_B(sve_cmpge_ppzi_b, int8_t,  >=)
+DO_CMP_PPZI_H(sve_cmpge_ppzi_h, int16_t, >=)
+DO_CMP_PPZI_S(sve_cmpge_ppzi_s, int32_t, >=)
+DO_CMP_PPZI_D(sve_cmpge_ppzi_d, int64_t, >=)
+
+DO_CMP_PPZI_B(sve_cmphi_ppzi_b, uint8_t,  >)
+DO_CMP_PPZI_H(sve_cmphi_ppzi_h, uint16_t, >)
+DO_CMP_PPZI_S(sve_cmphi_ppzi_s, uint32_t, >)
+DO_CMP_PPZI_D(sve_cmphi_ppzi_d, uint64_t, >)
+
+DO_CMP_PPZI_B(sve_cmphs_ppzi_b, uint8_t,  >=)
+DO_CMP_PPZI_H(sve_cmphs_ppzi_h, uint16_t, >=)
+DO_CMP_PPZI_S(sve_cmphs_ppzi_s, uint32_t, >=)
+DO_CMP_PPZI_D(sve_cmphs_ppzi_d, uint64_t, >=)
+
+DO_CMP_PPZI_B(sve_cmplt_ppzi_b, int8_t,  <)
+DO_CMP_PPZI_H(sve_cmplt_ppzi_h, int16_t, <)
+DO_CMP_PPZI_S(sve_cmplt_ppzi_s, int32_t, <)
+DO_CMP_PPZI_D(sve_cmplt_ppzi_d, int64_t, <)
+
+DO_CMP_PPZI_B(sve_cmple_ppzi_b, int8_t,  <=)
+DO_CMP_PPZI_H(sve_cmple_ppzi_h, int16_t, <=)
+DO_CMP_PPZI_S(sve_cmple_ppzi_s, int32_t, <=)
+DO_CMP_PPZI_D(sve_cmple_ppzi_d, int64_t, <=)
+
+DO_CMP_PPZI_B(sve_cmplo_ppzi_b, uint8_t,  <)
+DO_CMP_PPZI_H(sve_cmplo_ppzi_h, uint16_t, <)
+DO_CMP_PPZI_S(sve_cmplo_ppzi_s, uint32_t, <)
+DO_CMP_PPZI_D(sve_cmplo_ppzi_d, uint64_t, <)
+
+DO_CMP_PPZI_B(sve_cmpls_ppzi_b, uint8_t,  <=)
+DO_CMP_PPZI_H(sve_cmpls_ppzi_h, uint16_t, <=)
+DO_CMP_PPZI_S(sve_cmpls_ppzi_s, uint32_t, <=)
+DO_CMP_PPZI_D(sve_cmpls_ppzi_d, uint64_t, <=)
+
+#undef DO_CMP_PPZI_B
+#undef DO_CMP_PPZI_H
+#undef DO_CMP_PPZI_S
+#undef DO_CMP_PPZI_D
+#undef DO_CMP_PPZI
+
+/* Similar to the ARM LastActive pseudocode function.  */
+static bool last_active_pred(void *vd, void *vg, intptr_t oprsz)
+{
+    intptr_t i;
+
+    for (i = QEMU_ALIGN_UP(oprsz, 8) - 8; i >= 0; i -= 8) {
+        uint64_t pg = *(uint64_t *)(vg + i);
+        if (pg) {
+            return (pow2floor(pg) & *(uint64_t *)(vd + i)) != 0;
+        }
+    }
+    return 0;
+}
+
+/* Compute a mask into RETB that is true for all G, up to and including
+ * (if after) or excluding (if !after) the first G & N.
+ * Return true if BRK found.
+ */
+static bool compute_brk(uint64_t *retb, uint64_t n, uint64_t g,
+                        bool brk, bool after)
+{
+    uint64_t b;
+
+    if (brk) {
+        b = 0;
+    } else if ((g & n) == 0) {
+        /* For all G, no N are set; break not found.  */
+        b = g;
+    } else {
+        /* Break somewhere in N.  Locate it.  */
+        b = g & n;            /* guard true, pred true */
+        b = b & -b;           /* first such */
+        if (after) {
+            b = b | (b - 1);  /* break after same */
+        } else {
+            b = b - 1;        /* break before same */
+        }
+        brk = true;
+    }
+
+    *retb = b;
+    return brk;
+}
+
+/* Compute a zeroing BRK.  */
+static void compute_brk_z(uint64_t *d, uint64_t *n, uint64_t *g,
+                          intptr_t oprsz, bool after)
+{
+    bool brk = false;
+    intptr_t i;
+
+    for (i = 0; i < DIV_ROUND_UP(oprsz, 8); ++i) {
+        uint64_t this_b, this_g = g[i];
+
+        brk = compute_brk(&this_b, n[i], this_g, brk, after);
+        d[i] = this_b & this_g;
+    }
+}
+
+/* Likewise, but also compute flags.  */
+static uint32_t compute_brks_z(uint64_t *d, uint64_t *n, uint64_t *g,
+                               intptr_t oprsz, bool after)
+{
+    uint32_t flags = PREDTEST_INIT;
+    bool brk = false;
+    intptr_t i;
+
+    for (i = 0; i < DIV_ROUND_UP(oprsz, 8); ++i) {
+        uint64_t this_b, this_d, this_g = g[i];
+
+        brk = compute_brk(&this_b, n[i], this_g, brk, after);
+        d[i] = this_d = this_b & this_g;
+        flags = iter_predtest_fwd(this_d, this_g, flags);
+    }
+    return flags;
+}
+
+/* Compute a merging BRK.  */
+static void compute_brk_m(uint64_t *d, uint64_t *n, uint64_t *g,
+                          intptr_t oprsz, bool after)
+{
+    bool brk = false;
+    intptr_t i;
+
+    for (i = 0; i < DIV_ROUND_UP(oprsz, 8); ++i) {
+        uint64_t this_b, this_g = g[i];
+
+        brk = compute_brk(&this_b, n[i], this_g, brk, after);
+        d[i] = (this_b & this_g) | (d[i] & ~this_g);
+    }
+}
+
+/* Likewise, but also compute flags.  */
+static uint32_t compute_brks_m(uint64_t *d, uint64_t *n, uint64_t *g,
+                               intptr_t oprsz, bool after)
+{
+    uint32_t flags = PREDTEST_INIT;
+    bool brk = false;
+    intptr_t i;
+
+    for (i = 0; i < oprsz / 8; ++i) {
+        uint64_t this_b, this_d = d[i], this_g = g[i];
+
+        brk = compute_brk(&this_b, n[i], this_g, brk, after);
+        d[i] = this_d = (this_b & this_g) | (this_d & ~this_g);
+        flags = iter_predtest_fwd(this_d, this_g, flags);
+    }
+    return flags;
+}
+
+static uint32_t do_zero(ARMPredicateReg *d, intptr_t oprsz)
+{
+    /* It is quicker to zero the whole predicate than loop on OPRSZ.
+     * The compiler should turn this into 4 64-bit integer stores.
+     */
+    memset(d, 0, sizeof(ARMPredicateReg));
+    return PREDTEST_INIT;
+}
+
+void HELPER(sve_brkpa)(void *vd, void *vn, void *vm, void *vg,
+                       uint32_t pred_desc)
+{
+    intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ);
+    if (last_active_pred(vn, vg, oprsz)) {
+        compute_brk_z(vd, vm, vg, oprsz, true);
+    } else {
+        do_zero(vd, oprsz);
+    }
+}
+
+uint32_t HELPER(sve_brkpas)(void *vd, void *vn, void *vm, void *vg,
+                            uint32_t pred_desc)
+{
+    intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ);
+    if (last_active_pred(vn, vg, oprsz)) {
+        return compute_brks_z(vd, vm, vg, oprsz, true);
+    } else {
+        return do_zero(vd, oprsz);
+    }
+}
+
+void HELPER(sve_brkpb)(void *vd, void *vn, void *vm, void *vg,
+                       uint32_t pred_desc)
+{
+    intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ);
+    if (last_active_pred(vn, vg, oprsz)) {
+        compute_brk_z(vd, vm, vg, oprsz, false);
+    } else {
+        do_zero(vd, oprsz);
+    }
+}
+
+uint32_t HELPER(sve_brkpbs)(void *vd, void *vn, void *vm, void *vg,
+                            uint32_t pred_desc)
+{
+    intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ);
+    if (last_active_pred(vn, vg, oprsz)) {
+        return compute_brks_z(vd, vm, vg, oprsz, false);
+    } else {
+        return do_zero(vd, oprsz);
+    }
+}
+
+void HELPER(sve_brka_z)(void *vd, void *vn, void *vg, uint32_t pred_desc)
+{
+    intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ);
+    compute_brk_z(vd, vn, vg, oprsz, true);
+}
+
+uint32_t HELPER(sve_brkas_z)(void *vd, void *vn, void *vg, uint32_t pred_desc)
+{
+    intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ);
+    return compute_brks_z(vd, vn, vg, oprsz, true);
+}
+
+void HELPER(sve_brkb_z)(void *vd, void *vn, void *vg, uint32_t pred_desc)
+{
+    intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ);
+    compute_brk_z(vd, vn, vg, oprsz, false);
+}
+
+uint32_t HELPER(sve_brkbs_z)(void *vd, void *vn, void *vg, uint32_t pred_desc)
+{
+    intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ);
+    return compute_brks_z(vd, vn, vg, oprsz, false);
+}
+
+void HELPER(sve_brka_m)(void *vd, void *vn, void *vg, uint32_t pred_desc)
+{
+    intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ);
+    compute_brk_m(vd, vn, vg, oprsz, true);
+}
+
+uint32_t HELPER(sve_brkas_m)(void *vd, void *vn, void *vg, uint32_t pred_desc)
+{
+    intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ);
+    return compute_brks_m(vd, vn, vg, oprsz, true);
+}
+
+void HELPER(sve_brkb_m)(void *vd, void *vn, void *vg, uint32_t pred_desc)
+{
+    intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ);
+    compute_brk_m(vd, vn, vg, oprsz, false);
+}
+
+uint32_t HELPER(sve_brkbs_m)(void *vd, void *vn, void *vg, uint32_t pred_desc)
+{
+    intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ);
+    return compute_brks_m(vd, vn, vg, oprsz, false);
+}
+
+void HELPER(sve_brkn)(void *vd, void *vn, void *vg, uint32_t pred_desc)
+{
+    intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ);
+    if (!last_active_pred(vn, vg, oprsz)) {
+        do_zero(vd, oprsz);
+    }
+}
+
+/* As if PredTest(Ones(PL), D, esz).  */
+static uint32_t predtest_ones(ARMPredicateReg *d, intptr_t oprsz,
+                              uint64_t esz_mask)
+{
+    uint32_t flags = PREDTEST_INIT;
+    intptr_t i;
+
+    for (i = 0; i < oprsz / 8; i++) {
+        flags = iter_predtest_fwd(d->p[i], esz_mask, flags);
+    }
+    if (oprsz & 7) {
+        uint64_t mask = ~(-1ULL << (8 * (oprsz & 7)));
+        flags = iter_predtest_fwd(d->p[i], esz_mask & mask, flags);
+    }
+    return flags;
+}
+
+uint32_t HELPER(sve_brkns)(void *vd, void *vn, void *vg, uint32_t pred_desc)
+{
+    intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ);
+    if (last_active_pred(vn, vg, oprsz)) {
+        return predtest_ones(vd, oprsz, -1);
+    } else {
+        return do_zero(vd, oprsz);
+    }
+}
+
+uint64_t HELPER(sve_cntp)(void *vn, void *vg, uint32_t pred_desc)
+{
+    intptr_t words = DIV_ROUND_UP(FIELD_EX32(pred_desc, PREDDESC, OPRSZ), 8);
+    intptr_t esz = FIELD_EX32(pred_desc, PREDDESC, ESZ);
+    uint64_t *n = vn, *g = vg, sum = 0, mask = pred_esz_masks[esz];
+    intptr_t i;
+
+    for (i = 0; i < words; ++i) {
+        uint64_t t = n[i] & g[i] & mask;
+        sum += ctpop64(t);
+    }
+    return sum;
+}
+
+uint32_t HELPER(sve_whilel)(void *vd, uint32_t count, uint32_t pred_desc)
+{
+    intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ);
+    intptr_t esz = FIELD_EX32(pred_desc, PREDDESC, ESZ);
+    uint64_t esz_mask = pred_esz_masks[esz];
+    ARMPredicateReg *d = vd;
+    uint32_t flags;
+    intptr_t i;
+
+    /* Begin with a zero predicate register.  */
+    flags = do_zero(d, oprsz);
+    if (count == 0) {
+        return flags;
+    }
+
+    /* Set all of the requested bits.  */
+    for (i = 0; i < count / 64; ++i) {
+        d->p[i] = esz_mask;
+    }
+    if (count & 63) {
+        d->p[i] = MAKE_64BIT_MASK(0, count & 63) & esz_mask;
+    }
+
+    return predtest_ones(d, oprsz, esz_mask);
+}
+
+uint32_t HELPER(sve_whileg)(void *vd, uint32_t count, uint32_t pred_desc)
+{
+    intptr_t oprsz = FIELD_EX32(pred_desc, PREDDESC, OPRSZ);
+    intptr_t esz = FIELD_EX32(pred_desc, PREDDESC, ESZ);
+    uint64_t esz_mask = pred_esz_masks[esz];
+    ARMPredicateReg *d = vd;
+    intptr_t i, invcount, oprbits;
+    uint64_t bits;
+
+    if (count == 0) {
+        return do_zero(d, oprsz);
+    }
+
+    oprbits = oprsz * 8;
+    tcg_debug_assert(count <= oprbits);
+
+    bits = esz_mask;
+    if (oprbits & 63) {
+        bits &= MAKE_64BIT_MASK(0, oprbits & 63);
+    }
+
+    invcount = oprbits - count;
+    for (i = (oprsz - 1) / 8; i > invcount / 64; --i) {
+        d->p[i] = bits;
+        bits = esz_mask;
+    }
+
+    d->p[i] = bits & MAKE_64BIT_MASK(invcount & 63, 64);
+
+    while (--i >= 0) {
+        d->p[i] = 0;
+    }
+
+    return predtest_ones(d, oprsz, esz_mask);
+}
+
+/* Recursive reduction on a function;
+ * C.f. the ARM ARM function ReducePredicated.
+ *
+ * While it would be possible to write this without the DATA temporary,
+ * it is much simpler to process the predicate register this way.
+ * The recursion is bounded to depth 7 (128 fp16 elements), so there's
+ * little to gain with a more complex non-recursive form.
+ */
+#define DO_REDUCE(NAME, TYPE, H, FUNC, IDENT)                         \
+static TYPE NAME##_reduce(TYPE *data, float_status *status, uintptr_t n) \
+{                                                                     \
+    if (n == 1) {                                                     \
+        return *data;                                                 \
+    } else {                                                          \
+        uintptr_t half = n / 2;                                       \
+        TYPE lo = NAME##_reduce(data, status, half);                  \
+        TYPE hi = NAME##_reduce(data + half, status, half);           \
+        return TYPE##_##FUNC(lo, hi, status);                         \
+    }                                                                 \
+}                                                                     \
+uint64_t HELPER(NAME)(void *vn, void *vg, void *vs, uint32_t desc)    \
+{                                                                     \
+    uintptr_t i, oprsz = simd_oprsz(desc), maxsz = simd_data(desc);   \
+    TYPE data[sizeof(ARMVectorReg) / sizeof(TYPE)];                   \
+    for (i = 0; i < oprsz; ) {                                        \
+        uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3));               \
+        do {                                                          \
+            TYPE nn = *(TYPE *)(vn + H(i));                           \
+            *(TYPE *)((void *)data + i) = (pg & 1 ? nn : IDENT);      \
+            i += sizeof(TYPE), pg >>= sizeof(TYPE);                   \
+        } while (i & 15);                                             \
+    }                                                                 \
+    for (; i < maxsz; i += sizeof(TYPE)) {                            \
+        *(TYPE *)((void *)data + i) = IDENT;                          \
+    }                                                                 \
+    return NAME##_reduce(data, vs, maxsz / sizeof(TYPE));             \
+}
+
+DO_REDUCE(sve_faddv_h, float16, H1_2, add, float16_zero)
+DO_REDUCE(sve_faddv_s, float32, H1_4, add, float32_zero)
+DO_REDUCE(sve_faddv_d, float64, H1_8, add, float64_zero)
+
+/* Identity is floatN_default_nan, without the function call.  */
+DO_REDUCE(sve_fminnmv_h, float16, H1_2, minnum, 0x7E00)
+DO_REDUCE(sve_fminnmv_s, float32, H1_4, minnum, 0x7FC00000)
+DO_REDUCE(sve_fminnmv_d, float64, H1_8, minnum, 0x7FF8000000000000ULL)
+
+DO_REDUCE(sve_fmaxnmv_h, float16, H1_2, maxnum, 0x7E00)
+DO_REDUCE(sve_fmaxnmv_s, float32, H1_4, maxnum, 0x7FC00000)
+DO_REDUCE(sve_fmaxnmv_d, float64, H1_8, maxnum, 0x7FF8000000000000ULL)
+
+DO_REDUCE(sve_fminv_h, float16, H1_2, min, float16_infinity)
+DO_REDUCE(sve_fminv_s, float32, H1_4, min, float32_infinity)
+DO_REDUCE(sve_fminv_d, float64, H1_8, min, float64_infinity)
+
+DO_REDUCE(sve_fmaxv_h, float16, H1_2, max, float16_chs(float16_infinity))
+DO_REDUCE(sve_fmaxv_s, float32, H1_4, max, float32_chs(float32_infinity))
+DO_REDUCE(sve_fmaxv_d, float64, H1_8, max, float64_chs(float64_infinity))
+
+#undef DO_REDUCE
+
+uint64_t HELPER(sve_fadda_h)(uint64_t nn, void *vm, void *vg,
+                             void *status, uint32_t desc)
+{
+    intptr_t i = 0, opr_sz = simd_oprsz(desc);
+    float16 result = nn;
+
+    do {
+        uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3));
+        do {
+            if (pg & 1) {
+                float16 mm = *(float16 *)(vm + H1_2(i));
+                result = float16_add(result, mm, status);
+            }
+            i += sizeof(float16), pg >>= sizeof(float16);
+        } while (i & 15);
+    } while (i < opr_sz);
+
+    return result;
+}
+
+uint64_t HELPER(sve_fadda_s)(uint64_t nn, void *vm, void *vg,
+                             void *status, uint32_t desc)
+{
+    intptr_t i = 0, opr_sz = simd_oprsz(desc);
+    float32 result = nn;
+
+    do {
+        uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3));
+        do {
+            if (pg & 1) {
+                float32 mm = *(float32 *)(vm + H1_2(i));
+                result = float32_add(result, mm, status);
+            }
+            i += sizeof(float32), pg >>= sizeof(float32);
+        } while (i & 15);
+    } while (i < opr_sz);
+
+    return result;
+}
+
+uint64_t HELPER(sve_fadda_d)(uint64_t nn, void *vm, void *vg,
+                             void *status, uint32_t desc)
+{
+    intptr_t i = 0, opr_sz = simd_oprsz(desc) / 8;
+    uint64_t *m = vm;
+    uint8_t *pg = vg;
+
+    for (i = 0; i < opr_sz; i++) {
+        if (pg[H1(i)] & 1) {
+            nn = float64_add(nn, m[i], status);
+        }
+    }
+
+    return nn;
+}
+
+/* Fully general three-operand expander, controlled by a predicate,
+ * With the extra float_status parameter.
+ */
+#define DO_ZPZZ_FP(NAME, TYPE, H, OP)                           \
+void HELPER(NAME)(void *vd, void *vn, void *vm, void *vg,       \
+                  void *status, uint32_t desc)                  \
+{                                                               \
+    intptr_t i = simd_oprsz(desc);                              \
+    uint64_t *g = vg;                                           \
+    do {                                                        \
+        uint64_t pg = g[(i - 1) >> 6];                          \
+        do {                                                    \
+            i -= sizeof(TYPE);                                  \
+            if (likely((pg >> (i & 63)) & 1)) {                 \
+                TYPE nn = *(TYPE *)(vn + H(i));                 \
+                TYPE mm = *(TYPE *)(vm + H(i));                 \
+                *(TYPE *)(vd + H(i)) = OP(nn, mm, status);      \
+            }                                                   \
+        } while (i & 63);                                       \
+    } while (i != 0);                                           \
+}
+
+DO_ZPZZ_FP(sve_fadd_h, uint16_t, H1_2, float16_add)
+DO_ZPZZ_FP(sve_fadd_s, uint32_t, H1_4, float32_add)
+DO_ZPZZ_FP(sve_fadd_d, uint64_t, H1_8, float64_add)
+
+DO_ZPZZ_FP(sve_fsub_h, uint16_t, H1_2, float16_sub)
+DO_ZPZZ_FP(sve_fsub_s, uint32_t, H1_4, float32_sub)
+DO_ZPZZ_FP(sve_fsub_d, uint64_t, H1_8, float64_sub)
+
+DO_ZPZZ_FP(sve_fmul_h, uint16_t, H1_2, float16_mul)
+DO_ZPZZ_FP(sve_fmul_s, uint32_t, H1_4, float32_mul)
+DO_ZPZZ_FP(sve_fmul_d, uint64_t, H1_8, float64_mul)
+
+DO_ZPZZ_FP(sve_fdiv_h, uint16_t, H1_2, float16_div)
+DO_ZPZZ_FP(sve_fdiv_s, uint32_t, H1_4, float32_div)
+DO_ZPZZ_FP(sve_fdiv_d, uint64_t, H1_8, float64_div)
+
+DO_ZPZZ_FP(sve_fmin_h, uint16_t, H1_2, float16_min)
+DO_ZPZZ_FP(sve_fmin_s, uint32_t, H1_4, float32_min)
+DO_ZPZZ_FP(sve_fmin_d, uint64_t, H1_8, float64_min)
+
+DO_ZPZZ_FP(sve_fmax_h, uint16_t, H1_2, float16_max)
+DO_ZPZZ_FP(sve_fmax_s, uint32_t, H1_4, float32_max)
+DO_ZPZZ_FP(sve_fmax_d, uint64_t, H1_8, float64_max)
+
+DO_ZPZZ_FP(sve_fminnum_h, uint16_t, H1_2, float16_minnum)
+DO_ZPZZ_FP(sve_fminnum_s, uint32_t, H1_4, float32_minnum)
+DO_ZPZZ_FP(sve_fminnum_d, uint64_t, H1_8, float64_minnum)
+
+DO_ZPZZ_FP(sve_fmaxnum_h, uint16_t, H1_2, float16_maxnum)
+DO_ZPZZ_FP(sve_fmaxnum_s, uint32_t, H1_4, float32_maxnum)
+DO_ZPZZ_FP(sve_fmaxnum_d, uint64_t, H1_8, float64_maxnum)
+
+static inline float16 abd_h(float16 a, float16 b, float_status *s)
+{
+    return float16_abs(float16_sub(a, b, s));
+}
+
+static inline float32 abd_s(float32 a, float32 b, float_status *s)
+{
+    return float32_abs(float32_sub(a, b, s));
+}
+
+static inline float64 abd_d(float64 a, float64 b, float_status *s)
+{
+    return float64_abs(float64_sub(a, b, s));
+}
+
+DO_ZPZZ_FP(sve_fabd_h, uint16_t, H1_2, abd_h)
+DO_ZPZZ_FP(sve_fabd_s, uint32_t, H1_4, abd_s)
+DO_ZPZZ_FP(sve_fabd_d, uint64_t, H1_8, abd_d)
+
+static inline float64 scalbn_d(float64 a, int64_t b, float_status *s)
+{
+    int b_int = MIN(MAX(b, INT_MIN), INT_MAX);
+    return float64_scalbn(a, b_int, s);
+}
+
+DO_ZPZZ_FP(sve_fscalbn_h, int16_t, H1_2, float16_scalbn)
+DO_ZPZZ_FP(sve_fscalbn_s, int32_t, H1_4, float32_scalbn)
+DO_ZPZZ_FP(sve_fscalbn_d, int64_t, H1_8, scalbn_d)
+
+DO_ZPZZ_FP(sve_fmulx_h, uint16_t, H1_2, helper_advsimd_mulxh)
+DO_ZPZZ_FP(sve_fmulx_s, uint32_t, H1_4, helper_vfp_mulxs)
+DO_ZPZZ_FP(sve_fmulx_d, uint64_t, H1_8, helper_vfp_mulxd)
+
+#undef DO_ZPZZ_FP
+
+/* Three-operand expander, with one scalar operand, controlled by
+ * a predicate, with the extra float_status parameter.
+ */
+#define DO_ZPZS_FP(NAME, TYPE, H, OP) \
+void HELPER(NAME)(void *vd, void *vn, void *vg, uint64_t scalar,  \
+                  void *status, uint32_t desc)                    \
+{                                                                 \
+    intptr_t i = simd_oprsz(desc);                                \
+    uint64_t *g = vg;                                             \
+    TYPE mm = scalar;                                             \
+    do {                                                          \
+        uint64_t pg = g[(i - 1) >> 6];                            \
+        do {                                                      \
+            i -= sizeof(TYPE);                                    \
+            if (likely((pg >> (i & 63)) & 1)) {                   \
+                TYPE nn = *(TYPE *)(vn + H(i));                   \
+                *(TYPE *)(vd + H(i)) = OP(nn, mm, status);        \
+            }                                                     \
+        } while (i & 63);                                         \
+    } while (i != 0);                                             \
+}
+
+DO_ZPZS_FP(sve_fadds_h, float16, H1_2, float16_add)
+DO_ZPZS_FP(sve_fadds_s, float32, H1_4, float32_add)
+DO_ZPZS_FP(sve_fadds_d, float64, H1_8, float64_add)
+
+DO_ZPZS_FP(sve_fsubs_h, float16, H1_2, float16_sub)
+DO_ZPZS_FP(sve_fsubs_s, float32, H1_4, float32_sub)
+DO_ZPZS_FP(sve_fsubs_d, float64, H1_8, float64_sub)
+
+DO_ZPZS_FP(sve_fmuls_h, float16, H1_2, float16_mul)
+DO_ZPZS_FP(sve_fmuls_s, float32, H1_4, float32_mul)
+DO_ZPZS_FP(sve_fmuls_d, float64, H1_8, float64_mul)
+
+static inline float16 subr_h(float16 a, float16 b, float_status *s)
+{
+    return float16_sub(b, a, s);
+}
+
+static inline float32 subr_s(float32 a, float32 b, float_status *s)
+{
+    return float32_sub(b, a, s);
+}
+
+static inline float64 subr_d(float64 a, float64 b, float_status *s)
+{
+    return float64_sub(b, a, s);
+}
+
+DO_ZPZS_FP(sve_fsubrs_h, float16, H1_2, subr_h)
+DO_ZPZS_FP(sve_fsubrs_s, float32, H1_4, subr_s)
+DO_ZPZS_FP(sve_fsubrs_d, float64, H1_8, subr_d)
+
+DO_ZPZS_FP(sve_fmaxnms_h, float16, H1_2, float16_maxnum)
+DO_ZPZS_FP(sve_fmaxnms_s, float32, H1_4, float32_maxnum)
+DO_ZPZS_FP(sve_fmaxnms_d, float64, H1_8, float64_maxnum)
+
+DO_ZPZS_FP(sve_fminnms_h, float16, H1_2, float16_minnum)
+DO_ZPZS_FP(sve_fminnms_s, float32, H1_4, float32_minnum)
+DO_ZPZS_FP(sve_fminnms_d, float64, H1_8, float64_minnum)
+
+DO_ZPZS_FP(sve_fmaxs_h, float16, H1_2, float16_max)
+DO_ZPZS_FP(sve_fmaxs_s, float32, H1_4, float32_max)
+DO_ZPZS_FP(sve_fmaxs_d, float64, H1_8, float64_max)
+
+DO_ZPZS_FP(sve_fmins_h, float16, H1_2, float16_min)
+DO_ZPZS_FP(sve_fmins_s, float32, H1_4, float32_min)
+DO_ZPZS_FP(sve_fmins_d, float64, H1_8, float64_min)
+
+/* Fully general two-operand expander, controlled by a predicate,
+ * With the extra float_status parameter.
+ */
+#define DO_ZPZ_FP(NAME, TYPE, H, OP)                                  \
+void HELPER(NAME)(void *vd, void *vn, void *vg, void *status, uint32_t desc) \
+{                                                                     \
+    intptr_t i = simd_oprsz(desc);                                    \
+    uint64_t *g = vg;                                                 \
+    do {                                                              \
+        uint64_t pg = g[(i - 1) >> 6];                                \
+        do {                                                          \
+            i -= sizeof(TYPE);                                        \
+            if (likely((pg >> (i & 63)) & 1)) {                       \
+                TYPE nn = *(TYPE *)(vn + H(i));                       \
+                *(TYPE *)(vd + H(i)) = OP(nn, status);                \
+            }                                                         \
+        } while (i & 63);                                             \
+    } while (i != 0);                                                 \
+}
+
+/* SVE fp16 conversions always use IEEE mode.  Like AdvSIMD, they ignore
+ * FZ16.  When converting from fp16, this affects flushing input denormals;
+ * when converting to fp16, this affects flushing output denormals.
+ */
+static inline float32 sve_f16_to_f32(float16 f, float_status *fpst)
+{
+    bool save = get_flush_inputs_to_zero(fpst);
+    float32 ret;
+
+    set_flush_inputs_to_zero(false, fpst);
+    ret = float16_to_float32(f, true, fpst);
+    set_flush_inputs_to_zero(save, fpst);
+    return ret;
+}
+
+static inline float64 sve_f16_to_f64(float16 f, float_status *fpst)
+{
+    bool save = get_flush_inputs_to_zero(fpst);
+    float64 ret;
+
+    set_flush_inputs_to_zero(false, fpst);
+    ret = float16_to_float64(f, true, fpst);
+    set_flush_inputs_to_zero(save, fpst);
+    return ret;
+}
+
+static inline float16 sve_f32_to_f16(float32 f, float_status *fpst)
+{
+    bool save = get_flush_to_zero(fpst);
+    float16 ret;
+
+    set_flush_to_zero(false, fpst);
+    ret = float32_to_float16(f, true, fpst);
+    set_flush_to_zero(save, fpst);
+    return ret;
+}
+
+static inline float16 sve_f64_to_f16(float64 f, float_status *fpst)
+{
+    bool save = get_flush_to_zero(fpst);
+    float16 ret;
+
+    set_flush_to_zero(false, fpst);
+    ret = float64_to_float16(f, true, fpst);
+    set_flush_to_zero(save, fpst);
+    return ret;
+}
+
+static inline int16_t vfp_float16_to_int16_rtz(float16 f, float_status *s)
+{
+    if (float16_is_any_nan(f)) {
+        float_raise(float_flag_invalid, s);
+        return 0;
+    }
+    return float16_to_int16_round_to_zero(f, s);
+}
+
+static inline int64_t vfp_float16_to_int64_rtz(float16 f, float_status *s)
+{
+    if (float16_is_any_nan(f)) {
+        float_raise(float_flag_invalid, s);
+        return 0;
+    }
+    return float16_to_int64_round_to_zero(f, s);
+}
+
+static inline int64_t vfp_float32_to_int64_rtz(float32 f, float_status *s)
+{
+    if (float32_is_any_nan(f)) {
+        float_raise(float_flag_invalid, s);
+        return 0;
+    }
+    return float32_to_int64_round_to_zero(f, s);
+}
+
+static inline int64_t vfp_float64_to_int64_rtz(float64 f, float_status *s)
+{
+    if (float64_is_any_nan(f)) {
+        float_raise(float_flag_invalid, s);
+        return 0;
+    }
+    return float64_to_int64_round_to_zero(f, s);
+}
+
+static inline uint16_t vfp_float16_to_uint16_rtz(float16 f, float_status *s)
+{
+    if (float16_is_any_nan(f)) {
+        float_raise(float_flag_invalid, s);
+        return 0;
+    }
+    return float16_to_uint16_round_to_zero(f, s);
+}
+
+static inline uint64_t vfp_float16_to_uint64_rtz(float16 f, float_status *s)
+{
+    if (float16_is_any_nan(f)) {
+        float_raise(float_flag_invalid, s);
+        return 0;
+    }
+    return float16_to_uint64_round_to_zero(f, s);
+}
+
+static inline uint64_t vfp_float32_to_uint64_rtz(float32 f, float_status *s)
+{
+    if (float32_is_any_nan(f)) {
+        float_raise(float_flag_invalid, s);
+        return 0;
+    }
+    return float32_to_uint64_round_to_zero(f, s);
+}
+
+static inline uint64_t vfp_float64_to_uint64_rtz(float64 f, float_status *s)
+{
+    if (float64_is_any_nan(f)) {
+        float_raise(float_flag_invalid, s);
+        return 0;
+    }
+    return float64_to_uint64_round_to_zero(f, s);
+}
+
+DO_ZPZ_FP(sve_fcvt_sh, uint32_t, H1_4, sve_f32_to_f16)
+DO_ZPZ_FP(sve_fcvt_hs, uint32_t, H1_4, sve_f16_to_f32)
+DO_ZPZ_FP(sve_bfcvt,   uint32_t, H1_4, float32_to_bfloat16)
+DO_ZPZ_FP(sve_fcvt_dh, uint64_t, H1_8, sve_f64_to_f16)
+DO_ZPZ_FP(sve_fcvt_hd, uint64_t, H1_8, sve_f16_to_f64)
+DO_ZPZ_FP(sve_fcvt_ds, uint64_t, H1_8, float64_to_float32)
+DO_ZPZ_FP(sve_fcvt_sd, uint64_t, H1_8, float32_to_float64)
+
+DO_ZPZ_FP(sve_fcvtzs_hh, uint16_t, H1_2, vfp_float16_to_int16_rtz)
+DO_ZPZ_FP(sve_fcvtzs_hs, uint32_t, H1_4, helper_vfp_tosizh)
+DO_ZPZ_FP(sve_fcvtzs_ss, uint32_t, H1_4, helper_vfp_tosizs)
+DO_ZPZ_FP(sve_fcvtzs_hd, uint64_t, H1_8, vfp_float16_to_int64_rtz)
+DO_ZPZ_FP(sve_fcvtzs_sd, uint64_t, H1_8, vfp_float32_to_int64_rtz)
+DO_ZPZ_FP(sve_fcvtzs_ds, uint64_t, H1_8, helper_vfp_tosizd)
+DO_ZPZ_FP(sve_fcvtzs_dd, uint64_t, H1_8, vfp_float64_to_int64_rtz)
+
+DO_ZPZ_FP(sve_fcvtzu_hh, uint16_t, H1_2, vfp_float16_to_uint16_rtz)
+DO_ZPZ_FP(sve_fcvtzu_hs, uint32_t, H1_4, helper_vfp_touizh)
+DO_ZPZ_FP(sve_fcvtzu_ss, uint32_t, H1_4, helper_vfp_touizs)
+DO_ZPZ_FP(sve_fcvtzu_hd, uint64_t, H1_8, vfp_float16_to_uint64_rtz)
+DO_ZPZ_FP(sve_fcvtzu_sd, uint64_t, H1_8, vfp_float32_to_uint64_rtz)
+DO_ZPZ_FP(sve_fcvtzu_ds, uint64_t, H1_8, helper_vfp_touizd)
+DO_ZPZ_FP(sve_fcvtzu_dd, uint64_t, H1_8, vfp_float64_to_uint64_rtz)
+
+DO_ZPZ_FP(sve_frint_h, uint16_t, H1_2, helper_advsimd_rinth)
+DO_ZPZ_FP(sve_frint_s, uint32_t, H1_4, helper_rints)
+DO_ZPZ_FP(sve_frint_d, uint64_t, H1_8, helper_rintd)
+
+DO_ZPZ_FP(sve_frintx_h, uint16_t, H1_2, float16_round_to_int)
+DO_ZPZ_FP(sve_frintx_s, uint32_t, H1_4, float32_round_to_int)
+DO_ZPZ_FP(sve_frintx_d, uint64_t, H1_8, float64_round_to_int)
+
+DO_ZPZ_FP(sve_frecpx_h, uint16_t, H1_2, helper_frecpx_f16)
+DO_ZPZ_FP(sve_frecpx_s, uint32_t, H1_4, helper_frecpx_f32)
+DO_ZPZ_FP(sve_frecpx_d, uint64_t, H1_8, helper_frecpx_f64)
+
+DO_ZPZ_FP(sve_fsqrt_h, uint16_t, H1_2, float16_sqrt)
+DO_ZPZ_FP(sve_fsqrt_s, uint32_t, H1_4, float32_sqrt)
+DO_ZPZ_FP(sve_fsqrt_d, uint64_t, H1_8, float64_sqrt)
+
+DO_ZPZ_FP(sve_scvt_hh, uint16_t, H1_2, int16_to_float16)
+DO_ZPZ_FP(sve_scvt_sh, uint32_t, H1_4, int32_to_float16)
+DO_ZPZ_FP(sve_scvt_ss, uint32_t, H1_4, int32_to_float32)
+DO_ZPZ_FP(sve_scvt_sd, uint64_t, H1_8, int32_to_float64)
+DO_ZPZ_FP(sve_scvt_dh, uint64_t, H1_8, int64_to_float16)
+DO_ZPZ_FP(sve_scvt_ds, uint64_t, H1_8, int64_to_float32)
+DO_ZPZ_FP(sve_scvt_dd, uint64_t, H1_8, int64_to_float64)
+
+DO_ZPZ_FP(sve_ucvt_hh, uint16_t, H1_2, uint16_to_float16)
+DO_ZPZ_FP(sve_ucvt_sh, uint32_t, H1_4, uint32_to_float16)
+DO_ZPZ_FP(sve_ucvt_ss, uint32_t, H1_4, uint32_to_float32)
+DO_ZPZ_FP(sve_ucvt_sd, uint64_t, H1_8, uint32_to_float64)
+DO_ZPZ_FP(sve_ucvt_dh, uint64_t, H1_8, uint64_to_float16)
+DO_ZPZ_FP(sve_ucvt_ds, uint64_t, H1_8, uint64_to_float32)
+DO_ZPZ_FP(sve_ucvt_dd, uint64_t, H1_8, uint64_to_float64)
+
+static int16_t do_float16_logb_as_int(float16 a, float_status *s)
+{
+    /* Extract frac to the top of the uint32_t. */
+    uint32_t frac = (uint32_t)a << (16 + 6);
+    int16_t exp = extract32(a, 10, 5);
+
+    if (unlikely(exp == 0)) {
+        if (frac != 0) {
+            if (!get_flush_inputs_to_zero(s)) {
+                /* denormal: bias - fractional_zeros */
+                return -15 - clz32(frac);
+            }
+            /* flush to zero */
+            float_raise(float_flag_input_denormal, s);
+        }
+    } else if (unlikely(exp == 0x1f)) {
+        if (frac == 0) {
+            return INT16_MAX; /* infinity */
+        }
+    } else {
+        /* normal: exp - bias */
+        return exp - 15;
+    }
+    /* nan or zero */
+    float_raise(float_flag_invalid, s);
+    return INT16_MIN;
+}
+
+static int32_t do_float32_logb_as_int(float32 a, float_status *s)
+{
+    /* Extract frac to the top of the uint32_t. */
+    uint32_t frac = a << 9;
+    int32_t exp = extract32(a, 23, 8);
+
+    if (unlikely(exp == 0)) {
+        if (frac != 0) {
+            if (!get_flush_inputs_to_zero(s)) {
+                /* denormal: bias - fractional_zeros */
+                return -127 - clz32(frac);
+            }
+            /* flush to zero */
+            float_raise(float_flag_input_denormal, s);
+        }
+    } else if (unlikely(exp == 0xff)) {
+        if (frac == 0) {
+            return INT32_MAX; /* infinity */
+        }
+    } else {
+        /* normal: exp - bias */
+        return exp - 127;
+    }
+    /* nan or zero */
+    float_raise(float_flag_invalid, s);
+    return INT32_MIN;
+}
+
+static int64_t do_float64_logb_as_int(float64 a, float_status *s)
+{
+    /* Extract frac to the top of the uint64_t. */
+    uint64_t frac = a << 12;
+    int64_t exp = extract64(a, 52, 11);
+
+    if (unlikely(exp == 0)) {
+        if (frac != 0) {
+            if (!get_flush_inputs_to_zero(s)) {
+                /* denormal: bias - fractional_zeros */
+                return -1023 - clz64(frac);
+            }
+            /* flush to zero */
+            float_raise(float_flag_input_denormal, s);
+        }
+    } else if (unlikely(exp == 0x7ff)) {
+        if (frac == 0) {
+            return INT64_MAX; /* infinity */
+        }
+    } else {
+        /* normal: exp - bias */
+        return exp - 1023;
+    }
+    /* nan or zero */
+    float_raise(float_flag_invalid, s);
+    return INT64_MIN;
+}
+
+DO_ZPZ_FP(flogb_h, float16, H1_2, do_float16_logb_as_int)
+DO_ZPZ_FP(flogb_s, float32, H1_4, do_float32_logb_as_int)
+DO_ZPZ_FP(flogb_d, float64, H1_8, do_float64_logb_as_int)
+
+#undef DO_ZPZ_FP
+
+static void do_fmla_zpzzz_h(void *vd, void *vn, void *vm, void *va, void *vg,
+                            float_status *status, uint32_t desc,
+                            uint16_t neg1, uint16_t neg3)
+{
+    intptr_t i = simd_oprsz(desc);
+    uint64_t *g = vg;
+
+    do {
+        uint64_t pg = g[(i - 1) >> 6];
+        do {
+            i -= 2;
+            if (likely((pg >> (i & 63)) & 1)) {
+                float16 e1, e2, e3, r;
+
+                e1 = *(uint16_t *)(vn + H1_2(i)) ^ neg1;
+                e2 = *(uint16_t *)(vm + H1_2(i));
+                e3 = *(uint16_t *)(va + H1_2(i)) ^ neg3;
+                r = float16_muladd(e1, e2, e3, 0, status);
+                *(uint16_t *)(vd + H1_2(i)) = r;
+            }
+        } while (i & 63);
+    } while (i != 0);
+}
+
+void HELPER(sve_fmla_zpzzz_h)(void *vd, void *vn, void *vm, void *va,
+                              void *vg, void *status, uint32_t desc)
+{
+    do_fmla_zpzzz_h(vd, vn, vm, va, vg, status, desc, 0, 0);
+}
+
+void HELPER(sve_fmls_zpzzz_h)(void *vd, void *vn, void *vm, void *va,
+                              void *vg, void *status, uint32_t desc)
+{
+    do_fmla_zpzzz_h(vd, vn, vm, va, vg, status, desc, 0x8000, 0);
+}
+
+void HELPER(sve_fnmla_zpzzz_h)(void *vd, void *vn, void *vm, void *va,
+                               void *vg, void *status, uint32_t desc)
+{
+    do_fmla_zpzzz_h(vd, vn, vm, va, vg, status, desc, 0x8000, 0x8000);
+}
+
+void HELPER(sve_fnmls_zpzzz_h)(void *vd, void *vn, void *vm, void *va,
+                               void *vg, void *status, uint32_t desc)
+{
+    do_fmla_zpzzz_h(vd, vn, vm, va, vg, status, desc, 0, 0x8000);
+}
+
+static void do_fmla_zpzzz_s(void *vd, void *vn, void *vm, void *va, void *vg,
+                            float_status *status, uint32_t desc,
+                            uint32_t neg1, uint32_t neg3)
+{
+    intptr_t i = simd_oprsz(desc);
+    uint64_t *g = vg;
+
+    do {
+        uint64_t pg = g[(i - 1) >> 6];
+        do {
+            i -= 4;
+            if (likely((pg >> (i & 63)) & 1)) {
+                float32 e1, e2, e3, r;
+
+                e1 = *(uint32_t *)(vn + H1_4(i)) ^ neg1;
+                e2 = *(uint32_t *)(vm + H1_4(i));
+                e3 = *(uint32_t *)(va + H1_4(i)) ^ neg3;
+                r = float32_muladd(e1, e2, e3, 0, status);
+                *(uint32_t *)(vd + H1_4(i)) = r;
+            }
+        } while (i & 63);
+    } while (i != 0);
+}
+
+void HELPER(sve_fmla_zpzzz_s)(void *vd, void *vn, void *vm, void *va,
+                              void *vg, void *status, uint32_t desc)
+{
+    do_fmla_zpzzz_s(vd, vn, vm, va, vg, status, desc, 0, 0);
+}
+
+void HELPER(sve_fmls_zpzzz_s)(void *vd, void *vn, void *vm, void *va,
+                              void *vg, void *status, uint32_t desc)
+{
+    do_fmla_zpzzz_s(vd, vn, vm, va, vg, status, desc, 0x80000000, 0);
+}
+
+void HELPER(sve_fnmla_zpzzz_s)(void *vd, void *vn, void *vm, void *va,
+                               void *vg, void *status, uint32_t desc)
+{
+    do_fmla_zpzzz_s(vd, vn, vm, va, vg, status, desc, 0x80000000, 0x80000000);
+}
+
+void HELPER(sve_fnmls_zpzzz_s)(void *vd, void *vn, void *vm, void *va,
+                               void *vg, void *status, uint32_t desc)
+{
+    do_fmla_zpzzz_s(vd, vn, vm, va, vg, status, desc, 0, 0x80000000);
+}
+
+static void do_fmla_zpzzz_d(void *vd, void *vn, void *vm, void *va, void *vg,
+                            float_status *status, uint32_t desc,
+                            uint64_t neg1, uint64_t neg3)
+{
+    intptr_t i = simd_oprsz(desc);
+    uint64_t *g = vg;
+
+    do {
+        uint64_t pg = g[(i - 1) >> 6];
+        do {
+            i -= 8;
+            if (likely((pg >> (i & 63)) & 1)) {
+                float64 e1, e2, e3, r;
+
+                e1 = *(uint64_t *)(vn + i) ^ neg1;
+                e2 = *(uint64_t *)(vm + i);
+                e3 = *(uint64_t *)(va + i) ^ neg3;
+                r = float64_muladd(e1, e2, e3, 0, status);
+                *(uint64_t *)(vd + i) = r;
+            }
+        } while (i & 63);
+    } while (i != 0);
+}
+
+void HELPER(sve_fmla_zpzzz_d)(void *vd, void *vn, void *vm, void *va,
+                              void *vg, void *status, uint32_t desc)
+{
+    do_fmla_zpzzz_d(vd, vn, vm, va, vg, status, desc, 0, 0);
+}
+
+void HELPER(sve_fmls_zpzzz_d)(void *vd, void *vn, void *vm, void *va,
+                              void *vg, void *status, uint32_t desc)
+{
+    do_fmla_zpzzz_d(vd, vn, vm, va, vg, status, desc, INT64_MIN, 0);
+}
+
+void HELPER(sve_fnmla_zpzzz_d)(void *vd, void *vn, void *vm, void *va,
+                               void *vg, void *status, uint32_t desc)
+{
+    do_fmla_zpzzz_d(vd, vn, vm, va, vg, status, desc, INT64_MIN, INT64_MIN);
+}
+
+void HELPER(sve_fnmls_zpzzz_d)(void *vd, void *vn, void *vm, void *va,
+                               void *vg, void *status, uint32_t desc)
+{
+    do_fmla_zpzzz_d(vd, vn, vm, va, vg, status, desc, 0, INT64_MIN);
+}
+
+/* Two operand floating-point comparison controlled by a predicate.
+ * Unlike the integer version, we are not allowed to optimistically
+ * compare operands, since the comparison may have side effects wrt
+ * the FPSR.
+ */
+#define DO_FPCMP_PPZZ(NAME, TYPE, H, OP)                                \
+void HELPER(NAME)(void *vd, void *vn, void *vm, void *vg,               \
+                  void *status, uint32_t desc)                          \
+{                                                                       \
+    intptr_t i = simd_oprsz(desc), j = (i - 1) >> 6;                    \
+    uint64_t *d = vd, *g = vg;                                          \
+    do {                                                                \
+        uint64_t out = 0, pg = g[j];                                    \
+        do {                                                            \
+            i -= sizeof(TYPE), out <<= sizeof(TYPE);                    \
+            if (likely((pg >> (i & 63)) & 1)) {                         \
+                TYPE nn = *(TYPE *)(vn + H(i));                         \
+                TYPE mm = *(TYPE *)(vm + H(i));                         \
+                out |= OP(TYPE, nn, mm, status);                        \
+            }                                                           \
+        } while (i & 63);                                               \
+        d[j--] = out;                                                   \
+    } while (i > 0);                                                    \
+}
+
+#define DO_FPCMP_PPZZ_H(NAME, OP) \
+    DO_FPCMP_PPZZ(NAME##_h, float16, H1_2, OP)
+#define DO_FPCMP_PPZZ_S(NAME, OP) \
+    DO_FPCMP_PPZZ(NAME##_s, float32, H1_4, OP)
+#define DO_FPCMP_PPZZ_D(NAME, OP) \
+    DO_FPCMP_PPZZ(NAME##_d, float64, H1_8, OP)
+
+#define DO_FPCMP_PPZZ_ALL(NAME, OP) \
+    DO_FPCMP_PPZZ_H(NAME, OP)   \
+    DO_FPCMP_PPZZ_S(NAME, OP)   \
+    DO_FPCMP_PPZZ_D(NAME, OP)
+
+#define DO_FCMGE(TYPE, X, Y, ST)  TYPE##_compare(Y, X, ST) <= 0
+#define DO_FCMGT(TYPE, X, Y, ST)  TYPE##_compare(Y, X, ST) < 0
+#define DO_FCMLE(TYPE, X, Y, ST)  TYPE##_compare(X, Y, ST) <= 0
+#define DO_FCMLT(TYPE, X, Y, ST)  TYPE##_compare(X, Y, ST) < 0
+#define DO_FCMEQ(TYPE, X, Y, ST)  TYPE##_compare_quiet(X, Y, ST) == 0
+#define DO_FCMNE(TYPE, X, Y, ST)  TYPE##_compare_quiet(X, Y, ST) != 0
+#define DO_FCMUO(TYPE, X, Y, ST)  \
+    TYPE##_compare_quiet(X, Y, ST) == float_relation_unordered
+#define DO_FACGE(TYPE, X, Y, ST)  \
+    TYPE##_compare(TYPE##_abs(Y), TYPE##_abs(X), ST) <= 0
+#define DO_FACGT(TYPE, X, Y, ST)  \
+    TYPE##_compare(TYPE##_abs(Y), TYPE##_abs(X), ST) < 0
+
+DO_FPCMP_PPZZ_ALL(sve_fcmge, DO_FCMGE)
+DO_FPCMP_PPZZ_ALL(sve_fcmgt, DO_FCMGT)
+DO_FPCMP_PPZZ_ALL(sve_fcmeq, DO_FCMEQ)
+DO_FPCMP_PPZZ_ALL(sve_fcmne, DO_FCMNE)
+DO_FPCMP_PPZZ_ALL(sve_fcmuo, DO_FCMUO)
+DO_FPCMP_PPZZ_ALL(sve_facge, DO_FACGE)
+DO_FPCMP_PPZZ_ALL(sve_facgt, DO_FACGT)
+
+#undef DO_FPCMP_PPZZ_ALL
+#undef DO_FPCMP_PPZZ_D
+#undef DO_FPCMP_PPZZ_S
+#undef DO_FPCMP_PPZZ_H
+#undef DO_FPCMP_PPZZ
+
+/* One operand floating-point comparison against zero, controlled
+ * by a predicate.
+ */
+#define DO_FPCMP_PPZ0(NAME, TYPE, H, OP)                   \
+void HELPER(NAME)(void *vd, void *vn, void *vg,            \
+                  void *status, uint32_t desc)             \
+{                                                          \
+    intptr_t i = simd_oprsz(desc), j = (i - 1) >> 6;       \
+    uint64_t *d = vd, *g = vg;                             \
+    do {                                                   \
+        uint64_t out = 0, pg = g[j];                       \
+        do {                                               \
+            i -= sizeof(TYPE), out <<= sizeof(TYPE);       \
+            if ((pg >> (i & 63)) & 1) {                    \
+                TYPE nn = *(TYPE *)(vn + H(i));            \
+                out |= OP(TYPE, nn, 0, status);            \
+            }                                              \
+        } while (i & 63);                                  \
+        d[j--] = out;                                      \
+    } while (i > 0);                                       \
+}
+
+#define DO_FPCMP_PPZ0_H(NAME, OP) \
+    DO_FPCMP_PPZ0(NAME##_h, float16, H1_2, OP)
+#define DO_FPCMP_PPZ0_S(NAME, OP) \
+    DO_FPCMP_PPZ0(NAME##_s, float32, H1_4, OP)
+#define DO_FPCMP_PPZ0_D(NAME, OP) \
+    DO_FPCMP_PPZ0(NAME##_d, float64, H1_8, OP)
+
+#define DO_FPCMP_PPZ0_ALL(NAME, OP) \
+    DO_FPCMP_PPZ0_H(NAME, OP)   \
+    DO_FPCMP_PPZ0_S(NAME, OP)   \
+    DO_FPCMP_PPZ0_D(NAME, OP)
+
+DO_FPCMP_PPZ0_ALL(sve_fcmge0, DO_FCMGE)
+DO_FPCMP_PPZ0_ALL(sve_fcmgt0, DO_FCMGT)
+DO_FPCMP_PPZ0_ALL(sve_fcmle0, DO_FCMLE)
+DO_FPCMP_PPZ0_ALL(sve_fcmlt0, DO_FCMLT)
+DO_FPCMP_PPZ0_ALL(sve_fcmeq0, DO_FCMEQ)
+DO_FPCMP_PPZ0_ALL(sve_fcmne0, DO_FCMNE)
+
+/* FP Trig Multiply-Add. */
+
+void HELPER(sve_ftmad_h)(void *vd, void *vn, void *vm, void *vs, uint32_t desc)
+{
+    static const float16 coeff[16] = {
+        0x3c00, 0xb155, 0x2030, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
+        0x3c00, 0xb800, 0x293a, 0x0000, 0x0000, 0x0000, 0x0000, 0x0000,
+    };
+    intptr_t i, opr_sz = simd_oprsz(desc) / sizeof(float16);
+    intptr_t x = simd_data(desc);
+    float16 *d = vd, *n = vn, *m = vm;
+    for (i = 0; i < opr_sz; i++) {
+        float16 mm = m[i];
+        intptr_t xx = x;
+        if (float16_is_neg(mm)) {
+            mm = float16_abs(mm);
+            xx += 8;
+        }
+        d[i] = float16_muladd(n[i], mm, coeff[xx], 0, vs);
+    }
+}
+
+void HELPER(sve_ftmad_s)(void *vd, void *vn, void *vm, void *vs, uint32_t desc)
+{
+    static const float32 coeff[16] = {
+        0x3f800000, 0xbe2aaaab, 0x3c088886, 0xb95008b9,
+        0x36369d6d, 0x00000000, 0x00000000, 0x00000000,
+        0x3f800000, 0xbf000000, 0x3d2aaaa6, 0xbab60705,
+        0x37cd37cc, 0x00000000, 0x00000000, 0x00000000,
+    };
+    intptr_t i, opr_sz = simd_oprsz(desc) / sizeof(float32);
+    intptr_t x = simd_data(desc);
+    float32 *d = vd, *n = vn, *m = vm;
+    for (i = 0; i < opr_sz; i++) {
+        float32 mm = m[i];
+        intptr_t xx = x;
+        if (float32_is_neg(mm)) {
+            mm = float32_abs(mm);
+            xx += 8;
+        }
+        d[i] = float32_muladd(n[i], mm, coeff[xx], 0, vs);
+    }
+}
+
+void HELPER(sve_ftmad_d)(void *vd, void *vn, void *vm, void *vs, uint32_t desc)
+{
+    static const float64 coeff[16] = {
+        0x3ff0000000000000ull, 0xbfc5555555555543ull,
+        0x3f8111111110f30cull, 0xbf2a01a019b92fc6ull,
+        0x3ec71de351f3d22bull, 0xbe5ae5e2b60f7b91ull,
+        0x3de5d8408868552full, 0x0000000000000000ull,
+        0x3ff0000000000000ull, 0xbfe0000000000000ull,
+        0x3fa5555555555536ull, 0xbf56c16c16c13a0bull,
+        0x3efa01a019b1e8d8ull, 0xbe927e4f7282f468ull,
+        0x3e21ee96d2641b13ull, 0xbda8f76380fbb401ull,
+    };
+    intptr_t i, opr_sz = simd_oprsz(desc) / sizeof(float64);
+    intptr_t x = simd_data(desc);
+    float64 *d = vd, *n = vn, *m = vm;
+    for (i = 0; i < opr_sz; i++) {
+        float64 mm = m[i];
+        intptr_t xx = x;
+        if (float64_is_neg(mm)) {
+            mm = float64_abs(mm);
+            xx += 8;
+        }
+        d[i] = float64_muladd(n[i], mm, coeff[xx], 0, vs);
+    }
+}
+
+/*
+ * FP Complex Add
+ */
+
+void HELPER(sve_fcadd_h)(void *vd, void *vn, void *vm, void *vg,
+                         void *vs, uint32_t desc)
+{
+    intptr_t j, i = simd_oprsz(desc);
+    uint64_t *g = vg;
+    float16 neg_imag = float16_set_sign(0, simd_data(desc));
+    float16 neg_real = float16_chs(neg_imag);
+
+    do {
+        uint64_t pg = g[(i - 1) >> 6];
+        do {
+            float16 e0, e1, e2, e3;
+
+            /* I holds the real index; J holds the imag index.  */
+            j = i - sizeof(float16);
+            i -= 2 * sizeof(float16);
+
+            e0 = *(float16 *)(vn + H1_2(i));
+            e1 = *(float16 *)(vm + H1_2(j)) ^ neg_real;
+            e2 = *(float16 *)(vn + H1_2(j));
+            e3 = *(float16 *)(vm + H1_2(i)) ^ neg_imag;
+
+            if (likely((pg >> (i & 63)) & 1)) {
+                *(float16 *)(vd + H1_2(i)) = float16_add(e0, e1, vs);
+            }
+            if (likely((pg >> (j & 63)) & 1)) {
+                *(float16 *)(vd + H1_2(j)) = float16_add(e2, e3, vs);
+            }
+        } while (i & 63);
+    } while (i != 0);
+}
+
+void HELPER(sve_fcadd_s)(void *vd, void *vn, void *vm, void *vg,
+                         void *vs, uint32_t desc)
+{
+    intptr_t j, i = simd_oprsz(desc);
+    uint64_t *g = vg;
+    float32 neg_imag = float32_set_sign(0, simd_data(desc));
+    float32 neg_real = float32_chs(neg_imag);
+
+    do {
+        uint64_t pg = g[(i - 1) >> 6];
+        do {
+            float32 e0, e1, e2, e3;
+
+            /* I holds the real index; J holds the imag index.  */
+            j = i - sizeof(float32);
+            i -= 2 * sizeof(float32);
+
+            e0 = *(float32 *)(vn + H1_2(i));
+            e1 = *(float32 *)(vm + H1_2(j)) ^ neg_real;
+            e2 = *(float32 *)(vn + H1_2(j));
+            e3 = *(float32 *)(vm + H1_2(i)) ^ neg_imag;
+
+            if (likely((pg >> (i & 63)) & 1)) {
+                *(float32 *)(vd + H1_2(i)) = float32_add(e0, e1, vs);
+            }
+            if (likely((pg >> (j & 63)) & 1)) {
+                *(float32 *)(vd + H1_2(j)) = float32_add(e2, e3, vs);
+            }
+        } while (i & 63);
+    } while (i != 0);
+}
+
+void HELPER(sve_fcadd_d)(void *vd, void *vn, void *vm, void *vg,
+                         void *vs, uint32_t desc)
+{
+    intptr_t j, i = simd_oprsz(desc);
+    uint64_t *g = vg;
+    float64 neg_imag = float64_set_sign(0, simd_data(desc));
+    float64 neg_real = float64_chs(neg_imag);
+
+    do {
+        uint64_t pg = g[(i - 1) >> 6];
+        do {
+            float64 e0, e1, e2, e3;
+
+            /* I holds the real index; J holds the imag index.  */
+            j = i - sizeof(float64);
+            i -= 2 * sizeof(float64);
+
+            e0 = *(float64 *)(vn + H1_2(i));
+            e1 = *(float64 *)(vm + H1_2(j)) ^ neg_real;
+            e2 = *(float64 *)(vn + H1_2(j));
+            e3 = *(float64 *)(vm + H1_2(i)) ^ neg_imag;
+
+            if (likely((pg >> (i & 63)) & 1)) {
+                *(float64 *)(vd + H1_2(i)) = float64_add(e0, e1, vs);
+            }
+            if (likely((pg >> (j & 63)) & 1)) {
+                *(float64 *)(vd + H1_2(j)) = float64_add(e2, e3, vs);
+            }
+        } while (i & 63);
+    } while (i != 0);
+}
+
+/*
+ * FP Complex Multiply
+ */
+
+void HELPER(sve_fcmla_zpzzz_h)(void *vd, void *vn, void *vm, void *va,
+                               void *vg, void *status, uint32_t desc)
+{
+    intptr_t j, i = simd_oprsz(desc);
+    unsigned rot = simd_data(desc);
+    bool flip = rot & 1;
+    float16 neg_imag, neg_real;
+    uint64_t *g = vg;
+
+    neg_imag = float16_set_sign(0, (rot & 2) != 0);
+    neg_real = float16_set_sign(0, rot == 1 || rot == 2);
+
+    do {
+        uint64_t pg = g[(i - 1) >> 6];
+        do {
+            float16 e1, e2, e3, e4, nr, ni, mr, mi, d;
+
+            /* I holds the real index; J holds the imag index.  */
+            j = i - sizeof(float16);
+            i -= 2 * sizeof(float16);
+
+            nr = *(float16 *)(vn + H1_2(i));
+            ni = *(float16 *)(vn + H1_2(j));
+            mr = *(float16 *)(vm + H1_2(i));
+            mi = *(float16 *)(vm + H1_2(j));
+
+            e2 = (flip ? ni : nr);
+            e1 = (flip ? mi : mr) ^ neg_real;
+            e4 = e2;
+            e3 = (flip ? mr : mi) ^ neg_imag;
+
+            if (likely((pg >> (i & 63)) & 1)) {
+                d = *(float16 *)(va + H1_2(i));
+                d = float16_muladd(e2, e1, d, 0, status);
+                *(float16 *)(vd + H1_2(i)) = d;
+            }
+            if (likely((pg >> (j & 63)) & 1)) {
+                d = *(float16 *)(va + H1_2(j));
+                d = float16_muladd(e4, e3, d, 0, status);
+                *(float16 *)(vd + H1_2(j)) = d;
+            }
+        } while (i & 63);
+    } while (i != 0);
+}
+
+void HELPER(sve_fcmla_zpzzz_s)(void *vd, void *vn, void *vm, void *va,
+                               void *vg, void *status, uint32_t desc)
+{
+    intptr_t j, i = simd_oprsz(desc);
+    unsigned rot = simd_data(desc);
+    bool flip = rot & 1;
+    float32 neg_imag, neg_real;
+    uint64_t *g = vg;
+
+    neg_imag = float32_set_sign(0, (rot & 2) != 0);
+    neg_real = float32_set_sign(0, rot == 1 || rot == 2);
+
+    do {
+        uint64_t pg = g[(i - 1) >> 6];
+        do {
+            float32 e1, e2, e3, e4, nr, ni, mr, mi, d;
+
+            /* I holds the real index; J holds the imag index.  */
+            j = i - sizeof(float32);
+            i -= 2 * sizeof(float32);
+
+            nr = *(float32 *)(vn + H1_2(i));
+            ni = *(float32 *)(vn + H1_2(j));
+            mr = *(float32 *)(vm + H1_2(i));
+            mi = *(float32 *)(vm + H1_2(j));
+
+            e2 = (flip ? ni : nr);
+            e1 = (flip ? mi : mr) ^ neg_real;
+            e4 = e2;
+            e3 = (flip ? mr : mi) ^ neg_imag;
+
+            if (likely((pg >> (i & 63)) & 1)) {
+                d = *(float32 *)(va + H1_2(i));
+                d = float32_muladd(e2, e1, d, 0, status);
+                *(float32 *)(vd + H1_2(i)) = d;
+            }
+            if (likely((pg >> (j & 63)) & 1)) {
+                d = *(float32 *)(va + H1_2(j));
+                d = float32_muladd(e4, e3, d, 0, status);
+                *(float32 *)(vd + H1_2(j)) = d;
+            }
+        } while (i & 63);
+    } while (i != 0);
+}
+
+void HELPER(sve_fcmla_zpzzz_d)(void *vd, void *vn, void *vm, void *va,
+                               void *vg, void *status, uint32_t desc)
+{
+    intptr_t j, i = simd_oprsz(desc);
+    unsigned rot = simd_data(desc);
+    bool flip = rot & 1;
+    float64 neg_imag, neg_real;
+    uint64_t *g = vg;
+
+    neg_imag = float64_set_sign(0, (rot & 2) != 0);
+    neg_real = float64_set_sign(0, rot == 1 || rot == 2);
+
+    do {
+        uint64_t pg = g[(i - 1) >> 6];
+        do {
+            float64 e1, e2, e3, e4, nr, ni, mr, mi, d;
+
+            /* I holds the real index; J holds the imag index.  */
+            j = i - sizeof(float64);
+            i -= 2 * sizeof(float64);
+
+            nr = *(float64 *)(vn + H1_2(i));
+            ni = *(float64 *)(vn + H1_2(j));
+            mr = *(float64 *)(vm + H1_2(i));
+            mi = *(float64 *)(vm + H1_2(j));
+
+            e2 = (flip ? ni : nr);
+            e1 = (flip ? mi : mr) ^ neg_real;
+            e4 = e2;
+            e3 = (flip ? mr : mi) ^ neg_imag;
+
+            if (likely((pg >> (i & 63)) & 1)) {
+                d = *(float64 *)(va + H1_2(i));
+                d = float64_muladd(e2, e1, d, 0, status);
+                *(float64 *)(vd + H1_2(i)) = d;
+            }
+            if (likely((pg >> (j & 63)) & 1)) {
+                d = *(float64 *)(va + H1_2(j));
+                d = float64_muladd(e4, e3, d, 0, status);
+                *(float64 *)(vd + H1_2(j)) = d;
+            }
+        } while (i & 63);
+    } while (i != 0);
+}
+
+/*
+ * Load contiguous data, protected by a governing predicate.
+ */
+
+/*
+ * Skip through a sequence of inactive elements in the guarding predicate @vg,
+ * beginning at @reg_off bounded by @reg_max.  Return the offset of the active
+ * element >= @reg_off, or @reg_max if there were no active elements at all.
+ */
+static intptr_t find_next_active(uint64_t *vg, intptr_t reg_off,
+                                 intptr_t reg_max, int esz)
+{
+    uint64_t pg_mask = pred_esz_masks[esz];
+    uint64_t pg = (vg[reg_off >> 6] & pg_mask) >> (reg_off & 63);
+
+    /* In normal usage, the first element is active.  */
+    if (likely(pg & 1)) {
+        return reg_off;
+    }
+
+    if (pg == 0) {
+        reg_off &= -64;
+        do {
+            reg_off += 64;
+            if (unlikely(reg_off >= reg_max)) {
+                /* The entire predicate was false.  */
+                return reg_max;
+            }
+            pg = vg[reg_off >> 6] & pg_mask;
+        } while (pg == 0);
+    }
+    reg_off += ctz64(pg);
+
+    /* We should never see an out of range predicate bit set.  */
+    tcg_debug_assert(reg_off < reg_max);
+    return reg_off;
+}
+
+/*
+ * Resolve the guest virtual address to info->host and info->flags.
+ * If @nofault, return false if the page is invalid, otherwise
+ * exit via page fault exception.
+ */
+
+bool sve_probe_page(SVEHostPage *info, bool nofault, CPUARMState *env,
+                    target_ulong addr, int mem_off, MMUAccessType access_type,
+                    int mmu_idx, uintptr_t retaddr)
+{
+    int flags;
+
+    addr += mem_off;
+
+    /*
+     * User-only currently always issues with TBI.  See the comment
+     * above useronly_clean_ptr.  Usually we clean this top byte away
+     * during translation, but we can't do that for e.g. vector + imm
+     * addressing modes.
+     *
+     * We currently always enable TBI for user-only, and do not provide
+     * a way to turn it off.  So clean the pointer unconditionally here,
+     * rather than look it up here, or pass it down from above.
+     */
+    addr = useronly_clean_ptr(addr);
+
+#ifdef CONFIG_USER_ONLY
+    flags = probe_access_flags(env, addr, access_type, mmu_idx, nofault,
+                               &info->host, retaddr);
+#else
+    CPUTLBEntryFull *full;
+    flags = probe_access_full(env, addr, access_type, mmu_idx, nofault,
+                              &info->host, &full, retaddr);
+#endif
+    info->flags = flags;
+
+    if (flags & TLB_INVALID_MASK) {
+        g_assert(nofault);
+        return false;
+    }
+
+#ifdef CONFIG_USER_ONLY
+    memset(&info->attrs, 0, sizeof(info->attrs));
+    /* Require both ANON and MTE; see allocation_tag_mem(). */
+    info->tagged = (flags & PAGE_ANON) && (flags & PAGE_MTE);
+#else
+    info->attrs = full->attrs;
+    info->tagged = full->pte_attrs == 0xf0;
+#endif
+
+    /* Ensure that info->host[] is relative to addr, not addr + mem_off. */
+    info->host -= mem_off;
+    return true;
+}
+
+/*
+ * Find first active element on each page, and a loose bound for the
+ * final element on each page.  Identify any single element that spans
+ * the page boundary.  Return true if there are any active elements.
+ */
+bool sve_cont_ldst_elements(SVEContLdSt *info, target_ulong addr, uint64_t *vg,
+                            intptr_t reg_max, int esz, int msize)
+{
+    const int esize = 1 << esz;
+    const uint64_t pg_mask = pred_esz_masks[esz];
+    intptr_t reg_off_first = -1, reg_off_last = -1, reg_off_split;
+    intptr_t mem_off_last, mem_off_split;
+    intptr_t page_split, elt_split;
+    intptr_t i;
+
+    /* Set all of the element indices to -1, and the TLB data to 0. */
+    memset(info, -1, offsetof(SVEContLdSt, page));
+    memset(info->page, 0, sizeof(info->page));
+
+    /* Gross scan over the entire predicate to find bounds. */
+    i = 0;
+    do {
+        uint64_t pg = vg[i] & pg_mask;
+        if (pg) {
+            reg_off_last = i * 64 + 63 - clz64(pg);
+            if (reg_off_first < 0) {
+                reg_off_first = i * 64 + ctz64(pg);
+            }
+        }
+    } while (++i * 64 < reg_max);
+
+    if (unlikely(reg_off_first < 0)) {
+        /* No active elements, no pages touched. */
+        return false;
+    }
+    tcg_debug_assert(reg_off_last >= 0 && reg_off_last < reg_max);
+
+    info->reg_off_first[0] = reg_off_first;
+    info->mem_off_first[0] = (reg_off_first >> esz) * msize;
+    mem_off_last = (reg_off_last >> esz) * msize;
+
+    page_split = -(addr | TARGET_PAGE_MASK);
+    if (likely(mem_off_last + msize <= page_split)) {
+        /* The entire operation fits within a single page. */
+        info->reg_off_last[0] = reg_off_last;
+        return true;
+    }
+
+    info->page_split = page_split;
+    elt_split = page_split / msize;
+    reg_off_split = elt_split << esz;
+    mem_off_split = elt_split * msize;
+
+    /*
+     * This is the last full element on the first page, but it is not
+     * necessarily active.  If there is no full element, i.e. the first
+     * active element is the one that's split, this value remains -1.
+     * It is useful as iteration bounds.
+     */
+    if (elt_split != 0) {
+        info->reg_off_last[0] = reg_off_split - esize;
+    }
+
+    /* Determine if an unaligned element spans the pages.  */
+    if (page_split % msize != 0) {
+        /* It is helpful to know if the split element is active. */
+        if ((vg[reg_off_split >> 6] >> (reg_off_split & 63)) & 1) {
+            info->reg_off_split = reg_off_split;
+            info->mem_off_split = mem_off_split;
+
+            if (reg_off_split == reg_off_last) {
+                /* The page crossing element is last. */
+                return true;
+            }
+        }
+        reg_off_split += esize;
+        mem_off_split += msize;
+    }
+
+    /*
+     * We do want the first active element on the second page, because
+     * this may affect the address reported in an exception.
+     */
+    reg_off_split = find_next_active(vg, reg_off_split, reg_max, esz);
+    tcg_debug_assert(reg_off_split <= reg_off_last);
+    info->reg_off_first[1] = reg_off_split;
+    info->mem_off_first[1] = (reg_off_split >> esz) * msize;
+    info->reg_off_last[1] = reg_off_last;
+    return true;
+}
+
+/*
+ * Resolve the guest virtual addresses to info->page[].
+ * Control the generation of page faults with @fault.  Return false if
+ * there is no work to do, which can only happen with @fault == FAULT_NO.
+ */
+bool sve_cont_ldst_pages(SVEContLdSt *info, SVEContFault fault,
+                         CPUARMState *env, target_ulong addr,
+                         MMUAccessType access_type, uintptr_t retaddr)
+{
+    int mmu_idx = cpu_mmu_index(env, false);
+    int mem_off = info->mem_off_first[0];
+    bool nofault = fault == FAULT_NO;
+    bool have_work = true;
+
+    if (!sve_probe_page(&info->page[0], nofault, env, addr, mem_off,
+                        access_type, mmu_idx, retaddr)) {
+        /* No work to be done. */
+        return false;
+    }
+
+    if (likely(info->page_split < 0)) {
+        /* The entire operation was on the one page. */
+        return true;
+    }
+
+    /*
+     * If the second page is invalid, then we want the fault address to be
+     * the first byte on that page which is accessed.
+     */
+    if (info->mem_off_split >= 0) {
+        /*
+         * There is an element split across the pages.  The fault address
+         * should be the first byte of the second page.
+         */
+        mem_off = info->page_split;
+        /*
+         * If the split element is also the first active element
+         * of the vector, then:  For first-fault we should continue
+         * to generate faults for the second page.  For no-fault,
+         * we have work only if the second page is valid.
+         */
+        if (info->mem_off_first[0] < info->mem_off_split) {
+            nofault = FAULT_FIRST;
+            have_work = false;
+        }
+    } else {
+        /*
+         * There is no element split across the pages.  The fault address
+         * should be the first active element on the second page.
+         */
+        mem_off = info->mem_off_first[1];
+        /*
+         * There must have been one active element on the first page,
+         * so we're out of first-fault territory.
+         */
+        nofault = fault != FAULT_ALL;
+    }
+
+    have_work |= sve_probe_page(&info->page[1], nofault, env, addr, mem_off,
+                                access_type, mmu_idx, retaddr);
+    return have_work;
+}
+
+#ifndef CONFIG_USER_ONLY
+void sve_cont_ldst_watchpoints(SVEContLdSt *info, CPUARMState *env,
+                               uint64_t *vg, target_ulong addr,
+                               int esize, int msize, int wp_access,
+                               uintptr_t retaddr)
+{
+    intptr_t mem_off, reg_off, reg_last;
+    int flags0 = info->page[0].flags;
+    int flags1 = info->page[1].flags;
+
+    if (likely(!((flags0 | flags1) & TLB_WATCHPOINT))) {
+        return;
+    }
+
+    /* Indicate that watchpoints are handled. */
+    info->page[0].flags = flags0 & ~TLB_WATCHPOINT;
+    info->page[1].flags = flags1 & ~TLB_WATCHPOINT;
+
+    if (flags0 & TLB_WATCHPOINT) {
+        mem_off = info->mem_off_first[0];
+        reg_off = info->reg_off_first[0];
+        reg_last = info->reg_off_last[0];
+
+        while (reg_off <= reg_last) {
+            uint64_t pg = vg[reg_off >> 6];
+            do {
+                if ((pg >> (reg_off & 63)) & 1) {
+                    cpu_check_watchpoint(env_cpu(env), addr + mem_off,
+                                         msize, info->page[0].attrs,
+                                         wp_access, retaddr);
+                }
+                reg_off += esize;
+                mem_off += msize;
+            } while (reg_off <= reg_last && (reg_off & 63));
+        }
+    }
+
+    mem_off = info->mem_off_split;
+    if (mem_off >= 0) {
+        cpu_check_watchpoint(env_cpu(env), addr + mem_off, msize,
+                             info->page[0].attrs, wp_access, retaddr);
+    }
+
+    mem_off = info->mem_off_first[1];
+    if ((flags1 & TLB_WATCHPOINT) && mem_off >= 0) {
+        reg_off = info->reg_off_first[1];
+        reg_last = info->reg_off_last[1];
+
+        do {
+            uint64_t pg = vg[reg_off >> 6];
+            do {
+                if ((pg >> (reg_off & 63)) & 1) {
+                    cpu_check_watchpoint(env_cpu(env), addr + mem_off,
+                                         msize, info->page[1].attrs,
+                                         wp_access, retaddr);
+                }
+                reg_off += esize;
+                mem_off += msize;
+            } while (reg_off & 63);
+        } while (reg_off <= reg_last);
+    }
+}
+#endif
+
+void sve_cont_ldst_mte_check(SVEContLdSt *info, CPUARMState *env,
+                             uint64_t *vg, target_ulong addr, int esize,
+                             int msize, uint32_t mtedesc, uintptr_t ra)
+{
+    intptr_t mem_off, reg_off, reg_last;
+
+    /* Process the page only if MemAttr == Tagged. */
+    if (info->page[0].tagged) {
+        mem_off = info->mem_off_first[0];
+        reg_off = info->reg_off_first[0];
+        reg_last = info->reg_off_split;
+        if (reg_last < 0) {
+            reg_last = info->reg_off_last[0];
+        }
+
+        do {
+            uint64_t pg = vg[reg_off >> 6];
+            do {
+                if ((pg >> (reg_off & 63)) & 1) {
+                    mte_check(env, mtedesc, addr, ra);
+                }
+                reg_off += esize;
+                mem_off += msize;
+            } while (reg_off <= reg_last && (reg_off & 63));
+        } while (reg_off <= reg_last);
+    }
+
+    mem_off = info->mem_off_first[1];
+    if (mem_off >= 0 && info->page[1].tagged) {
+        reg_off = info->reg_off_first[1];
+        reg_last = info->reg_off_last[1];
+
+        do {
+            uint64_t pg = vg[reg_off >> 6];
+            do {
+                if ((pg >> (reg_off & 63)) & 1) {
+                    mte_check(env, mtedesc, addr, ra);
+                }
+                reg_off += esize;
+                mem_off += msize;
+            } while (reg_off & 63);
+        } while (reg_off <= reg_last);
+    }
+}
+
+/*
+ * Common helper for all contiguous 1,2,3,4-register predicated stores.
+ */
+static inline QEMU_ALWAYS_INLINE
+void sve_ldN_r(CPUARMState *env, uint64_t *vg, const target_ulong addr,
+               uint32_t desc, const uintptr_t retaddr,
+               const int esz, const int msz, const int N, uint32_t mtedesc,
+               sve_ldst1_host_fn *host_fn,
+               sve_ldst1_tlb_fn *tlb_fn)
+{
+    const unsigned rd = simd_data(desc);
+    const intptr_t reg_max = simd_oprsz(desc);
+    intptr_t reg_off, reg_last, mem_off;
+    SVEContLdSt info;
+    void *host;
+    int flags, i;
+
+    /* Find the active elements.  */
+    if (!sve_cont_ldst_elements(&info, addr, vg, reg_max, esz, N << msz)) {
+        /* The entire predicate was false; no load occurs.  */
+        for (i = 0; i < N; ++i) {
+            memset(&env->vfp.zregs[(rd + i) & 31], 0, reg_max);
+        }
+        return;
+    }
+
+    /* Probe the page(s).  Exit with exception for any invalid page. */
+    sve_cont_ldst_pages(&info, FAULT_ALL, env, addr, MMU_DATA_LOAD, retaddr);
+
+    /* Handle watchpoints for all active elements. */
+    sve_cont_ldst_watchpoints(&info, env, vg, addr, 1 << esz, N << msz,
+                              BP_MEM_READ, retaddr);
+
+    /*
+     * Handle mte checks for all active elements.
+     * Since TBI must be set for MTE, !mtedesc => !mte_active.
+     */
+    if (mtedesc) {
+        sve_cont_ldst_mte_check(&info, env, vg, addr, 1 << esz, N << msz,
+                                mtedesc, retaddr);
+    }
+
+    flags = info.page[0].flags | info.page[1].flags;
+    if (unlikely(flags != 0)) {
+#ifdef CONFIG_USER_ONLY
+        g_assert_not_reached();
+#else
+        /*
+         * At least one page includes MMIO.
+         * Any bus operation can fail with cpu_transaction_failed,
+         * which for ARM will raise SyncExternal.  Perform the load
+         * into scratch memory to preserve register state until the end.
+         */
+        ARMVectorReg scratch[4] = { };
+
+        mem_off = info.mem_off_first[0];
+        reg_off = info.reg_off_first[0];
+        reg_last = info.reg_off_last[1];
+        if (reg_last < 0) {
+            reg_last = info.reg_off_split;
+            if (reg_last < 0) {
+                reg_last = info.reg_off_last[0];
+            }
+        }
+
+        do {
+            uint64_t pg = vg[reg_off >> 6];
+            do {
+                if ((pg >> (reg_off & 63)) & 1) {
+                    for (i = 0; i < N; ++i) {
+                        tlb_fn(env, &scratch[i], reg_off,
+                               addr + mem_off + (i << msz), retaddr);
+                    }
+                }
+                reg_off += 1 << esz;
+                mem_off += N << msz;
+            } while (reg_off & 63);
+        } while (reg_off <= reg_last);
+
+        for (i = 0; i < N; ++i) {
+            memcpy(&env->vfp.zregs[(rd + i) & 31], &scratch[i], reg_max);
+        }
+        return;
+#endif
+    }
+
+    /* The entire operation is in RAM, on valid pages. */
+
+    for (i = 0; i < N; ++i) {
+        memset(&env->vfp.zregs[(rd + i) & 31], 0, reg_max);
+    }
+
+    mem_off = info.mem_off_first[0];
+    reg_off = info.reg_off_first[0];
+    reg_last = info.reg_off_last[0];
+    host = info.page[0].host;
+
+    while (reg_off <= reg_last) {
+        uint64_t pg = vg[reg_off >> 6];
+        do {
+            if ((pg >> (reg_off & 63)) & 1) {
+                for (i = 0; i < N; ++i) {
+                    host_fn(&env->vfp.zregs[(rd + i) & 31], reg_off,
+                            host + mem_off + (i << msz));
+                }
+            }
+            reg_off += 1 << esz;
+            mem_off += N << msz;
+        } while (reg_off <= reg_last && (reg_off & 63));
+    }
+
+    /*
+     * Use the slow path to manage the cross-page misalignment.
+     * But we know this is RAM and cannot trap.
+     */
+    mem_off = info.mem_off_split;
+    if (unlikely(mem_off >= 0)) {
+        reg_off = info.reg_off_split;
+        for (i = 0; i < N; ++i) {
+            tlb_fn(env, &env->vfp.zregs[(rd + i) & 31], reg_off,
+                   addr + mem_off + (i << msz), retaddr);
+        }
+    }
+
+    mem_off = info.mem_off_first[1];
+    if (unlikely(mem_off >= 0)) {
+        reg_off = info.reg_off_first[1];
+        reg_last = info.reg_off_last[1];
+        host = info.page[1].host;
+
+        do {
+            uint64_t pg = vg[reg_off >> 6];
+            do {
+                if ((pg >> (reg_off & 63)) & 1) {
+                    for (i = 0; i < N; ++i) {
+                        host_fn(&env->vfp.zregs[(rd + i) & 31], reg_off,
+                                host + mem_off + (i << msz));
+                    }
+                }
+                reg_off += 1 << esz;
+                mem_off += N << msz;
+            } while (reg_off & 63);
+        } while (reg_off <= reg_last);
+    }
+}
+
+static inline QEMU_ALWAYS_INLINE
+void sve_ldN_r_mte(CPUARMState *env, uint64_t *vg, target_ulong addr,
+                   uint32_t desc, const uintptr_t ra,
+                   const int esz, const int msz, const int N,
+                   sve_ldst1_host_fn *host_fn,
+                   sve_ldst1_tlb_fn *tlb_fn)
+{
+    uint32_t mtedesc = desc >> (SIMD_DATA_SHIFT + SVE_MTEDESC_SHIFT);
+    int bit55 = extract64(addr, 55, 1);
+
+    /* Remove mtedesc from the normal sve descriptor. */
+    desc = extract32(desc, 0, SIMD_DATA_SHIFT + SVE_MTEDESC_SHIFT);
+
+    /* Perform gross MTE suppression early. */
+    if (!tbi_check(desc, bit55) ||
+        tcma_check(desc, bit55, allocation_tag_from_addr(addr))) {
+        mtedesc = 0;
+    }
+
+    sve_ldN_r(env, vg, addr, desc, ra, esz, msz, N, mtedesc, host_fn, tlb_fn);
+}
+
+#define DO_LD1_1(NAME, ESZ)                                             \
+void HELPER(sve_##NAME##_r)(CPUARMState *env, void *vg,                 \
+                            target_ulong addr, uint32_t desc)           \
+{                                                                       \
+    sve_ldN_r(env, vg, addr, desc, GETPC(), ESZ, MO_8, 1, 0,            \
+              sve_##NAME##_host, sve_##NAME##_tlb);                     \
+}                                                                       \
+void HELPER(sve_##NAME##_r_mte)(CPUARMState *env, void *vg,             \
+                                target_ulong addr, uint32_t desc)       \
+{                                                                       \
+    sve_ldN_r_mte(env, vg, addr, desc, GETPC(), ESZ, MO_8, 1,           \
+                  sve_##NAME##_host, sve_##NAME##_tlb);                 \
+}
+
+#define DO_LD1_2(NAME, ESZ, MSZ)                                        \
+void HELPER(sve_##NAME##_le_r)(CPUARMState *env, void *vg,              \
+                               target_ulong addr, uint32_t desc)        \
+{                                                                       \
+    sve_ldN_r(env, vg, addr, desc, GETPC(), ESZ, MSZ, 1, 0,             \
+              sve_##NAME##_le_host, sve_##NAME##_le_tlb);               \
+}                                                                       \
+void HELPER(sve_##NAME##_be_r)(CPUARMState *env, void *vg,              \
+                               target_ulong addr, uint32_t desc)        \
+{                                                                       \
+    sve_ldN_r(env, vg, addr, desc, GETPC(), ESZ, MSZ, 1, 0,             \
+              sve_##NAME##_be_host, sve_##NAME##_be_tlb);               \
+}                                                                       \
+void HELPER(sve_##NAME##_le_r_mte)(CPUARMState *env, void *vg,          \
+                                   target_ulong addr, uint32_t desc)    \
+{                                                                       \
+    sve_ldN_r_mte(env, vg, addr, desc, GETPC(), ESZ, MSZ, 1,            \
+                  sve_##NAME##_le_host, sve_##NAME##_le_tlb);           \
+}                                                                       \
+void HELPER(sve_##NAME##_be_r_mte)(CPUARMState *env, void *vg,          \
+                                   target_ulong addr, uint32_t desc)    \
+{                                                                       \
+    sve_ldN_r_mte(env, vg, addr, desc, GETPC(), ESZ, MSZ, 1,            \
+                  sve_##NAME##_be_host, sve_##NAME##_be_tlb);           \
+}
+
+DO_LD1_1(ld1bb,  MO_8)
+DO_LD1_1(ld1bhu, MO_16)
+DO_LD1_1(ld1bhs, MO_16)
+DO_LD1_1(ld1bsu, MO_32)
+DO_LD1_1(ld1bss, MO_32)
+DO_LD1_1(ld1bdu, MO_64)
+DO_LD1_1(ld1bds, MO_64)
+
+DO_LD1_2(ld1hh,  MO_16, MO_16)
+DO_LD1_2(ld1hsu, MO_32, MO_16)
+DO_LD1_2(ld1hss, MO_32, MO_16)
+DO_LD1_2(ld1hdu, MO_64, MO_16)
+DO_LD1_2(ld1hds, MO_64, MO_16)
+
+DO_LD1_2(ld1ss,  MO_32, MO_32)
+DO_LD1_2(ld1sdu, MO_64, MO_32)
+DO_LD1_2(ld1sds, MO_64, MO_32)
+
+DO_LD1_2(ld1dd,  MO_64, MO_64)
+
+#undef DO_LD1_1
+#undef DO_LD1_2
+
+#define DO_LDN_1(N)                                                     \
+void HELPER(sve_ld##N##bb_r)(CPUARMState *env, void *vg,                \
+                             target_ulong addr, uint32_t desc)          \
+{                                                                       \
+    sve_ldN_r(env, vg, addr, desc, GETPC(), MO_8, MO_8, N, 0,           \
+              sve_ld1bb_host, sve_ld1bb_tlb);                           \
+}                                                                       \
+void HELPER(sve_ld##N##bb_r_mte)(CPUARMState *env, void *vg,            \
+                                 target_ulong addr, uint32_t desc)      \
+{                                                                       \
+    sve_ldN_r_mte(env, vg, addr, desc, GETPC(), MO_8, MO_8, N,          \
+                  sve_ld1bb_host, sve_ld1bb_tlb);                       \
+}
+
+#define DO_LDN_2(N, SUFF, ESZ)                                          \
+void HELPER(sve_ld##N##SUFF##_le_r)(CPUARMState *env, void *vg,         \
+                                    target_ulong addr, uint32_t desc)   \
+{                                                                       \
+    sve_ldN_r(env, vg, addr, desc, GETPC(), ESZ, ESZ, N, 0,             \
+              sve_ld1##SUFF##_le_host, sve_ld1##SUFF##_le_tlb);         \
+}                                                                       \
+void HELPER(sve_ld##N##SUFF##_be_r)(CPUARMState *env, void *vg,         \
+                                    target_ulong addr, uint32_t desc)   \
+{                                                                       \
+    sve_ldN_r(env, vg, addr, desc, GETPC(), ESZ, ESZ, N, 0,             \
+              sve_ld1##SUFF##_be_host, sve_ld1##SUFF##_be_tlb);         \
+}                                                                       \
+void HELPER(sve_ld##N##SUFF##_le_r_mte)(CPUARMState *env, void *vg,     \
+                                        target_ulong addr, uint32_t desc) \
+{                                                                       \
+    sve_ldN_r_mte(env, vg, addr, desc, GETPC(), ESZ, ESZ, N,            \
+                  sve_ld1##SUFF##_le_host, sve_ld1##SUFF##_le_tlb);     \
+}                                                                       \
+void HELPER(sve_ld##N##SUFF##_be_r_mte)(CPUARMState *env, void *vg,     \
+                                        target_ulong addr, uint32_t desc) \
+{                                                                       \
+    sve_ldN_r_mte(env, vg, addr, desc, GETPC(), ESZ, ESZ, N,            \
+                  sve_ld1##SUFF##_be_host, sve_ld1##SUFF##_be_tlb);     \
+}
+
+DO_LDN_1(2)
+DO_LDN_1(3)
+DO_LDN_1(4)
+
+DO_LDN_2(2, hh, MO_16)
+DO_LDN_2(3, hh, MO_16)
+DO_LDN_2(4, hh, MO_16)
+
+DO_LDN_2(2, ss, MO_32)
+DO_LDN_2(3, ss, MO_32)
+DO_LDN_2(4, ss, MO_32)
+
+DO_LDN_2(2, dd, MO_64)
+DO_LDN_2(3, dd, MO_64)
+DO_LDN_2(4, dd, MO_64)
+
+#undef DO_LDN_1
+#undef DO_LDN_2
+
+/*
+ * Load contiguous data, first-fault and no-fault.
+ *
+ * For user-only, one could argue that we should hold the mmap_lock during
+ * the operation so that there is no race between page_check_range and the
+ * load operation.  However, unmapping pages out from under a running thread
+ * is extraordinarily unlikely.  This theoretical race condition also affects
+ * linux-user/ in its get_user/put_user macros.
+ *
+ * TODO: Construct some helpers, written in assembly, that interact with
+ * host_signal_handler to produce memory ops which can properly report errors
+ * without racing.
+ */
+
+/* Fault on byte I.  All bits in FFR from I are cleared.  The vector
+ * result from I is CONSTRAINED UNPREDICTABLE; we choose the MERGE
+ * option, which leaves subsequent data unchanged.
+ */
+static void record_fault(CPUARMState *env, uintptr_t i, uintptr_t oprsz)
+{
+    uint64_t *ffr = env->vfp.pregs[FFR_PRED_NUM].p;
+
+    if (i & 63) {
+        ffr[i / 64] &= MAKE_64BIT_MASK(0, i & 63);
+        i = ROUND_UP(i, 64);
+    }
+    for (; i < oprsz; i += 64) {
+        ffr[i / 64] = 0;
+    }
+}
+
+/*
+ * Common helper for all contiguous no-fault and first-fault loads.
+ */
+static inline QEMU_ALWAYS_INLINE
+void sve_ldnfff1_r(CPUARMState *env, void *vg, const target_ulong addr,
+                   uint32_t desc, const uintptr_t retaddr, uint32_t mtedesc,
+                   const int esz, const int msz, const SVEContFault fault,
+                   sve_ldst1_host_fn *host_fn,
+                   sve_ldst1_tlb_fn *tlb_fn)
+{
+    const unsigned rd = simd_data(desc);
+    void *vd = &env->vfp.zregs[rd];
+    const intptr_t reg_max = simd_oprsz(desc);
+    intptr_t reg_off, mem_off, reg_last;
+    SVEContLdSt info;
+    int flags;
+    void *host;
+
+    /* Find the active elements.  */
+    if (!sve_cont_ldst_elements(&info, addr, vg, reg_max, esz, 1 << msz)) {
+        /* The entire predicate was false; no load occurs.  */
+        memset(vd, 0, reg_max);
+        return;
+    }
+    reg_off = info.reg_off_first[0];
+
+    /* Probe the page(s). */
+    if (!sve_cont_ldst_pages(&info, fault, env, addr, MMU_DATA_LOAD, retaddr)) {
+        /* Fault on first element. */
+        tcg_debug_assert(fault == FAULT_NO);
+        memset(vd, 0, reg_max);
+        goto do_fault;
+    }
+
+    mem_off = info.mem_off_first[0];
+    flags = info.page[0].flags;
+
+    /*
+     * Disable MTE checking if the Tagged bit is not set.  Since TBI must
+     * be set within MTEDESC for MTE, !mtedesc => !mte_active.
+     */
+    if (!info.page[0].tagged) {
+        mtedesc = 0;
+    }
+
+    if (fault == FAULT_FIRST) {
+        /* Trapping mte check for the first-fault element.  */
+        if (mtedesc) {
+            mte_check(env, mtedesc, addr + mem_off, retaddr);
+        }
+
+        /*
+         * Special handling of the first active element,
+         * if it crosses a page boundary or is MMIO.
+         */
+        bool is_split = mem_off == info.mem_off_split;
+        if (unlikely(flags != 0) || unlikely(is_split)) {
+            /*
+             * Use the slow path for cross-page handling.
+             * Might trap for MMIO or watchpoints.
+             */
+            tlb_fn(env, vd, reg_off, addr + mem_off, retaddr);
+
+            /* After any fault, zero the other elements. */
+            swap_memzero(vd, reg_off);
+            reg_off += 1 << esz;
+            mem_off += 1 << msz;
+            swap_memzero(vd + reg_off, reg_max - reg_off);
+
+            if (is_split) {
+                goto second_page;
+            }
+        } else {
+            memset(vd, 0, reg_max);
+        }
+    } else {
+        memset(vd, 0, reg_max);
+        if (unlikely(mem_off == info.mem_off_split)) {
+            /* The first active element crosses a page boundary. */
+            flags |= info.page[1].flags;
+            if (unlikely(flags & TLB_MMIO)) {
+                /* Some page is MMIO, see below. */
+                goto do_fault;
+            }
+            if (unlikely(flags & TLB_WATCHPOINT) &&
+                (cpu_watchpoint_address_matches
+                 (env_cpu(env), addr + mem_off, 1 << msz)
+                 & BP_MEM_READ)) {
+                /* Watchpoint hit, see below. */
+                goto do_fault;
+            }
+            if (mtedesc && !mte_probe(env, mtedesc, addr + mem_off)) {
+                goto do_fault;
+            }
+            /*
+             * Use the slow path for cross-page handling.
+             * This is RAM, without a watchpoint, and will not trap.
+             */
+            tlb_fn(env, vd, reg_off, addr + mem_off, retaddr);
+            goto second_page;
+        }
+    }
+
+    /*
+     * From this point on, all memory operations are MemSingleNF.
+     *
+     * Per the MemSingleNF pseudocode, a no-fault load from Device memory
+     * must not actually hit the bus -- it returns (UNKNOWN, FAULT) instead.
+     *
+     * Unfortuately we do not have access to the memory attributes from the
+     * PTE to tell Device memory from Normal memory.  So we make a mostly
+     * correct check, and indicate (UNKNOWN, FAULT) for any MMIO.
+     * This gives the right answer for the common cases of "Normal memory,
+     * backed by host RAM" and "Device memory, backed by MMIO".
+     * The architecture allows us to suppress an NF load and return
+     * (UNKNOWN, FAULT) for any reason, so our behaviour for the corner
+     * case of "Normal memory, backed by MMIO" is permitted.  The case we
+     * get wrong is "Device memory, backed by host RAM", for which we
+     * should return (UNKNOWN, FAULT) for but do not.
+     *
+     * Similarly, CPU_BP breakpoints would raise exceptions, and so
+     * return (UNKNOWN, FAULT).  For simplicity, we consider gdb and
+     * architectural breakpoints the same.
+     */
+    if (unlikely(flags & TLB_MMIO)) {
+        goto do_fault;
+    }
+
+    reg_last = info.reg_off_last[0];
+    host = info.page[0].host;
+
+    do {
+        uint64_t pg = *(uint64_t *)(vg + (reg_off >> 3));
+        do {
+            if ((pg >> (reg_off & 63)) & 1) {
+                if (unlikely(flags & TLB_WATCHPOINT) &&
+                    (cpu_watchpoint_address_matches
+                     (env_cpu(env), addr + mem_off, 1 << msz)
+                     & BP_MEM_READ)) {
+                    goto do_fault;
+                }
+                if (mtedesc && !mte_probe(env, mtedesc, addr + mem_off)) {
+                    goto do_fault;
+                }
+                host_fn(vd, reg_off, host + mem_off);
+            }
+            reg_off += 1 << esz;
+            mem_off += 1 << msz;
+        } while (reg_off <= reg_last && (reg_off & 63));
+    } while (reg_off <= reg_last);
+
+    /*
+     * MemSingleNF is allowed to fail for any reason.  We have special
+     * code above to handle the first element crossing a page boundary.
+     * As an implementation choice, decline to handle a cross-page element
+     * in any other position.
+     */
+    reg_off = info.reg_off_split;
+    if (reg_off >= 0) {
+        goto do_fault;
+    }
+
+ second_page:
+    reg_off = info.reg_off_first[1];
+    if (likely(reg_off < 0)) {
+        /* No active elements on the second page.  All done. */
+        return;
+    }
+
+    /*
+     * MemSingleNF is allowed to fail for any reason.  As an implementation
+     * choice, decline to handle elements on the second page.  This should
+     * be low frequency as the guest walks through memory -- the next
+     * iteration of the guest's loop should be aligned on the page boundary,
+     * and then all following iterations will stay aligned.
+     */
+
+ do_fault:
+    record_fault(env, reg_off, reg_max);
+}
+
+static inline QEMU_ALWAYS_INLINE
+void sve_ldnfff1_r_mte(CPUARMState *env, void *vg, target_ulong addr,
+                       uint32_t desc, const uintptr_t retaddr,
+                       const int esz, const int msz, const SVEContFault fault,
+                       sve_ldst1_host_fn *host_fn,
+                       sve_ldst1_tlb_fn *tlb_fn)
+{
+    uint32_t mtedesc = desc >> (SIMD_DATA_SHIFT + SVE_MTEDESC_SHIFT);
+    int bit55 = extract64(addr, 55, 1);
+
+    /* Remove mtedesc from the normal sve descriptor. */
+    desc = extract32(desc, 0, SIMD_DATA_SHIFT + SVE_MTEDESC_SHIFT);
+
+    /* Perform gross MTE suppression early. */
+    if (!tbi_check(desc, bit55) ||
+        tcma_check(desc, bit55, allocation_tag_from_addr(addr))) {
+        mtedesc = 0;
+    }
+
+    sve_ldnfff1_r(env, vg, addr, desc, retaddr, mtedesc,
+                  esz, msz, fault, host_fn, tlb_fn);
+}
+
+#define DO_LDFF1_LDNF1_1(PART, ESZ)                                     \
+void HELPER(sve_ldff1##PART##_r)(CPUARMState *env, void *vg,            \
+                                 target_ulong addr, uint32_t desc)      \
+{                                                                       \
+    sve_ldnfff1_r(env, vg, addr, desc, GETPC(), 0, ESZ, MO_8, FAULT_FIRST, \
+                  sve_ld1##PART##_host, sve_ld1##PART##_tlb);           \
+}                                                                       \
+void HELPER(sve_ldnf1##PART##_r)(CPUARMState *env, void *vg,            \
+                                 target_ulong addr, uint32_t desc)      \
+{                                                                       \
+    sve_ldnfff1_r(env, vg, addr, desc, GETPC(), 0, ESZ, MO_8, FAULT_NO, \
+                  sve_ld1##PART##_host, sve_ld1##PART##_tlb);           \
+}                                                                       \
+void HELPER(sve_ldff1##PART##_r_mte)(CPUARMState *env, void *vg,        \
+                                     target_ulong addr, uint32_t desc)  \
+{                                                                       \
+    sve_ldnfff1_r_mte(env, vg, addr, desc, GETPC(), ESZ, MO_8, FAULT_FIRST, \
+                      sve_ld1##PART##_host, sve_ld1##PART##_tlb);       \
+}                                                                       \
+void HELPER(sve_ldnf1##PART##_r_mte)(CPUARMState *env, void *vg,        \
+                                     target_ulong addr, uint32_t desc)  \
+{                                                                       \
+    sve_ldnfff1_r_mte(env, vg, addr, desc, GETPC(), ESZ, MO_8, FAULT_NO, \
+                  sve_ld1##PART##_host, sve_ld1##PART##_tlb);           \
+}
+
+#define DO_LDFF1_LDNF1_2(PART, ESZ, MSZ)                                \
+void HELPER(sve_ldff1##PART##_le_r)(CPUARMState *env, void *vg,         \
+                                    target_ulong addr, uint32_t desc)   \
+{                                                                       \
+    sve_ldnfff1_r(env, vg, addr, desc, GETPC(), 0, ESZ, MSZ, FAULT_FIRST, \
+                  sve_ld1##PART##_le_host, sve_ld1##PART##_le_tlb);     \
+}                                                                       \
+void HELPER(sve_ldnf1##PART##_le_r)(CPUARMState *env, void *vg,         \
+                                    target_ulong addr, uint32_t desc)   \
+{                                                                       \
+    sve_ldnfff1_r(env, vg, addr, desc, GETPC(), 0, ESZ, MSZ, FAULT_NO,  \
+                  sve_ld1##PART##_le_host, sve_ld1##PART##_le_tlb);     \
+}                                                                       \
+void HELPER(sve_ldff1##PART##_be_r)(CPUARMState *env, void *vg,         \
+                                    target_ulong addr, uint32_t desc)   \
+{                                                                       \
+    sve_ldnfff1_r(env, vg, addr, desc, GETPC(), 0, ESZ, MSZ, FAULT_FIRST, \
+                  sve_ld1##PART##_be_host, sve_ld1##PART##_be_tlb);     \
+}                                                                       \
+void HELPER(sve_ldnf1##PART##_be_r)(CPUARMState *env, void *vg,         \
+                                    target_ulong addr, uint32_t desc)   \
+{                                                                       \
+    sve_ldnfff1_r(env, vg, addr, desc, GETPC(), 0, ESZ, MSZ, FAULT_NO,  \
+                  sve_ld1##PART##_be_host, sve_ld1##PART##_be_tlb);     \
+}                                                                       \
+void HELPER(sve_ldff1##PART##_le_r_mte)(CPUARMState *env, void *vg,     \
+                                        target_ulong addr, uint32_t desc) \
+{                                                                       \
+    sve_ldnfff1_r_mte(env, vg, addr, desc, GETPC(), ESZ, MSZ, FAULT_FIRST, \
+                      sve_ld1##PART##_le_host, sve_ld1##PART##_le_tlb); \
+}                                                                       \
+void HELPER(sve_ldnf1##PART##_le_r_mte)(CPUARMState *env, void *vg,     \
+                                        target_ulong addr, uint32_t desc) \
+{                                                                       \
+    sve_ldnfff1_r_mte(env, vg, addr, desc, GETPC(), ESZ, MSZ, FAULT_NO, \
+                      sve_ld1##PART##_le_host, sve_ld1##PART##_le_tlb); \
+}                                                                       \
+void HELPER(sve_ldff1##PART##_be_r_mte)(CPUARMState *env, void *vg,     \
+                                        target_ulong addr, uint32_t desc) \
+{                                                                       \
+    sve_ldnfff1_r_mte(env, vg, addr, desc, GETPC(), ESZ, MSZ, FAULT_FIRST, \
+                      sve_ld1##PART##_be_host, sve_ld1##PART##_be_tlb); \
+}                                                                       \
+void HELPER(sve_ldnf1##PART##_be_r_mte)(CPUARMState *env, void *vg,     \
+                                        target_ulong addr, uint32_t desc) \
+{                                                                       \
+    sve_ldnfff1_r_mte(env, vg, addr, desc, GETPC(), ESZ, MSZ, FAULT_NO, \
+                      sve_ld1##PART##_be_host, sve_ld1##PART##_be_tlb); \
+}
+
+DO_LDFF1_LDNF1_1(bb,  MO_8)
+DO_LDFF1_LDNF1_1(bhu, MO_16)
+DO_LDFF1_LDNF1_1(bhs, MO_16)
+DO_LDFF1_LDNF1_1(bsu, MO_32)
+DO_LDFF1_LDNF1_1(bss, MO_32)
+DO_LDFF1_LDNF1_1(bdu, MO_64)
+DO_LDFF1_LDNF1_1(bds, MO_64)
+
+DO_LDFF1_LDNF1_2(hh,  MO_16, MO_16)
+DO_LDFF1_LDNF1_2(hsu, MO_32, MO_16)
+DO_LDFF1_LDNF1_2(hss, MO_32, MO_16)
+DO_LDFF1_LDNF1_2(hdu, MO_64, MO_16)
+DO_LDFF1_LDNF1_2(hds, MO_64, MO_16)
+
+DO_LDFF1_LDNF1_2(ss,  MO_32, MO_32)
+DO_LDFF1_LDNF1_2(sdu, MO_64, MO_32)
+DO_LDFF1_LDNF1_2(sds, MO_64, MO_32)
+
+DO_LDFF1_LDNF1_2(dd,  MO_64, MO_64)
+
+#undef DO_LDFF1_LDNF1_1
+#undef DO_LDFF1_LDNF1_2
+
+/*
+ * Common helper for all contiguous 1,2,3,4-register predicated stores.
+ */
+
+static inline QEMU_ALWAYS_INLINE
+void sve_stN_r(CPUARMState *env, uint64_t *vg, target_ulong addr,
+               uint32_t desc, const uintptr_t retaddr,
+               const int esz, const int msz, const int N, uint32_t mtedesc,
+               sve_ldst1_host_fn *host_fn,
+               sve_ldst1_tlb_fn *tlb_fn)
+{
+    const unsigned rd = simd_data(desc);
+    const intptr_t reg_max = simd_oprsz(desc);
+    intptr_t reg_off, reg_last, mem_off;
+    SVEContLdSt info;
+    void *host;
+    int i, flags;
+
+    /* Find the active elements.  */
+    if (!sve_cont_ldst_elements(&info, addr, vg, reg_max, esz, N << msz)) {
+        /* The entire predicate was false; no store occurs.  */
+        return;
+    }
+
+    /* Probe the page(s).  Exit with exception for any invalid page. */
+    sve_cont_ldst_pages(&info, FAULT_ALL, env, addr, MMU_DATA_STORE, retaddr);
+
+    /* Handle watchpoints for all active elements. */
+    sve_cont_ldst_watchpoints(&info, env, vg, addr, 1 << esz, N << msz,
+                              BP_MEM_WRITE, retaddr);
+
+    /*
+     * Handle mte checks for all active elements.
+     * Since TBI must be set for MTE, !mtedesc => !mte_active.
+     */
+    if (mtedesc) {
+        sve_cont_ldst_mte_check(&info, env, vg, addr, 1 << esz, N << msz,
+                                mtedesc, retaddr);
+    }
+
+    flags = info.page[0].flags | info.page[1].flags;
+    if (unlikely(flags != 0)) {
+#ifdef CONFIG_USER_ONLY
+        g_assert_not_reached();
+#else
+        /*
+         * At least one page includes MMIO.
+         * Any bus operation can fail with cpu_transaction_failed,
+         * which for ARM will raise SyncExternal.  We cannot avoid
+         * this fault and will leave with the store incomplete.
+         */
+        mem_off = info.mem_off_first[0];
+        reg_off = info.reg_off_first[0];
+        reg_last = info.reg_off_last[1];
+        if (reg_last < 0) {
+            reg_last = info.reg_off_split;
+            if (reg_last < 0) {
+                reg_last = info.reg_off_last[0];
+            }
+        }
+
+        do {
+            uint64_t pg = vg[reg_off >> 6];
+            do {
+                if ((pg >> (reg_off & 63)) & 1) {
+                    for (i = 0; i < N; ++i) {
+                        tlb_fn(env, &env->vfp.zregs[(rd + i) & 31], reg_off,
+                               addr + mem_off + (i << msz), retaddr);
+                    }
+                }
+                reg_off += 1 << esz;
+                mem_off += N << msz;
+            } while (reg_off & 63);
+        } while (reg_off <= reg_last);
+        return;
+#endif
+    }
+
+    mem_off = info.mem_off_first[0];
+    reg_off = info.reg_off_first[0];
+    reg_last = info.reg_off_last[0];
+    host = info.page[0].host;
+
+    while (reg_off <= reg_last) {
+        uint64_t pg = vg[reg_off >> 6];
+        do {
+            if ((pg >> (reg_off & 63)) & 1) {
+                for (i = 0; i < N; ++i) {
+                    host_fn(&env->vfp.zregs[(rd + i) & 31], reg_off,
+                            host + mem_off + (i << msz));
+                }
+            }
+            reg_off += 1 << esz;
+            mem_off += N << msz;
+        } while (reg_off <= reg_last && (reg_off & 63));
+    }
+
+    /*
+     * Use the slow path to manage the cross-page misalignment.
+     * But we know this is RAM and cannot trap.
+     */
+    mem_off = info.mem_off_split;
+    if (unlikely(mem_off >= 0)) {
+        reg_off = info.reg_off_split;
+        for (i = 0; i < N; ++i) {
+            tlb_fn(env, &env->vfp.zregs[(rd + i) & 31], reg_off,
+                   addr + mem_off + (i << msz), retaddr);
+        }
+    }
+
+    mem_off = info.mem_off_first[1];
+    if (unlikely(mem_off >= 0)) {
+        reg_off = info.reg_off_first[1];
+        reg_last = info.reg_off_last[1];
+        host = info.page[1].host;
+
+        do {
+            uint64_t pg = vg[reg_off >> 6];
+            do {
+                if ((pg >> (reg_off & 63)) & 1) {
+                    for (i = 0; i < N; ++i) {
+                        host_fn(&env->vfp.zregs[(rd + i) & 31], reg_off,
+                                host + mem_off + (i << msz));
+                    }
+                }
+                reg_off += 1 << esz;
+                mem_off += N << msz;
+            } while (reg_off & 63);
+        } while (reg_off <= reg_last);
+    }
+}
+
+static inline QEMU_ALWAYS_INLINE
+void sve_stN_r_mte(CPUARMState *env, uint64_t *vg, target_ulong addr,
+                   uint32_t desc, const uintptr_t ra,
+                   const int esz, const int msz, const int N,
+                   sve_ldst1_host_fn *host_fn,
+                   sve_ldst1_tlb_fn *tlb_fn)
+{
+    uint32_t mtedesc = desc >> (SIMD_DATA_SHIFT + SVE_MTEDESC_SHIFT);
+    int bit55 = extract64(addr, 55, 1);
+
+    /* Remove mtedesc from the normal sve descriptor. */
+    desc = extract32(desc, 0, SIMD_DATA_SHIFT + SVE_MTEDESC_SHIFT);
+
+    /* Perform gross MTE suppression early. */
+    if (!tbi_check(desc, bit55) ||
+        tcma_check(desc, bit55, allocation_tag_from_addr(addr))) {
+        mtedesc = 0;
+    }
+
+    sve_stN_r(env, vg, addr, desc, ra, esz, msz, N, mtedesc, host_fn, tlb_fn);
+}
+
+#define DO_STN_1(N, NAME, ESZ)                                          \
+void HELPER(sve_st##N##NAME##_r)(CPUARMState *env, void *vg,            \
+                                 target_ulong addr, uint32_t desc)      \
+{                                                                       \
+    sve_stN_r(env, vg, addr, desc, GETPC(), ESZ, MO_8, N, 0,            \
+              sve_st1##NAME##_host, sve_st1##NAME##_tlb);               \
+}                                                                       \
+void HELPER(sve_st##N##NAME##_r_mte)(CPUARMState *env, void *vg,        \
+                                     target_ulong addr, uint32_t desc)  \
+{                                                                       \
+    sve_stN_r_mte(env, vg, addr, desc, GETPC(), ESZ, MO_8, N,           \
+                  sve_st1##NAME##_host, sve_st1##NAME##_tlb);           \
+}
+
+#define DO_STN_2(N, NAME, ESZ, MSZ)                                     \
+void HELPER(sve_st##N##NAME##_le_r)(CPUARMState *env, void *vg,         \
+                                    target_ulong addr, uint32_t desc)   \
+{                                                                       \
+    sve_stN_r(env, vg, addr, desc, GETPC(), ESZ, MSZ, N, 0,             \
+              sve_st1##NAME##_le_host, sve_st1##NAME##_le_tlb);         \
+}                                                                       \
+void HELPER(sve_st##N##NAME##_be_r)(CPUARMState *env, void *vg,         \
+                                    target_ulong addr, uint32_t desc)   \
+{                                                                       \
+    sve_stN_r(env, vg, addr, desc, GETPC(), ESZ, MSZ, N, 0,             \
+              sve_st1##NAME##_be_host, sve_st1##NAME##_be_tlb);         \
+}                                                                       \
+void HELPER(sve_st##N##NAME##_le_r_mte)(CPUARMState *env, void *vg,     \
+                                        target_ulong addr, uint32_t desc) \
+{                                                                       \
+    sve_stN_r_mte(env, vg, addr, desc, GETPC(), ESZ, MSZ, N,            \
+                  sve_st1##NAME##_le_host, sve_st1##NAME##_le_tlb);     \
+}                                                                       \
+void HELPER(sve_st##N##NAME##_be_r_mte)(CPUARMState *env, void *vg,     \
+                                        target_ulong addr, uint32_t desc) \
+{                                                                       \
+    sve_stN_r_mte(env, vg, addr, desc, GETPC(), ESZ, MSZ, N,            \
+                  sve_st1##NAME##_be_host, sve_st1##NAME##_be_tlb);     \
+}
+
+DO_STN_1(1, bb, MO_8)
+DO_STN_1(1, bh, MO_16)
+DO_STN_1(1, bs, MO_32)
+DO_STN_1(1, bd, MO_64)
+DO_STN_1(2, bb, MO_8)
+DO_STN_1(3, bb, MO_8)
+DO_STN_1(4, bb, MO_8)
+
+DO_STN_2(1, hh, MO_16, MO_16)
+DO_STN_2(1, hs, MO_32, MO_16)
+DO_STN_2(1, hd, MO_64, MO_16)
+DO_STN_2(2, hh, MO_16, MO_16)
+DO_STN_2(3, hh, MO_16, MO_16)
+DO_STN_2(4, hh, MO_16, MO_16)
+
+DO_STN_2(1, ss, MO_32, MO_32)
+DO_STN_2(1, sd, MO_64, MO_32)
+DO_STN_2(2, ss, MO_32, MO_32)
+DO_STN_2(3, ss, MO_32, MO_32)
+DO_STN_2(4, ss, MO_32, MO_32)
+
+DO_STN_2(1, dd, MO_64, MO_64)
+DO_STN_2(2, dd, MO_64, MO_64)
+DO_STN_2(3, dd, MO_64, MO_64)
+DO_STN_2(4, dd, MO_64, MO_64)
+
+#undef DO_STN_1
+#undef DO_STN_2
+
+/*
+ * Loads with a vector index.
+ */
+
+/*
+ * Load the element at @reg + @reg_ofs, sign or zero-extend as needed.
+ */
+typedef target_ulong zreg_off_fn(void *reg, intptr_t reg_ofs);
+
+static target_ulong off_zsu_s(void *reg, intptr_t reg_ofs)
+{
+    return *(uint32_t *)(reg + H1_4(reg_ofs));
+}
+
+static target_ulong off_zss_s(void *reg, intptr_t reg_ofs)
+{
+    return *(int32_t *)(reg + H1_4(reg_ofs));
+}
+
+static target_ulong off_zsu_d(void *reg, intptr_t reg_ofs)
+{
+    return (uint32_t)*(uint64_t *)(reg + reg_ofs);
+}
+
+static target_ulong off_zss_d(void *reg, intptr_t reg_ofs)
+{
+    return (int32_t)*(uint64_t *)(reg + reg_ofs);
+}
+
+static target_ulong off_zd_d(void *reg, intptr_t reg_ofs)
+{
+    return *(uint64_t *)(reg + reg_ofs);
+}
+
+static inline QEMU_ALWAYS_INLINE
+void sve_ld1_z(CPUARMState *env, void *vd, uint64_t *vg, void *vm,
+               target_ulong base, uint32_t desc, uintptr_t retaddr,
+               uint32_t mtedesc, int esize, int msize,
+               zreg_off_fn *off_fn,
+               sve_ldst1_host_fn *host_fn,
+               sve_ldst1_tlb_fn *tlb_fn)
+{
+    const int mmu_idx = cpu_mmu_index(env, false);
+    const intptr_t reg_max = simd_oprsz(desc);
+    const int scale = simd_data(desc);
+    ARMVectorReg scratch;
+    intptr_t reg_off;
+    SVEHostPage info, info2;
+
+    memset(&scratch, 0, reg_max);
+    reg_off = 0;
+    do {
+        uint64_t pg = vg[reg_off >> 6];
+        do {
+            if (likely(pg & 1)) {
+                target_ulong addr = base + (off_fn(vm, reg_off) << scale);
+                target_ulong in_page = -(addr | TARGET_PAGE_MASK);
+
+                sve_probe_page(&info, false, env, addr, 0, MMU_DATA_LOAD,
+                               mmu_idx, retaddr);
+
+                if (likely(in_page >= msize)) {
+                    if (unlikely(info.flags & TLB_WATCHPOINT)) {
+                        cpu_check_watchpoint(env_cpu(env), addr, msize,
+                                             info.attrs, BP_MEM_READ, retaddr);
+                    }
+                    if (mtedesc && info.tagged) {
+                        mte_check(env, mtedesc, addr, retaddr);
+                    }
+                    if (unlikely(info.flags & TLB_MMIO)) {
+                        tlb_fn(env, &scratch, reg_off, addr, retaddr);
+                    } else {
+                        host_fn(&scratch, reg_off, info.host);
+                    }
+                } else {
+                    /* Element crosses the page boundary. */
+                    sve_probe_page(&info2, false, env, addr + in_page, 0,
+                                   MMU_DATA_LOAD, mmu_idx, retaddr);
+                    if (unlikely((info.flags | info2.flags) & TLB_WATCHPOINT)) {
+                        cpu_check_watchpoint(env_cpu(env), addr,
+                                             msize, info.attrs,
+                                             BP_MEM_READ, retaddr);
+                    }
+                    if (mtedesc && info.tagged) {
+                        mte_check(env, mtedesc, addr, retaddr);
+                    }
+                    tlb_fn(env, &scratch, reg_off, addr, retaddr);
+                }
+            }
+            reg_off += esize;
+            pg >>= esize;
+        } while (reg_off & 63);
+    } while (reg_off < reg_max);
+
+    /* Wait until all exceptions have been raised to write back.  */
+    memcpy(vd, &scratch, reg_max);
+}
+
+static inline QEMU_ALWAYS_INLINE
+void sve_ld1_z_mte(CPUARMState *env, void *vd, uint64_t *vg, void *vm,
+                   target_ulong base, uint32_t desc, uintptr_t retaddr,
+                   int esize, int msize, zreg_off_fn *off_fn,
+                   sve_ldst1_host_fn *host_fn,
+                   sve_ldst1_tlb_fn *tlb_fn)
+{
+    uint32_t mtedesc = desc >> (SIMD_DATA_SHIFT + SVE_MTEDESC_SHIFT);
+    /* Remove mtedesc from the normal sve descriptor. */
+    desc = extract32(desc, 0, SIMD_DATA_SHIFT + SVE_MTEDESC_SHIFT);
+
+    /*
+     * ??? TODO: For the 32-bit offset extractions, base + ofs cannot
+     * offset base entirely over the address space hole to change the
+     * pointer tag, or change the bit55 selector.  So we could here
+     * examine TBI + TCMA like we do for sve_ldN_r_mte().
+     */
+    sve_ld1_z(env, vd, vg, vm, base, desc, retaddr, mtedesc,
+              esize, msize, off_fn, host_fn, tlb_fn);
+}
+
+#define DO_LD1_ZPZ_S(MEM, OFS, MSZ) \
+void HELPER(sve_ld##MEM##_##OFS)(CPUARMState *env, void *vd, void *vg,       \
+                                 void *vm, target_ulong base, uint32_t desc) \
+{                                                                            \
+    sve_ld1_z(env, vd, vg, vm, base, desc, GETPC(), 0, 4, 1 << MSZ,          \
+              off_##OFS##_s, sve_ld1##MEM##_host, sve_ld1##MEM##_tlb);       \
+}                                                                            \
+void HELPER(sve_ld##MEM##_##OFS##_mte)(CPUARMState *env, void *vd, void *vg, \
+     void *vm, target_ulong base, uint32_t desc)                             \
+{                                                                            \
+    sve_ld1_z_mte(env, vd, vg, vm, base, desc, GETPC(), 4, 1 << MSZ,         \
+                  off_##OFS##_s, sve_ld1##MEM##_host, sve_ld1##MEM##_tlb);   \
+}
+
+#define DO_LD1_ZPZ_D(MEM, OFS, MSZ) \
+void HELPER(sve_ld##MEM##_##OFS)(CPUARMState *env, void *vd, void *vg,       \
+                                 void *vm, target_ulong base, uint32_t desc) \
+{                                                                            \
+    sve_ld1_z(env, vd, vg, vm, base, desc, GETPC(), 0, 8, 1 << MSZ,          \
+              off_##OFS##_d, sve_ld1##MEM##_host, sve_ld1##MEM##_tlb);       \
+}                                                                            \
+void HELPER(sve_ld##MEM##_##OFS##_mte)(CPUARMState *env, void *vd, void *vg, \
+    void *vm, target_ulong base, uint32_t desc)                              \
+{                                                                            \
+    sve_ld1_z_mte(env, vd, vg, vm, base, desc, GETPC(), 8, 1 << MSZ,         \
+                  off_##OFS##_d, sve_ld1##MEM##_host, sve_ld1##MEM##_tlb);   \
+}
+
+DO_LD1_ZPZ_S(bsu, zsu, MO_8)
+DO_LD1_ZPZ_S(bsu, zss, MO_8)
+DO_LD1_ZPZ_D(bdu, zsu, MO_8)
+DO_LD1_ZPZ_D(bdu, zss, MO_8)
+DO_LD1_ZPZ_D(bdu, zd, MO_8)
+
+DO_LD1_ZPZ_S(bss, zsu, MO_8)
+DO_LD1_ZPZ_S(bss, zss, MO_8)
+DO_LD1_ZPZ_D(bds, zsu, MO_8)
+DO_LD1_ZPZ_D(bds, zss, MO_8)
+DO_LD1_ZPZ_D(bds, zd, MO_8)
+
+DO_LD1_ZPZ_S(hsu_le, zsu, MO_16)
+DO_LD1_ZPZ_S(hsu_le, zss, MO_16)
+DO_LD1_ZPZ_D(hdu_le, zsu, MO_16)
+DO_LD1_ZPZ_D(hdu_le, zss, MO_16)
+DO_LD1_ZPZ_D(hdu_le, zd, MO_16)
+
+DO_LD1_ZPZ_S(hsu_be, zsu, MO_16)
+DO_LD1_ZPZ_S(hsu_be, zss, MO_16)
+DO_LD1_ZPZ_D(hdu_be, zsu, MO_16)
+DO_LD1_ZPZ_D(hdu_be, zss, MO_16)
+DO_LD1_ZPZ_D(hdu_be, zd, MO_16)
+
+DO_LD1_ZPZ_S(hss_le, zsu, MO_16)
+DO_LD1_ZPZ_S(hss_le, zss, MO_16)
+DO_LD1_ZPZ_D(hds_le, zsu, MO_16)
+DO_LD1_ZPZ_D(hds_le, zss, MO_16)
+DO_LD1_ZPZ_D(hds_le, zd, MO_16)
+
+DO_LD1_ZPZ_S(hss_be, zsu, MO_16)
+DO_LD1_ZPZ_S(hss_be, zss, MO_16)
+DO_LD1_ZPZ_D(hds_be, zsu, MO_16)
+DO_LD1_ZPZ_D(hds_be, zss, MO_16)
+DO_LD1_ZPZ_D(hds_be, zd, MO_16)
+
+DO_LD1_ZPZ_S(ss_le, zsu, MO_32)
+DO_LD1_ZPZ_S(ss_le, zss, MO_32)
+DO_LD1_ZPZ_D(sdu_le, zsu, MO_32)
+DO_LD1_ZPZ_D(sdu_le, zss, MO_32)
+DO_LD1_ZPZ_D(sdu_le, zd, MO_32)
+
+DO_LD1_ZPZ_S(ss_be, zsu, MO_32)
+DO_LD1_ZPZ_S(ss_be, zss, MO_32)
+DO_LD1_ZPZ_D(sdu_be, zsu, MO_32)
+DO_LD1_ZPZ_D(sdu_be, zss, MO_32)
+DO_LD1_ZPZ_D(sdu_be, zd, MO_32)
+
+DO_LD1_ZPZ_D(sds_le, zsu, MO_32)
+DO_LD1_ZPZ_D(sds_le, zss, MO_32)
+DO_LD1_ZPZ_D(sds_le, zd, MO_32)
+
+DO_LD1_ZPZ_D(sds_be, zsu, MO_32)
+DO_LD1_ZPZ_D(sds_be, zss, MO_32)
+DO_LD1_ZPZ_D(sds_be, zd, MO_32)
+
+DO_LD1_ZPZ_D(dd_le, zsu, MO_64)
+DO_LD1_ZPZ_D(dd_le, zss, MO_64)
+DO_LD1_ZPZ_D(dd_le, zd, MO_64)
+
+DO_LD1_ZPZ_D(dd_be, zsu, MO_64)
+DO_LD1_ZPZ_D(dd_be, zss, MO_64)
+DO_LD1_ZPZ_D(dd_be, zd, MO_64)
+
+#undef DO_LD1_ZPZ_S
+#undef DO_LD1_ZPZ_D
+
+/* First fault loads with a vector index.  */
+
+/*
+ * Common helpers for all gather first-faulting loads.
+ */
+
+static inline QEMU_ALWAYS_INLINE
+void sve_ldff1_z(CPUARMState *env, void *vd, uint64_t *vg, void *vm,
+                 target_ulong base, uint32_t desc, uintptr_t retaddr,
+                 uint32_t mtedesc, const int esz, const int msz,
+                 zreg_off_fn *off_fn,
+                 sve_ldst1_host_fn *host_fn,
+                 sve_ldst1_tlb_fn *tlb_fn)
+{
+    const int mmu_idx = cpu_mmu_index(env, false);
+    const intptr_t reg_max = simd_oprsz(desc);
+    const int scale = simd_data(desc);
+    const int esize = 1 << esz;
+    const int msize = 1 << msz;
+    intptr_t reg_off;
+    SVEHostPage info;
+    target_ulong addr, in_page;
+
+    /* Skip to the first true predicate.  */
+    reg_off = find_next_active(vg, 0, reg_max, esz);
+    if (unlikely(reg_off >= reg_max)) {
+        /* The entire predicate was false; no load occurs.  */
+        memset(vd, 0, reg_max);
+        return;
+    }
+
+    /*
+     * Probe the first element, allowing faults.
+     */
+    addr = base + (off_fn(vm, reg_off) << scale);
+    if (mtedesc) {
+        mte_check(env, mtedesc, addr, retaddr);
+    }
+    tlb_fn(env, vd, reg_off, addr, retaddr);
+
+    /* After any fault, zero the other elements. */
+    swap_memzero(vd, reg_off);
+    reg_off += esize;
+    swap_memzero(vd + reg_off, reg_max - reg_off);
+
+    /*
+     * Probe the remaining elements, not allowing faults.
+     */
+    while (reg_off < reg_max) {
+        uint64_t pg = vg[reg_off >> 6];
+        do {
+            if (likely((pg >> (reg_off & 63)) & 1)) {
+                addr = base + (off_fn(vm, reg_off) << scale);
+                in_page = -(addr | TARGET_PAGE_MASK);
+
+                if (unlikely(in_page < msize)) {
+                    /* Stop if the element crosses a page boundary. */
+                    goto fault;
+                }
+
+                sve_probe_page(&info, true, env, addr, 0, MMU_DATA_LOAD,
+                               mmu_idx, retaddr);
+                if (unlikely(info.flags & (TLB_INVALID_MASK | TLB_MMIO))) {
+                    goto fault;
+                }
+                if (unlikely(info.flags & TLB_WATCHPOINT) &&
+                    (cpu_watchpoint_address_matches
+                     (env_cpu(env), addr, msize) & BP_MEM_READ)) {
+                    goto fault;
+                }
+                if (mtedesc && info.tagged && !mte_probe(env, mtedesc, addr)) {
+                    goto fault;
+                }
+
+                host_fn(vd, reg_off, info.host);
+            }
+            reg_off += esize;
+        } while (reg_off & 63);
+    }
+    return;
+
+ fault:
+    record_fault(env, reg_off, reg_max);
+}
+
+static inline QEMU_ALWAYS_INLINE
+void sve_ldff1_z_mte(CPUARMState *env, void *vd, uint64_t *vg, void *vm,
+                     target_ulong base, uint32_t desc, uintptr_t retaddr,
+                     const int esz, const int msz,
+                     zreg_off_fn *off_fn,
+                     sve_ldst1_host_fn *host_fn,
+                     sve_ldst1_tlb_fn *tlb_fn)
+{
+    uint32_t mtedesc = desc >> (SIMD_DATA_SHIFT + SVE_MTEDESC_SHIFT);
+    /* Remove mtedesc from the normal sve descriptor. */
+    desc = extract32(desc, 0, SIMD_DATA_SHIFT + SVE_MTEDESC_SHIFT);
+
+    /*
+     * ??? TODO: For the 32-bit offset extractions, base + ofs cannot
+     * offset base entirely over the address space hole to change the
+     * pointer tag, or change the bit55 selector.  So we could here
+     * examine TBI + TCMA like we do for sve_ldN_r_mte().
+     */
+    sve_ldff1_z(env, vd, vg, vm, base, desc, retaddr, mtedesc,
+                esz, msz, off_fn, host_fn, tlb_fn);
+}
+
+#define DO_LDFF1_ZPZ_S(MEM, OFS, MSZ)                                   \
+void HELPER(sve_ldff##MEM##_##OFS)                                      \
+    (CPUARMState *env, void *vd, void *vg,                              \
+     void *vm, target_ulong base, uint32_t desc)                        \
+{                                                                       \
+    sve_ldff1_z(env, vd, vg, vm, base, desc, GETPC(), 0, MO_32, MSZ,    \
+                off_##OFS##_s, sve_ld1##MEM##_host, sve_ld1##MEM##_tlb); \
+}                                                                       \
+void HELPER(sve_ldff##MEM##_##OFS##_mte)                                \
+    (CPUARMState *env, void *vd, void *vg,                              \
+     void *vm, target_ulong base, uint32_t desc)                        \
+{                                                                       \
+    sve_ldff1_z_mte(env, vd, vg, vm, base, desc, GETPC(), MO_32, MSZ,   \
+                    off_##OFS##_s, sve_ld1##MEM##_host, sve_ld1##MEM##_tlb); \
+}
+
+#define DO_LDFF1_ZPZ_D(MEM, OFS, MSZ)                                   \
+void HELPER(sve_ldff##MEM##_##OFS)                                      \
+    (CPUARMState *env, void *vd, void *vg,                              \
+     void *vm, target_ulong base, uint32_t desc)                        \
+{                                                                       \
+    sve_ldff1_z(env, vd, vg, vm, base, desc, GETPC(), 0, MO_64, MSZ,    \
+                off_##OFS##_d, sve_ld1##MEM##_host, sve_ld1##MEM##_tlb); \
+}                                                                       \
+void HELPER(sve_ldff##MEM##_##OFS##_mte)                                \
+    (CPUARMState *env, void *vd, void *vg,                              \
+     void *vm, target_ulong base, uint32_t desc)                        \
+{                                                                       \
+    sve_ldff1_z_mte(env, vd, vg, vm, base, desc, GETPC(), MO_64, MSZ,   \
+                    off_##OFS##_d, sve_ld1##MEM##_host, sve_ld1##MEM##_tlb); \
+}
+
+DO_LDFF1_ZPZ_S(bsu, zsu, MO_8)
+DO_LDFF1_ZPZ_S(bsu, zss, MO_8)
+DO_LDFF1_ZPZ_D(bdu, zsu, MO_8)
+DO_LDFF1_ZPZ_D(bdu, zss, MO_8)
+DO_LDFF1_ZPZ_D(bdu, zd, MO_8)
+
+DO_LDFF1_ZPZ_S(bss, zsu, MO_8)
+DO_LDFF1_ZPZ_S(bss, zss, MO_8)
+DO_LDFF1_ZPZ_D(bds, zsu, MO_8)
+DO_LDFF1_ZPZ_D(bds, zss, MO_8)
+DO_LDFF1_ZPZ_D(bds, zd, MO_8)
+
+DO_LDFF1_ZPZ_S(hsu_le, zsu, MO_16)
+DO_LDFF1_ZPZ_S(hsu_le, zss, MO_16)
+DO_LDFF1_ZPZ_D(hdu_le, zsu, MO_16)
+DO_LDFF1_ZPZ_D(hdu_le, zss, MO_16)
+DO_LDFF1_ZPZ_D(hdu_le, zd, MO_16)
+
+DO_LDFF1_ZPZ_S(hsu_be, zsu, MO_16)
+DO_LDFF1_ZPZ_S(hsu_be, zss, MO_16)
+DO_LDFF1_ZPZ_D(hdu_be, zsu, MO_16)
+DO_LDFF1_ZPZ_D(hdu_be, zss, MO_16)
+DO_LDFF1_ZPZ_D(hdu_be, zd, MO_16)
+
+DO_LDFF1_ZPZ_S(hss_le, zsu, MO_16)
+DO_LDFF1_ZPZ_S(hss_le, zss, MO_16)
+DO_LDFF1_ZPZ_D(hds_le, zsu, MO_16)
+DO_LDFF1_ZPZ_D(hds_le, zss, MO_16)
+DO_LDFF1_ZPZ_D(hds_le, zd, MO_16)
+
+DO_LDFF1_ZPZ_S(hss_be, zsu, MO_16)
+DO_LDFF1_ZPZ_S(hss_be, zss, MO_16)
+DO_LDFF1_ZPZ_D(hds_be, zsu, MO_16)
+DO_LDFF1_ZPZ_D(hds_be, zss, MO_16)
+DO_LDFF1_ZPZ_D(hds_be, zd, MO_16)
+
+DO_LDFF1_ZPZ_S(ss_le,  zsu, MO_32)
+DO_LDFF1_ZPZ_S(ss_le,  zss, MO_32)
+DO_LDFF1_ZPZ_D(sdu_le, zsu, MO_32)
+DO_LDFF1_ZPZ_D(sdu_le, zss, MO_32)
+DO_LDFF1_ZPZ_D(sdu_le, zd, MO_32)
+
+DO_LDFF1_ZPZ_S(ss_be,  zsu, MO_32)
+DO_LDFF1_ZPZ_S(ss_be,  zss, MO_32)
+DO_LDFF1_ZPZ_D(sdu_be, zsu, MO_32)
+DO_LDFF1_ZPZ_D(sdu_be, zss, MO_32)
+DO_LDFF1_ZPZ_D(sdu_be, zd, MO_32)
+
+DO_LDFF1_ZPZ_D(sds_le, zsu, MO_32)
+DO_LDFF1_ZPZ_D(sds_le, zss, MO_32)
+DO_LDFF1_ZPZ_D(sds_le, zd, MO_32)
+
+DO_LDFF1_ZPZ_D(sds_be, zsu, MO_32)
+DO_LDFF1_ZPZ_D(sds_be, zss, MO_32)
+DO_LDFF1_ZPZ_D(sds_be, zd, MO_32)
+
+DO_LDFF1_ZPZ_D(dd_le, zsu, MO_64)
+DO_LDFF1_ZPZ_D(dd_le, zss, MO_64)
+DO_LDFF1_ZPZ_D(dd_le, zd, MO_64)
+
+DO_LDFF1_ZPZ_D(dd_be, zsu, MO_64)
+DO_LDFF1_ZPZ_D(dd_be, zss, MO_64)
+DO_LDFF1_ZPZ_D(dd_be, zd, MO_64)
+
+/* Stores with a vector index.  */
+
+static inline QEMU_ALWAYS_INLINE
+void sve_st1_z(CPUARMState *env, void *vd, uint64_t *vg, void *vm,
+               target_ulong base, uint32_t desc, uintptr_t retaddr,
+               uint32_t mtedesc, int esize, int msize,
+               zreg_off_fn *off_fn,
+               sve_ldst1_host_fn *host_fn,
+               sve_ldst1_tlb_fn *tlb_fn)
+{
+    const int mmu_idx = cpu_mmu_index(env, false);
+    const intptr_t reg_max = simd_oprsz(desc);
+    const int scale = simd_data(desc);
+    void *host[ARM_MAX_VQ * 4];
+    intptr_t reg_off, i;
+    SVEHostPage info, info2;
+
+    /*
+     * Probe all of the elements for host addresses and flags.
+     */
+    i = reg_off = 0;
+    do {
+        uint64_t pg = vg[reg_off >> 6];
+        do {
+            target_ulong addr = base + (off_fn(vm, reg_off) << scale);
+            target_ulong in_page = -(addr | TARGET_PAGE_MASK);
+
+            host[i] = NULL;
+            if (likely((pg >> (reg_off & 63)) & 1)) {
+                if (likely(in_page >= msize)) {
+                    sve_probe_page(&info, false, env, addr, 0, MMU_DATA_STORE,
+                                   mmu_idx, retaddr);
+                    if (!(info.flags & TLB_MMIO)) {
+                        host[i] = info.host;
+                    }
+                } else {
+                    /*
+                     * Element crosses the page boundary.
+                     * Probe both pages, but do not record the host address,
+                     * so that we use the slow path.
+                     */
+                    sve_probe_page(&info, false, env, addr, 0,
+                                   MMU_DATA_STORE, mmu_idx, retaddr);
+                    sve_probe_page(&info2, false, env, addr + in_page, 0,
+                                   MMU_DATA_STORE, mmu_idx, retaddr);
+                    info.flags |= info2.flags;
+                }
+
+                if (unlikely(info.flags & TLB_WATCHPOINT)) {
+                    cpu_check_watchpoint(env_cpu(env), addr, msize,
+                                         info.attrs, BP_MEM_WRITE, retaddr);
+                }
+
+                if (mtedesc && info.tagged) {
+                    mte_check(env, mtedesc, addr, retaddr);
+                }
+            }
+            i += 1;
+            reg_off += esize;
+        } while (reg_off & 63);
+    } while (reg_off < reg_max);
+
+    /*
+     * Now that we have recognized all exceptions except SyncExternal
+     * (from TLB_MMIO), which we cannot avoid, perform all of the stores.
+     *
+     * Note for the common case of an element in RAM, not crossing a page
+     * boundary, we have stored the host address in host[].  This doubles
+     * as a first-level check against the predicate, since only enabled
+     * elements have non-null host addresses.
+     */
+    i = reg_off = 0;
+    do {
+        void *h = host[i];
+        if (likely(h != NULL)) {
+            host_fn(vd, reg_off, h);
+        } else if ((vg[reg_off >> 6] >> (reg_off & 63)) & 1) {
+            target_ulong addr = base + (off_fn(vm, reg_off) << scale);
+            tlb_fn(env, vd, reg_off, addr, retaddr);
+        }
+        i += 1;
+        reg_off += esize;
+    } while (reg_off < reg_max);
+}
+
+static inline QEMU_ALWAYS_INLINE
+void sve_st1_z_mte(CPUARMState *env, void *vd, uint64_t *vg, void *vm,
+                   target_ulong base, uint32_t desc, uintptr_t retaddr,
+                   int esize, int msize, zreg_off_fn *off_fn,
+                   sve_ldst1_host_fn *host_fn,
+                   sve_ldst1_tlb_fn *tlb_fn)
+{
+    uint32_t mtedesc = desc >> (SIMD_DATA_SHIFT + SVE_MTEDESC_SHIFT);
+    /* Remove mtedesc from the normal sve descriptor. */
+    desc = extract32(desc, 0, SIMD_DATA_SHIFT + SVE_MTEDESC_SHIFT);
+
+    /*
+     * ??? TODO: For the 32-bit offset extractions, base + ofs cannot
+     * offset base entirely over the address space hole to change the
+     * pointer tag, or change the bit55 selector.  So we could here
+     * examine TBI + TCMA like we do for sve_ldN_r_mte().
+     */
+    sve_st1_z(env, vd, vg, vm, base, desc, retaddr, mtedesc,
+              esize, msize, off_fn, host_fn, tlb_fn);
+}
+
+#define DO_ST1_ZPZ_S(MEM, OFS, MSZ)                                     \
+void HELPER(sve_st##MEM##_##OFS)(CPUARMState *env, void *vd, void *vg,  \
+                                 void *vm, target_ulong base, uint32_t desc) \
+{                                                                       \
+    sve_st1_z(env, vd, vg, vm, base, desc, GETPC(), 0, 4, 1 << MSZ,     \
+              off_##OFS##_s, sve_st1##MEM##_host, sve_st1##MEM##_tlb);  \
+}                                                                       \
+void HELPER(sve_st##MEM##_##OFS##_mte)(CPUARMState *env, void *vd, void *vg, \
+    void *vm, target_ulong base, uint32_t desc)                         \
+{                                                                       \
+    sve_st1_z_mte(env, vd, vg, vm, base, desc, GETPC(), 4, 1 << MSZ,    \
+                  off_##OFS##_s, sve_st1##MEM##_host, sve_st1##MEM##_tlb); \
+}
+
+#define DO_ST1_ZPZ_D(MEM, OFS, MSZ)                                     \
+void HELPER(sve_st##MEM##_##OFS)(CPUARMState *env, void *vd, void *vg,  \
+                                 void *vm, target_ulong base, uint32_t desc) \
+{                                                                       \
+    sve_st1_z(env, vd, vg, vm, base, desc, GETPC(), 0, 8, 1 << MSZ,     \
+              off_##OFS##_d, sve_st1##MEM##_host, sve_st1##MEM##_tlb);  \
+}                                                                       \
+void HELPER(sve_st##MEM##_##OFS##_mte)(CPUARMState *env, void *vd, void *vg, \
+    void *vm, target_ulong base, uint32_t desc)                         \
+{                                                                       \
+    sve_st1_z_mte(env, vd, vg, vm, base, desc, GETPC(), 8, 1 << MSZ,    \
+                  off_##OFS##_d, sve_st1##MEM##_host, sve_st1##MEM##_tlb); \
+}
+
+DO_ST1_ZPZ_S(bs, zsu, MO_8)
+DO_ST1_ZPZ_S(hs_le, zsu, MO_16)
+DO_ST1_ZPZ_S(hs_be, zsu, MO_16)
+DO_ST1_ZPZ_S(ss_le, zsu, MO_32)
+DO_ST1_ZPZ_S(ss_be, zsu, MO_32)
+
+DO_ST1_ZPZ_S(bs, zss, MO_8)
+DO_ST1_ZPZ_S(hs_le, zss, MO_16)
+DO_ST1_ZPZ_S(hs_be, zss, MO_16)
+DO_ST1_ZPZ_S(ss_le, zss, MO_32)
+DO_ST1_ZPZ_S(ss_be, zss, MO_32)
+
+DO_ST1_ZPZ_D(bd, zsu, MO_8)
+DO_ST1_ZPZ_D(hd_le, zsu, MO_16)
+DO_ST1_ZPZ_D(hd_be, zsu, MO_16)
+DO_ST1_ZPZ_D(sd_le, zsu, MO_32)
+DO_ST1_ZPZ_D(sd_be, zsu, MO_32)
+DO_ST1_ZPZ_D(dd_le, zsu, MO_64)
+DO_ST1_ZPZ_D(dd_be, zsu, MO_64)
+
+DO_ST1_ZPZ_D(bd, zss, MO_8)
+DO_ST1_ZPZ_D(hd_le, zss, MO_16)
+DO_ST1_ZPZ_D(hd_be, zss, MO_16)
+DO_ST1_ZPZ_D(sd_le, zss, MO_32)
+DO_ST1_ZPZ_D(sd_be, zss, MO_32)
+DO_ST1_ZPZ_D(dd_le, zss, MO_64)
+DO_ST1_ZPZ_D(dd_be, zss, MO_64)
+
+DO_ST1_ZPZ_D(bd, zd, MO_8)
+DO_ST1_ZPZ_D(hd_le, zd, MO_16)
+DO_ST1_ZPZ_D(hd_be, zd, MO_16)
+DO_ST1_ZPZ_D(sd_le, zd, MO_32)
+DO_ST1_ZPZ_D(sd_be, zd, MO_32)
+DO_ST1_ZPZ_D(dd_le, zd, MO_64)
+DO_ST1_ZPZ_D(dd_be, zd, MO_64)
+
+#undef DO_ST1_ZPZ_S
+#undef DO_ST1_ZPZ_D
+
+void HELPER(sve2_eor3)(void *vd, void *vn, void *vm, void *vk, uint32_t desc)
+{
+    intptr_t i, opr_sz = simd_oprsz(desc) / 8;
+    uint64_t *d = vd, *n = vn, *m = vm, *k = vk;
+
+    for (i = 0; i < opr_sz; ++i) {
+        d[i] = n[i] ^ m[i] ^ k[i];
+    }
+}
+
+void HELPER(sve2_bcax)(void *vd, void *vn, void *vm, void *vk, uint32_t desc)
+{
+    intptr_t i, opr_sz = simd_oprsz(desc) / 8;
+    uint64_t *d = vd, *n = vn, *m = vm, *k = vk;
+
+    for (i = 0; i < opr_sz; ++i) {
+        d[i] = n[i] ^ (m[i] & ~k[i]);
+    }
+}
+
+void HELPER(sve2_bsl1n)(void *vd, void *vn, void *vm, void *vk, uint32_t desc)
+{
+    intptr_t i, opr_sz = simd_oprsz(desc) / 8;
+    uint64_t *d = vd, *n = vn, *m = vm, *k = vk;
+
+    for (i = 0; i < opr_sz; ++i) {
+        d[i] = (~n[i] & k[i]) | (m[i] & ~k[i]);
+    }
+}
+
+void HELPER(sve2_bsl2n)(void *vd, void *vn, void *vm, void *vk, uint32_t desc)
+{
+    intptr_t i, opr_sz = simd_oprsz(desc) / 8;
+    uint64_t *d = vd, *n = vn, *m = vm, *k = vk;
+
+    for (i = 0; i < opr_sz; ++i) {
+        d[i] = (n[i] & k[i]) | (~m[i] & ~k[i]);
+    }
+}
+
+void HELPER(sve2_nbsl)(void *vd, void *vn, void *vm, void *vk, uint32_t desc)
+{
+    intptr_t i, opr_sz = simd_oprsz(desc) / 8;
+    uint64_t *d = vd, *n = vn, *m = vm, *k = vk;
+
+    for (i = 0; i < opr_sz; ++i) {
+        d[i] = ~((n[i] & k[i]) | (m[i] & ~k[i]));
+    }
+}
+
+/*
+ * Returns true if m0 or m1 contains the low uint8_t/uint16_t in n.
+ * See hasless(v,1) from
+ *   https://graphics.stanford.edu/~seander/bithacks.html#ZeroInWord
+ */
+static inline bool do_match2(uint64_t n, uint64_t m0, uint64_t m1, int esz)
+{
+    int bits = 8 << esz;
+    uint64_t ones = dup_const(esz, 1);
+    uint64_t signs = ones << (bits - 1);
+    uint64_t cmp0, cmp1;
+
+    cmp1 = dup_const(esz, n);
+    cmp0 = cmp1 ^ m0;
+    cmp1 = cmp1 ^ m1;
+    cmp0 = (cmp0 - ones) & ~cmp0;
+    cmp1 = (cmp1 - ones) & ~cmp1;
+    return (cmp0 | cmp1) & signs;
+}
+
+static inline uint32_t do_match(void *vd, void *vn, void *vm, void *vg,
+                                uint32_t desc, int esz, bool nmatch)
+{
+    uint16_t esz_mask = pred_esz_masks[esz];
+    intptr_t opr_sz = simd_oprsz(desc);
+    uint32_t flags = PREDTEST_INIT;
+    intptr_t i, j, k;
+
+    for (i = 0; i < opr_sz; i += 16) {
+        uint64_t m0 = *(uint64_t *)(vm + i);
+        uint64_t m1 = *(uint64_t *)(vm + i + 8);
+        uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)) & esz_mask;
+        uint16_t out = 0;
+
+        for (j = 0; j < 16; j += 8) {
+            uint64_t n = *(uint64_t *)(vn + i + j);
+
+            for (k = 0; k < 8; k += 1 << esz) {
+                if (pg & (1 << (j + k))) {
+                    bool o = do_match2(n >> (k * 8), m0, m1, esz);
+                    out |= (o ^ nmatch) << (j + k);
+                }
+            }
+        }
+        *(uint16_t *)(vd + H1_2(i >> 3)) = out;
+        flags = iter_predtest_fwd(out, pg, flags);
+    }
+    return flags;
+}
+
+#define DO_PPZZ_MATCH(NAME, ESZ, INV)                                         \
+uint32_t HELPER(NAME)(void *vd, void *vn, void *vm, void *vg, uint32_t desc)  \
+{                                                                             \
+    return do_match(vd, vn, vm, vg, desc, ESZ, INV);                          \
+}
+
+DO_PPZZ_MATCH(sve2_match_ppzz_b, MO_8, false)
+DO_PPZZ_MATCH(sve2_match_ppzz_h, MO_16, false)
+
+DO_PPZZ_MATCH(sve2_nmatch_ppzz_b, MO_8, true)
+DO_PPZZ_MATCH(sve2_nmatch_ppzz_h, MO_16, true)
+
+#undef DO_PPZZ_MATCH
+
+void HELPER(sve2_histcnt_s)(void *vd, void *vn, void *vm, void *vg,
+                            uint32_t desc)
+{
+    ARMVectorReg scratch;
+    intptr_t i, j;
+    intptr_t opr_sz = simd_oprsz(desc);
+    uint32_t *d = vd, *n = vn, *m = vm;
+    uint8_t *pg = vg;
+
+    if (d == n) {
+        n = memcpy(&scratch, n, opr_sz);
+        if (d == m) {
+            m = n;
+        }
+    } else if (d == m) {
+        m = memcpy(&scratch, m, opr_sz);
+    }
+
+    for (i = 0; i < opr_sz; i += 4) {
+        uint64_t count = 0;
+        uint8_t pred;
+
+        pred = pg[H1(i >> 3)] >> (i & 7);
+        if (pred & 1) {
+            uint32_t nn = n[H4(i >> 2)];
+
+            for (j = 0; j <= i; j += 4) {
+                pred = pg[H1(j >> 3)] >> (j & 7);
+                if ((pred & 1) && nn == m[H4(j >> 2)]) {
+                    ++count;
+                }
+            }
+        }
+        d[H4(i >> 2)] = count;
+    }
+}
+
+void HELPER(sve2_histcnt_d)(void *vd, void *vn, void *vm, void *vg,
+                            uint32_t desc)
+{
+    ARMVectorReg scratch;
+    intptr_t i, j;
+    intptr_t opr_sz = simd_oprsz(desc);
+    uint64_t *d = vd, *n = vn, *m = vm;
+    uint8_t *pg = vg;
+
+    if (d == n) {
+        n = memcpy(&scratch, n, opr_sz);
+        if (d == m) {
+            m = n;
+        }
+    } else if (d == m) {
+        m = memcpy(&scratch, m, opr_sz);
+    }
+
+    for (i = 0; i < opr_sz / 8; ++i) {
+        uint64_t count = 0;
+        if (pg[H1(i)] & 1) {
+            uint64_t nn = n[i];
+            for (j = 0; j <= i; ++j) {
+                if ((pg[H1(j)] & 1) && nn == m[j]) {
+                    ++count;
+                }
+            }
+        }
+        d[i] = count;
+    }
+}
+
+/*
+ * Returns the number of bytes in m0 and m1 that match n.
+ * Unlike do_match2 we don't just need true/false, we need an exact count.
+ * This requires two extra logical operations.
+ */
+static inline uint64_t do_histseg_cnt(uint8_t n, uint64_t m0, uint64_t m1)
+{
+    const uint64_t mask = dup_const(MO_8, 0x7f);
+    uint64_t cmp0, cmp1;
+
+    cmp1 = dup_const(MO_8, n);
+    cmp0 = cmp1 ^ m0;
+    cmp1 = cmp1 ^ m1;
+
+    /*
+     * 1: clear msb of each byte to avoid carry to next byte (& mask)
+     * 2: carry in to msb if byte != 0 (+ mask)
+     * 3: set msb if cmp has msb set (| cmp)
+     * 4: set ~msb to ignore them (| mask)
+     * We now have 0xff for byte != 0 or 0x7f for byte == 0.
+     * 5: invert, resulting in 0x80 if and only if byte == 0.
+     */
+    cmp0 = ~(((cmp0 & mask) + mask) | cmp0 | mask);
+    cmp1 = ~(((cmp1 & mask) + mask) | cmp1 | mask);
+
+    /*
+     * Combine the two compares in a way that the bits do
+     * not overlap, and so preserves the count of set bits.
+     * If the host has an efficient instruction for ctpop,
+     * then ctpop(x) + ctpop(y) has the same number of
+     * operations as ctpop(x | (y >> 1)).  If the host does
+     * not have an efficient ctpop, then we only want to
+     * use it once.
+     */
+    return ctpop64(cmp0 | (cmp1 >> 1));
+}
+
+void HELPER(sve2_histseg)(void *vd, void *vn, void *vm, uint32_t desc)
+{
+    intptr_t i, j;
+    intptr_t opr_sz = simd_oprsz(desc);
+
+    for (i = 0; i < opr_sz; i += 16) {
+        uint64_t n0 = *(uint64_t *)(vn + i);
+        uint64_t m0 = *(uint64_t *)(vm + i);
+        uint64_t n1 = *(uint64_t *)(vn + i + 8);
+        uint64_t m1 = *(uint64_t *)(vm + i + 8);
+        uint64_t out0 = 0;
+        uint64_t out1 = 0;
+
+        for (j = 0; j < 64; j += 8) {
+            uint64_t cnt0 = do_histseg_cnt(n0 >> j, m0, m1);
+            uint64_t cnt1 = do_histseg_cnt(n1 >> j, m0, m1);
+            out0 |= cnt0 << j;
+            out1 |= cnt1 << j;
+        }
+
+        *(uint64_t *)(vd + i) = out0;
+        *(uint64_t *)(vd + i + 8) = out1;
+    }
+}
+
+void HELPER(sve2_xar_b)(void *vd, void *vn, void *vm, uint32_t desc)
+{
+    intptr_t i, opr_sz = simd_oprsz(desc) / 8;
+    int shr = simd_data(desc);
+    int shl = 8 - shr;
+    uint64_t mask = dup_const(MO_8, 0xff >> shr);
+    uint64_t *d = vd, *n = vn, *m = vm;
+
+    for (i = 0; i < opr_sz; ++i) {
+        uint64_t t = n[i] ^ m[i];
+        d[i] = ((t >> shr) & mask) | ((t << shl) & ~mask);
+    }
+}
+
+void HELPER(sve2_xar_h)(void *vd, void *vn, void *vm, uint32_t desc)
+{
+    intptr_t i, opr_sz = simd_oprsz(desc) / 8;
+    int shr = simd_data(desc);
+    int shl = 16 - shr;
+    uint64_t mask = dup_const(MO_16, 0xffff >> shr);
+    uint64_t *d = vd, *n = vn, *m = vm;
+
+    for (i = 0; i < opr_sz; ++i) {
+        uint64_t t = n[i] ^ m[i];
+        d[i] = ((t >> shr) & mask) | ((t << shl) & ~mask);
+    }
+}
+
+void HELPER(sve2_xar_s)(void *vd, void *vn, void *vm, uint32_t desc)
+{
+    intptr_t i, opr_sz = simd_oprsz(desc) / 4;
+    int shr = simd_data(desc);
+    uint32_t *d = vd, *n = vn, *m = vm;
+
+    for (i = 0; i < opr_sz; ++i) {
+        d[i] = ror32(n[i] ^ m[i], shr);
+    }
+}
+
+void HELPER(fmmla_s)(void *vd, void *vn, void *vm, void *va,
+                     void *status, uint32_t desc)
+{
+    intptr_t s, opr_sz = simd_oprsz(desc) / (sizeof(float32) * 4);
+
+    for (s = 0; s < opr_sz; ++s) {
+        float32 *n = vn + s * sizeof(float32) * 4;
+        float32 *m = vm + s * sizeof(float32) * 4;
+        float32 *a = va + s * sizeof(float32) * 4;
+        float32 *d = vd + s * sizeof(float32) * 4;
+        float32 n00 = n[H4(0)], n01 = n[H4(1)];
+        float32 n10 = n[H4(2)], n11 = n[H4(3)];
+        float32 m00 = m[H4(0)], m01 = m[H4(1)];
+        float32 m10 = m[H4(2)], m11 = m[H4(3)];
+        float32 p0, p1;
+
+        /* i = 0, j = 0 */
+        p0 = float32_mul(n00, m00, status);
+        p1 = float32_mul(n01, m01, status);
+        d[H4(0)] = float32_add(a[H4(0)], float32_add(p0, p1, status), status);
+
+        /* i = 0, j = 1 */
+        p0 = float32_mul(n00, m10, status);
+        p1 = float32_mul(n01, m11, status);
+        d[H4(1)] = float32_add(a[H4(1)], float32_add(p0, p1, status), status);
+
+        /* i = 1, j = 0 */
+        p0 = float32_mul(n10, m00, status);
+        p1 = float32_mul(n11, m01, status);
+        d[H4(2)] = float32_add(a[H4(2)], float32_add(p0, p1, status), status);
+
+        /* i = 1, j = 1 */
+        p0 = float32_mul(n10, m10, status);
+        p1 = float32_mul(n11, m11, status);
+        d[H4(3)] = float32_add(a[H4(3)], float32_add(p0, p1, status), status);
+    }
+}
+
+void HELPER(fmmla_d)(void *vd, void *vn, void *vm, void *va,
+                     void *status, uint32_t desc)
+{
+    intptr_t s, opr_sz = simd_oprsz(desc) / (sizeof(float64) * 4);
+
+    for (s = 0; s < opr_sz; ++s) {
+        float64 *n = vn + s * sizeof(float64) * 4;
+        float64 *m = vm + s * sizeof(float64) * 4;
+        float64 *a = va + s * sizeof(float64) * 4;
+        float64 *d = vd + s * sizeof(float64) * 4;
+        float64 n00 = n[0], n01 = n[1], n10 = n[2], n11 = n[3];
+        float64 m00 = m[0], m01 = m[1], m10 = m[2], m11 = m[3];
+        float64 p0, p1;
+
+        /* i = 0, j = 0 */
+        p0 = float64_mul(n00, m00, status);
+        p1 = float64_mul(n01, m01, status);
+        d[0] = float64_add(a[0], float64_add(p0, p1, status), status);
+
+        /* i = 0, j = 1 */
+        p0 = float64_mul(n00, m10, status);
+        p1 = float64_mul(n01, m11, status);
+        d[1] = float64_add(a[1], float64_add(p0, p1, status), status);
+
+        /* i = 1, j = 0 */
+        p0 = float64_mul(n10, m00, status);
+        p1 = float64_mul(n11, m01, status);
+        d[2] = float64_add(a[2], float64_add(p0, p1, status), status);
+
+        /* i = 1, j = 1 */
+        p0 = float64_mul(n10, m10, status);
+        p1 = float64_mul(n11, m11, status);
+        d[3] = float64_add(a[3], float64_add(p0, p1, status), status);
+    }
+}
+
+#define DO_FCVTNT(NAME, TYPEW, TYPEN, HW, HN, OP)                             \
+void HELPER(NAME)(void *vd, void *vn, void *vg, void *status, uint32_t desc)  \
+{                                                                             \
+    intptr_t i = simd_oprsz(desc);                                            \
+    uint64_t *g = vg;                                                         \
+    do {                                                                      \
+        uint64_t pg = g[(i - 1) >> 6];                                        \
+        do {                                                                  \
+            i -= sizeof(TYPEW);                                               \
+            if (likely((pg >> (i & 63)) & 1)) {                               \
+                TYPEW nn = *(TYPEW *)(vn + HW(i));                            \
+                *(TYPEN *)(vd + HN(i + sizeof(TYPEN))) = OP(nn, status);      \
+            }                                                                 \
+        } while (i & 63);                                                     \
+    } while (i != 0);                                                         \
+}
+
+DO_FCVTNT(sve_bfcvtnt,    uint32_t, uint16_t, H1_4, H1_2, float32_to_bfloat16)
+DO_FCVTNT(sve2_fcvtnt_sh, uint32_t, uint16_t, H1_4, H1_2, sve_f32_to_f16)
+DO_FCVTNT(sve2_fcvtnt_ds, uint64_t, uint32_t, H1_8, H1_4, float64_to_float32)
+
+#define DO_FCVTLT(NAME, TYPEW, TYPEN, HW, HN, OP)                             \
+void HELPER(NAME)(void *vd, void *vn, void *vg, void *status, uint32_t desc)  \
+{                                                                             \
+    intptr_t i = simd_oprsz(desc);                                            \
+    uint64_t *g = vg;                                                         \
+    do {                                                                      \
+        uint64_t pg = g[(i - 1) >> 6];                                        \
+        do {                                                                  \
+            i -= sizeof(TYPEW);                                               \
+            if (likely((pg >> (i & 63)) & 1)) {                               \
+                TYPEN nn = *(TYPEN *)(vn + HN(i + sizeof(TYPEN)));            \
+                *(TYPEW *)(vd + HW(i)) = OP(nn, status);                      \
+            }                                                                 \
+        } while (i & 63);                                                     \
+    } while (i != 0);                                                         \
+}
+
+DO_FCVTLT(sve2_fcvtlt_hs, uint32_t, uint16_t, H1_4, H1_2, sve_f16_to_f32)
+DO_FCVTLT(sve2_fcvtlt_sd, uint64_t, uint32_t, H1_8, H1_4, float32_to_float64)
+
+#undef DO_FCVTLT
+#undef DO_FCVTNT