summary refs log tree commit diff stats
path: root/target/i386/hvf/hvf.c
diff options
context:
space:
mode:
Diffstat (limited to 'target/i386/hvf/hvf.c')
-rw-r--r--target/i386/hvf/hvf.c959
1 files changed, 959 insertions, 0 deletions
diff --git a/target/i386/hvf/hvf.c b/target/i386/hvf/hvf.c
new file mode 100644
index 0000000000..010866ed22
--- /dev/null
+++ b/target/i386/hvf/hvf.c
@@ -0,0 +1,959 @@
+/* Copyright 2008 IBM Corporation
+ *           2008 Red Hat, Inc.
+ * Copyright 2011 Intel Corporation
+ * Copyright 2016 Veertu, Inc.
+ * Copyright 2017 The Android Open Source Project
+ *
+ * QEMU Hypervisor.framework support
+ *
+ * This program is free software; you can redistribute it and/or
+ * modify it under the terms of version 2 of the GNU General Public
+ * License as published by the Free Software Foundation.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this program; if not, see <http://www.gnu.org/licenses/>.
+ */
+#include "qemu/osdep.h"
+#include "qemu-common.h"
+#include "qemu/error-report.h"
+
+#include "sysemu/hvf.h"
+#include "hvf-i386.h"
+#include "vmcs.h"
+#include "vmx.h"
+#include "x86.h"
+#include "x86_descr.h"
+#include "x86_mmu.h"
+#include "x86_decode.h"
+#include "x86_emu.h"
+#include "x86_task.h"
+#include "x86hvf.h"
+
+#include <Hypervisor/hv.h>
+#include <Hypervisor/hv_vmx.h>
+
+#include "exec/address-spaces.h"
+#include "exec/exec-all.h"
+#include "exec/ioport.h"
+#include "hw/i386/apic_internal.h"
+#include "hw/boards.h"
+#include "qemu/main-loop.h"
+#include "strings.h"
+#include "sysemu/accel.h"
+#include "sysemu/sysemu.h"
+#include "target/i386/cpu.h"
+
+pthread_rwlock_t mem_lock = PTHREAD_RWLOCK_INITIALIZER;
+HVFState *hvf_state;
+int hvf_disabled = 1;
+
+static void assert_hvf_ok(hv_return_t ret)
+{
+    if (ret == HV_SUCCESS) {
+        return;
+    }
+
+    switch (ret) {
+    case HV_ERROR:
+        error_report("Error: HV_ERROR\n");
+        break;
+    case HV_BUSY:
+        error_report("Error: HV_BUSY\n");
+        break;
+    case HV_BAD_ARGUMENT:
+        error_report("Error: HV_BAD_ARGUMENT\n");
+        break;
+    case HV_NO_RESOURCES:
+        error_report("Error: HV_NO_RESOURCES\n");
+        break;
+    case HV_NO_DEVICE:
+        error_report("Error: HV_NO_DEVICE\n");
+        break;
+    case HV_UNSUPPORTED:
+        error_report("Error: HV_UNSUPPORTED\n");
+        break;
+    default:
+        error_report("Unknown Error\n");
+    }
+
+    abort();
+}
+
+/* Memory slots */
+hvf_slot *hvf_find_overlap_slot(uint64_t start, uint64_t end)
+{
+    hvf_slot *slot;
+    int x;
+    for (x = 0; x < hvf_state->num_slots; ++x) {
+        slot = &hvf_state->slots[x];
+        if (slot->size && start < (slot->start + slot->size) &&
+            end > slot->start) {
+            return slot;
+        }
+    }
+    return NULL;
+}
+
+struct mac_slot {
+    int present;
+    uint64_t size;
+    uint64_t gpa_start;
+    uint64_t gva;
+};
+
+struct mac_slot mac_slots[32];
+#define ALIGN(x, y)  (((x) + (y) - 1) & ~((y) - 1))
+
+static int do_hvf_set_memory(hvf_slot *slot)
+{
+    struct mac_slot *macslot;
+    hv_memory_flags_t flags;
+    hv_return_t ret;
+
+    macslot = &mac_slots[slot->slot_id];
+
+    if (macslot->present) {
+        if (macslot->size != slot->size) {
+            macslot->present = 0;
+            ret = hv_vm_unmap(macslot->gpa_start, macslot->size);
+            assert_hvf_ok(ret);
+        }
+    }
+
+    if (!slot->size) {
+        return 0;
+    }
+
+    flags = HV_MEMORY_READ | HV_MEMORY_WRITE | HV_MEMORY_EXEC;
+
+    macslot->present = 1;
+    macslot->gpa_start = slot->start;
+    macslot->size = slot->size;
+    ret = hv_vm_map((hv_uvaddr_t)slot->mem, slot->start, slot->size, flags);
+    assert_hvf_ok(ret);
+    return 0;
+}
+
+void hvf_set_phys_mem(MemoryRegionSection *section, bool add)
+{
+    hvf_slot *mem;
+    MemoryRegion *area = section->mr;
+
+    if (!memory_region_is_ram(area)) {
+        return;
+    }
+
+    mem = hvf_find_overlap_slot(
+            section->offset_within_address_space,
+            section->offset_within_address_space + int128_get64(section->size));
+
+    if (mem && add) {
+        if (mem->size == int128_get64(section->size) &&
+            mem->start == section->offset_within_address_space &&
+            mem->mem == (memory_region_get_ram_ptr(area) +
+            section->offset_within_region)) {
+            return; /* Same region was attempted to register, go away. */
+        }
+    }
+
+    /* Region needs to be reset. set the size to 0 and remap it. */
+    if (mem) {
+        mem->size = 0;
+        if (do_hvf_set_memory(mem)) {
+            error_report("Failed to reset overlapping slot\n");
+            abort();
+        }
+    }
+
+    if (!add) {
+        return;
+    }
+
+    /* Now make a new slot. */
+    int x;
+
+    for (x = 0; x < hvf_state->num_slots; ++x) {
+        mem = &hvf_state->slots[x];
+        if (!mem->size) {
+            break;
+        }
+    }
+
+    if (x == hvf_state->num_slots) {
+        error_report("No free slots\n");
+        abort();
+    }
+
+    mem->size = int128_get64(section->size);
+    mem->mem = memory_region_get_ram_ptr(area) + section->offset_within_region;
+    mem->start = section->offset_within_address_space;
+    mem->region = area;
+
+    if (do_hvf_set_memory(mem)) {
+        error_report("Error registering new memory slot\n");
+        abort();
+    }
+}
+
+void vmx_update_tpr(CPUState *cpu)
+{
+    /* TODO: need integrate APIC handling */
+    X86CPU *x86_cpu = X86_CPU(cpu);
+    int tpr = cpu_get_apic_tpr(x86_cpu->apic_state) << 4;
+    int irr = apic_get_highest_priority_irr(x86_cpu->apic_state);
+
+    wreg(cpu->hvf_fd, HV_X86_TPR, tpr);
+    if (irr == -1) {
+        wvmcs(cpu->hvf_fd, VMCS_TPR_THRESHOLD, 0);
+    } else {
+        wvmcs(cpu->hvf_fd, VMCS_TPR_THRESHOLD, (irr > tpr) ? tpr >> 4 :
+              irr >> 4);
+    }
+}
+
+void update_apic_tpr(CPUState *cpu)
+{
+    X86CPU *x86_cpu = X86_CPU(cpu);
+    int tpr = rreg(cpu->hvf_fd, HV_X86_TPR) >> 4;
+    cpu_set_apic_tpr(x86_cpu->apic_state, tpr);
+}
+
+#define VECTORING_INFO_VECTOR_MASK     0xff
+
+static void hvf_handle_interrupt(CPUState * cpu, int mask)
+{
+    cpu->interrupt_request |= mask;
+    if (!qemu_cpu_is_self(cpu)) {
+        qemu_cpu_kick(cpu);
+    }
+}
+
+void hvf_handle_io(CPUArchState *env, uint16_t port, void *buffer,
+                  int direction, int size, int count)
+{
+    int i;
+    uint8_t *ptr = buffer;
+
+    for (i = 0; i < count; i++) {
+        address_space_rw(&address_space_io, port, MEMTXATTRS_UNSPECIFIED,
+                         ptr, size,
+                         direction);
+        ptr += size;
+    }
+}
+
+/* TODO: synchronize vcpu state */
+static void do_hvf_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg)
+{
+    CPUState *cpu_state = cpu;
+    if (cpu_state->vcpu_dirty == 0) {
+        hvf_get_registers(cpu_state);
+    }
+
+    cpu_state->vcpu_dirty = 1;
+}
+
+void hvf_cpu_synchronize_state(CPUState *cpu_state)
+{
+    if (cpu_state->vcpu_dirty == 0) {
+        run_on_cpu(cpu_state, do_hvf_cpu_synchronize_state, RUN_ON_CPU_NULL);
+    }
+}
+
+static void do_hvf_cpu_synchronize_post_reset(CPUState *cpu, run_on_cpu_data arg)
+{
+    CPUState *cpu_state = cpu;
+    hvf_put_registers(cpu_state);
+    cpu_state->vcpu_dirty = false;
+}
+
+void hvf_cpu_synchronize_post_reset(CPUState *cpu_state)
+{
+    run_on_cpu(cpu_state, do_hvf_cpu_synchronize_post_reset, RUN_ON_CPU_NULL);
+}
+
+void _hvf_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg)
+{
+    CPUState *cpu_state = cpu;
+    hvf_put_registers(cpu_state);
+    cpu_state->vcpu_dirty = false;
+}
+
+void hvf_cpu_synchronize_post_init(CPUState *cpu_state)
+{
+    run_on_cpu(cpu_state, _hvf_cpu_synchronize_post_init, RUN_ON_CPU_NULL);
+}
+
+static bool ept_emulation_fault(hvf_slot *slot, uint64_t gpa, uint64_t ept_qual)
+{
+    int read, write;
+
+    /* EPT fault on an instruction fetch doesn't make sense here */
+    if (ept_qual & EPT_VIOLATION_INST_FETCH) {
+        return false;
+    }
+
+    /* EPT fault must be a read fault or a write fault */
+    read = ept_qual & EPT_VIOLATION_DATA_READ ? 1 : 0;
+    write = ept_qual & EPT_VIOLATION_DATA_WRITE ? 1 : 0;
+    if ((read | write) == 0) {
+        return false;
+    }
+
+    if (write && slot) {
+        if (slot->flags & HVF_SLOT_LOG) {
+            memory_region_set_dirty(slot->region, gpa - slot->start, 1);
+            hv_vm_protect((hv_gpaddr_t)slot->start, (size_t)slot->size,
+                          HV_MEMORY_READ | HV_MEMORY_WRITE);
+        }
+    }
+
+    /*
+     * The EPT violation must have been caused by accessing a
+     * guest-physical address that is a translation of a guest-linear
+     * address.
+     */
+    if ((ept_qual & EPT_VIOLATION_GLA_VALID) == 0 ||
+        (ept_qual & EPT_VIOLATION_XLAT_VALID) == 0) {
+        return false;
+    }
+
+    return !slot;
+}
+
+static void hvf_set_dirty_tracking(MemoryRegionSection *section, bool on)
+{
+    hvf_slot *slot;
+
+    slot = hvf_find_overlap_slot(
+            section->offset_within_address_space,
+            section->offset_within_address_space + int128_get64(section->size));
+
+    /* protect region against writes; begin tracking it */
+    if (on) {
+        slot->flags |= HVF_SLOT_LOG;
+        hv_vm_protect((hv_gpaddr_t)slot->start, (size_t)slot->size,
+                      HV_MEMORY_READ);
+    /* stop tracking region*/
+    } else {
+        slot->flags &= ~HVF_SLOT_LOG;
+        hv_vm_protect((hv_gpaddr_t)slot->start, (size_t)slot->size,
+                      HV_MEMORY_READ | HV_MEMORY_WRITE);
+    }
+}
+
+static void hvf_log_start(MemoryListener *listener,
+                          MemoryRegionSection *section, int old, int new)
+{
+    if (old != 0) {
+        return;
+    }
+
+    hvf_set_dirty_tracking(section, 1);
+}
+
+static void hvf_log_stop(MemoryListener *listener,
+                         MemoryRegionSection *section, int old, int new)
+{
+    if (new != 0) {
+        return;
+    }
+
+    hvf_set_dirty_tracking(section, 0);
+}
+
+static void hvf_log_sync(MemoryListener *listener,
+                         MemoryRegionSection *section)
+{
+    /*
+     * sync of dirty pages is handled elsewhere; just make sure we keep
+     * tracking the region.
+     */
+    hvf_set_dirty_tracking(section, 1);
+}
+
+static void hvf_region_add(MemoryListener *listener,
+                           MemoryRegionSection *section)
+{
+    hvf_set_phys_mem(section, true);
+}
+
+static void hvf_region_del(MemoryListener *listener,
+                           MemoryRegionSection *section)
+{
+    hvf_set_phys_mem(section, false);
+}
+
+static MemoryListener hvf_memory_listener = {
+    .priority = 10,
+    .region_add = hvf_region_add,
+    .region_del = hvf_region_del,
+    .log_start = hvf_log_start,
+    .log_stop = hvf_log_stop,
+    .log_sync = hvf_log_sync,
+};
+
+void hvf_reset_vcpu(CPUState *cpu) {
+
+    /* TODO: this shouldn't be needed; there is already a call to
+     * cpu_synchronize_all_post_reset in vl.c
+     */
+    wvmcs(cpu->hvf_fd, VMCS_ENTRY_CTLS, 0);
+    wvmcs(cpu->hvf_fd, VMCS_GUEST_IA32_EFER, 0);
+    macvm_set_cr0(cpu->hvf_fd, 0x60000010);
+
+    wvmcs(cpu->hvf_fd, VMCS_CR4_MASK, CR4_VMXE_MASK);
+    wvmcs(cpu->hvf_fd, VMCS_CR4_SHADOW, 0x0);
+    wvmcs(cpu->hvf_fd, VMCS_GUEST_CR4, CR4_VMXE_MASK);
+
+    /* set VMCS guest state fields */
+    wvmcs(cpu->hvf_fd, VMCS_GUEST_CS_SELECTOR, 0xf000);
+    wvmcs(cpu->hvf_fd, VMCS_GUEST_CS_LIMIT, 0xffff);
+    wvmcs(cpu->hvf_fd, VMCS_GUEST_CS_ACCESS_RIGHTS, 0x9b);
+    wvmcs(cpu->hvf_fd, VMCS_GUEST_CS_BASE, 0xffff0000);
+
+    wvmcs(cpu->hvf_fd, VMCS_GUEST_DS_SELECTOR, 0);
+    wvmcs(cpu->hvf_fd, VMCS_GUEST_DS_LIMIT, 0xffff);
+    wvmcs(cpu->hvf_fd, VMCS_GUEST_DS_ACCESS_RIGHTS, 0x93);
+    wvmcs(cpu->hvf_fd, VMCS_GUEST_DS_BASE, 0);
+
+    wvmcs(cpu->hvf_fd, VMCS_GUEST_ES_SELECTOR, 0);
+    wvmcs(cpu->hvf_fd, VMCS_GUEST_ES_LIMIT, 0xffff);
+    wvmcs(cpu->hvf_fd, VMCS_GUEST_ES_ACCESS_RIGHTS, 0x93);
+    wvmcs(cpu->hvf_fd, VMCS_GUEST_ES_BASE, 0);
+
+    wvmcs(cpu->hvf_fd, VMCS_GUEST_FS_SELECTOR, 0);
+    wvmcs(cpu->hvf_fd, VMCS_GUEST_FS_LIMIT, 0xffff);
+    wvmcs(cpu->hvf_fd, VMCS_GUEST_FS_ACCESS_RIGHTS, 0x93);
+    wvmcs(cpu->hvf_fd, VMCS_GUEST_FS_BASE, 0);
+
+    wvmcs(cpu->hvf_fd, VMCS_GUEST_GS_SELECTOR, 0);
+    wvmcs(cpu->hvf_fd, VMCS_GUEST_GS_LIMIT, 0xffff);
+    wvmcs(cpu->hvf_fd, VMCS_GUEST_GS_ACCESS_RIGHTS, 0x93);
+    wvmcs(cpu->hvf_fd, VMCS_GUEST_GS_BASE, 0);
+
+    wvmcs(cpu->hvf_fd, VMCS_GUEST_SS_SELECTOR, 0);
+    wvmcs(cpu->hvf_fd, VMCS_GUEST_SS_LIMIT, 0xffff);
+    wvmcs(cpu->hvf_fd, VMCS_GUEST_SS_ACCESS_RIGHTS, 0x93);
+    wvmcs(cpu->hvf_fd, VMCS_GUEST_SS_BASE, 0);
+
+    wvmcs(cpu->hvf_fd, VMCS_GUEST_LDTR_SELECTOR, 0);
+    wvmcs(cpu->hvf_fd, VMCS_GUEST_LDTR_LIMIT, 0);
+    wvmcs(cpu->hvf_fd, VMCS_GUEST_LDTR_ACCESS_RIGHTS, 0x10000);
+    wvmcs(cpu->hvf_fd, VMCS_GUEST_LDTR_BASE, 0);
+
+    wvmcs(cpu->hvf_fd, VMCS_GUEST_TR_SELECTOR, 0);
+    wvmcs(cpu->hvf_fd, VMCS_GUEST_TR_LIMIT, 0);
+    wvmcs(cpu->hvf_fd, VMCS_GUEST_TR_ACCESS_RIGHTS, 0x83);
+    wvmcs(cpu->hvf_fd, VMCS_GUEST_TR_BASE, 0);
+
+    wvmcs(cpu->hvf_fd, VMCS_GUEST_GDTR_LIMIT, 0);
+    wvmcs(cpu->hvf_fd, VMCS_GUEST_GDTR_BASE, 0);
+
+    wvmcs(cpu->hvf_fd, VMCS_GUEST_IDTR_LIMIT, 0);
+    wvmcs(cpu->hvf_fd, VMCS_GUEST_IDTR_BASE, 0);
+
+    /*wvmcs(cpu->hvf_fd, VMCS_GUEST_CR2, 0x0);*/
+    wvmcs(cpu->hvf_fd, VMCS_GUEST_CR3, 0x0);
+
+    wreg(cpu->hvf_fd, HV_X86_RIP, 0xfff0);
+    wreg(cpu->hvf_fd, HV_X86_RDX, 0x623);
+    wreg(cpu->hvf_fd, HV_X86_RFLAGS, 0x2);
+    wreg(cpu->hvf_fd, HV_X86_RSP, 0x0);
+    wreg(cpu->hvf_fd, HV_X86_RAX, 0x0);
+    wreg(cpu->hvf_fd, HV_X86_RBX, 0x0);
+    wreg(cpu->hvf_fd, HV_X86_RCX, 0x0);
+    wreg(cpu->hvf_fd, HV_X86_RSI, 0x0);
+    wreg(cpu->hvf_fd, HV_X86_RDI, 0x0);
+    wreg(cpu->hvf_fd, HV_X86_RBP, 0x0);
+
+    for (int i = 0; i < 8; i++) {
+        wreg(cpu->hvf_fd, HV_X86_R8 + i, 0x0);
+    }
+
+    hv_vm_sync_tsc(0);
+    cpu->halted = 0;
+    hv_vcpu_invalidate_tlb(cpu->hvf_fd);
+    hv_vcpu_flush(cpu->hvf_fd);
+}
+
+void hvf_vcpu_destroy(CPUState *cpu)
+{
+    hv_return_t ret = hv_vcpu_destroy((hv_vcpuid_t)cpu->hvf_fd);
+    assert_hvf_ok(ret);
+}
+
+static void dummy_signal(int sig)
+{
+}
+
+int hvf_init_vcpu(CPUState *cpu)
+{
+
+    X86CPU *x86cpu = X86_CPU(cpu);
+    CPUX86State *env = &x86cpu->env;
+    int r;
+
+    /* init cpu signals */
+    sigset_t set;
+    struct sigaction sigact;
+
+    memset(&sigact, 0, sizeof(sigact));
+    sigact.sa_handler = dummy_signal;
+    sigaction(SIG_IPI, &sigact, NULL);
+
+    pthread_sigmask(SIG_BLOCK, NULL, &set);
+    sigdelset(&set, SIG_IPI);
+
+    init_emu();
+    init_decoder();
+
+    hvf_state->hvf_caps = g_new0(struct hvf_vcpu_caps, 1);
+    env->hvf_emul = g_new0(HVFX86EmulatorState, 1);
+
+    r = hv_vcpu_create((hv_vcpuid_t *)&cpu->hvf_fd, HV_VCPU_DEFAULT);
+    cpu->vcpu_dirty = 1;
+    assert_hvf_ok(r);
+
+    if (hv_vmx_read_capability(HV_VMX_CAP_PINBASED,
+        &hvf_state->hvf_caps->vmx_cap_pinbased)) {
+        abort();
+    }
+    if (hv_vmx_read_capability(HV_VMX_CAP_PROCBASED,
+        &hvf_state->hvf_caps->vmx_cap_procbased)) {
+        abort();
+    }
+    if (hv_vmx_read_capability(HV_VMX_CAP_PROCBASED2,
+        &hvf_state->hvf_caps->vmx_cap_procbased2)) {
+        abort();
+    }
+    if (hv_vmx_read_capability(HV_VMX_CAP_ENTRY,
+        &hvf_state->hvf_caps->vmx_cap_entry)) {
+        abort();
+    }
+
+    /* set VMCS control fields */
+    wvmcs(cpu->hvf_fd, VMCS_PIN_BASED_CTLS,
+          cap2ctrl(hvf_state->hvf_caps->vmx_cap_pinbased,
+          VMCS_PIN_BASED_CTLS_EXTINT |
+          VMCS_PIN_BASED_CTLS_NMI |
+          VMCS_PIN_BASED_CTLS_VNMI));
+    wvmcs(cpu->hvf_fd, VMCS_PRI_PROC_BASED_CTLS,
+          cap2ctrl(hvf_state->hvf_caps->vmx_cap_procbased,
+          VMCS_PRI_PROC_BASED_CTLS_HLT |
+          VMCS_PRI_PROC_BASED_CTLS_MWAIT |
+          VMCS_PRI_PROC_BASED_CTLS_TSC_OFFSET |
+          VMCS_PRI_PROC_BASED_CTLS_TPR_SHADOW) |
+          VMCS_PRI_PROC_BASED_CTLS_SEC_CONTROL);
+    wvmcs(cpu->hvf_fd, VMCS_SEC_PROC_BASED_CTLS,
+          cap2ctrl(hvf_state->hvf_caps->vmx_cap_procbased2,
+                   VMCS_PRI_PROC_BASED2_CTLS_APIC_ACCESSES));
+
+    wvmcs(cpu->hvf_fd, VMCS_ENTRY_CTLS, cap2ctrl(hvf_state->hvf_caps->vmx_cap_entry,
+          0));
+    wvmcs(cpu->hvf_fd, VMCS_EXCEPTION_BITMAP, 0); /* Double fault */
+
+    wvmcs(cpu->hvf_fd, VMCS_TPR_THRESHOLD, 0);
+
+    hvf_reset_vcpu(cpu);
+
+    x86cpu = X86_CPU(cpu);
+    x86cpu->env.kvm_xsave_buf = qemu_memalign(4096, 4096);
+
+    hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_STAR, 1);
+    hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_LSTAR, 1);
+    hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_CSTAR, 1);
+    hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_FMASK, 1);
+    hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_FSBASE, 1);
+    hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_GSBASE, 1);
+    hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_KERNELGSBASE, 1);
+    hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_TSC_AUX, 1);
+    /*hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_IA32_TSC, 1);*/
+    hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_IA32_SYSENTER_CS, 1);
+    hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_IA32_SYSENTER_EIP, 1);
+    hv_vcpu_enable_native_msr(cpu->hvf_fd, MSR_IA32_SYSENTER_ESP, 1);
+
+    return 0;
+}
+
+void hvf_disable(int shouldDisable)
+{
+    hvf_disabled = shouldDisable;
+}
+
+static void hvf_store_events(CPUState *cpu, uint32_t ins_len, uint64_t idtvec_info)
+{
+    X86CPU *x86_cpu = X86_CPU(cpu);
+    CPUX86State *env = &x86_cpu->env;
+
+    env->exception_injected = -1;
+    env->interrupt_injected = -1;
+    env->nmi_injected = false;
+    if (idtvec_info & VMCS_IDT_VEC_VALID) {
+        switch (idtvec_info & VMCS_IDT_VEC_TYPE) {
+        case VMCS_IDT_VEC_HWINTR:
+        case VMCS_IDT_VEC_SWINTR:
+            env->interrupt_injected = idtvec_info & VMCS_IDT_VEC_VECNUM;
+            break;
+        case VMCS_IDT_VEC_NMI:
+            env->nmi_injected = true;
+            break;
+        case VMCS_IDT_VEC_HWEXCEPTION:
+        case VMCS_IDT_VEC_SWEXCEPTION:
+            env->exception_injected = idtvec_info & VMCS_IDT_VEC_VECNUM;
+            break;
+        case VMCS_IDT_VEC_PRIV_SWEXCEPTION:
+        default:
+            abort();
+        }
+        if ((idtvec_info & VMCS_IDT_VEC_TYPE) == VMCS_IDT_VEC_SWEXCEPTION ||
+            (idtvec_info & VMCS_IDT_VEC_TYPE) == VMCS_IDT_VEC_SWINTR) {
+            env->ins_len = ins_len;
+        }
+        if (idtvec_info & VMCS_INTR_DEL_ERRCODE) {
+            env->has_error_code = true;
+            env->error_code = rvmcs(cpu->hvf_fd, VMCS_IDT_VECTORING_ERROR);
+        }
+    }
+    if ((rvmcs(cpu->hvf_fd, VMCS_GUEST_INTERRUPTIBILITY) &
+        VMCS_INTERRUPTIBILITY_NMI_BLOCKING)) {
+        env->hflags2 |= HF2_NMI_MASK;
+    } else {
+        env->hflags2 &= ~HF2_NMI_MASK;
+    }
+    if (rvmcs(cpu->hvf_fd, VMCS_GUEST_INTERRUPTIBILITY) &
+         (VMCS_INTERRUPTIBILITY_STI_BLOCKING |
+         VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)) {
+        env->hflags |= HF_INHIBIT_IRQ_MASK;
+    } else {
+        env->hflags &= ~HF_INHIBIT_IRQ_MASK;
+    }
+}
+
+int hvf_vcpu_exec(CPUState *cpu)
+{
+    X86CPU *x86_cpu = X86_CPU(cpu);
+    CPUX86State *env = &x86_cpu->env;
+    int ret = 0;
+    uint64_t rip = 0;
+
+    cpu->halted = 0;
+
+    if (hvf_process_events(cpu)) {
+        return EXCP_HLT;
+    }
+
+    do {
+        if (cpu->vcpu_dirty) {
+            hvf_put_registers(cpu);
+            cpu->vcpu_dirty = false;
+        }
+
+        if (hvf_inject_interrupts(cpu)) {
+            return EXCP_INTERRUPT;
+        }
+        vmx_update_tpr(cpu);
+
+        qemu_mutex_unlock_iothread();
+        if (!cpu_is_bsp(X86_CPU(cpu)) && cpu->halted) {
+            qemu_mutex_lock_iothread();
+            return EXCP_HLT;
+        }
+
+        hv_return_t r  = hv_vcpu_run(cpu->hvf_fd);
+        assert_hvf_ok(r);
+
+        /* handle VMEXIT */
+        uint64_t exit_reason = rvmcs(cpu->hvf_fd, VMCS_EXIT_REASON);
+        uint64_t exit_qual = rvmcs(cpu->hvf_fd, VMCS_EXIT_QUALIFICATION);
+        uint32_t ins_len = (uint32_t)rvmcs(cpu->hvf_fd,
+                                           VMCS_EXIT_INSTRUCTION_LENGTH);
+
+        uint64_t idtvec_info = rvmcs(cpu->hvf_fd, VMCS_IDT_VECTORING_INFO);
+
+        hvf_store_events(cpu, ins_len, idtvec_info);
+        rip = rreg(cpu->hvf_fd, HV_X86_RIP);
+        RFLAGS(env) = rreg(cpu->hvf_fd, HV_X86_RFLAGS);
+        env->eflags = RFLAGS(env);
+
+        qemu_mutex_lock_iothread();
+
+        update_apic_tpr(cpu);
+        current_cpu = cpu;
+
+        ret = 0;
+        switch (exit_reason) {
+        case EXIT_REASON_HLT: {
+            macvm_set_rip(cpu, rip + ins_len);
+            if (!((cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
+                (EFLAGS(env) & IF_MASK))
+                && !(cpu->interrupt_request & CPU_INTERRUPT_NMI) &&
+                !(idtvec_info & VMCS_IDT_VEC_VALID)) {
+                cpu->halted = 1;
+                ret = EXCP_HLT;
+            }
+            ret = EXCP_INTERRUPT;
+            break;
+        }
+        case EXIT_REASON_MWAIT: {
+            ret = EXCP_INTERRUPT;
+            break;
+        }
+            /* Need to check if MMIO or unmmaped fault */
+        case EXIT_REASON_EPT_FAULT:
+        {
+            hvf_slot *slot;
+            uint64_t gpa = rvmcs(cpu->hvf_fd, VMCS_GUEST_PHYSICAL_ADDRESS);
+
+            if (((idtvec_info & VMCS_IDT_VEC_VALID) == 0) &&
+                ((exit_qual & EXIT_QUAL_NMIUDTI) != 0)) {
+                vmx_set_nmi_blocking(cpu);
+            }
+
+            slot = hvf_find_overlap_slot(gpa, gpa);
+            /* mmio */
+            if (ept_emulation_fault(slot, gpa, exit_qual)) {
+                struct x86_decode decode;
+
+                load_regs(cpu);
+                env->hvf_emul->fetch_rip = rip;
+
+                decode_instruction(env, &decode);
+                exec_instruction(env, &decode);
+                store_regs(cpu);
+                break;
+            }
+            break;
+        }
+        case EXIT_REASON_INOUT:
+        {
+            uint32_t in = (exit_qual & 8) != 0;
+            uint32_t size =  (exit_qual & 7) + 1;
+            uint32_t string =  (exit_qual & 16) != 0;
+            uint32_t port =  exit_qual >> 16;
+            /*uint32_t rep = (exit_qual & 0x20) != 0;*/
+
+            if (!string && in) {
+                uint64_t val = 0;
+                load_regs(cpu);
+                hvf_handle_io(env, port, &val, 0, size, 1);
+                if (size == 1) {
+                    AL(env) = val;
+                } else if (size == 2) {
+                    AX(env) = val;
+                } else if (size == 4) {
+                    RAX(env) = (uint32_t)val;
+                } else {
+                    RAX(env) = (uint64_t)val;
+                }
+                RIP(env) += ins_len;
+                store_regs(cpu);
+                break;
+            } else if (!string && !in) {
+                RAX(env) = rreg(cpu->hvf_fd, HV_X86_RAX);
+                hvf_handle_io(env, port, &RAX(env), 1, size, 1);
+                macvm_set_rip(cpu, rip + ins_len);
+                break;
+            }
+            struct x86_decode decode;
+
+            load_regs(cpu);
+            env->hvf_emul->fetch_rip = rip;
+
+            decode_instruction(env, &decode);
+            assert(ins_len == decode.len);
+            exec_instruction(env, &decode);
+            store_regs(cpu);
+
+            break;
+        }
+        case EXIT_REASON_CPUID: {
+            uint32_t rax = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RAX);
+            uint32_t rbx = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RBX);
+            uint32_t rcx = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RCX);
+            uint32_t rdx = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RDX);
+
+            cpu_x86_cpuid(env, rax, rcx, &rax, &rbx, &rcx, &rdx);
+
+            wreg(cpu->hvf_fd, HV_X86_RAX, rax);
+            wreg(cpu->hvf_fd, HV_X86_RBX, rbx);
+            wreg(cpu->hvf_fd, HV_X86_RCX, rcx);
+            wreg(cpu->hvf_fd, HV_X86_RDX, rdx);
+
+            macvm_set_rip(cpu, rip + ins_len);
+            break;
+        }
+        case EXIT_REASON_XSETBV: {
+            X86CPU *x86_cpu = X86_CPU(cpu);
+            CPUX86State *env = &x86_cpu->env;
+            uint32_t eax = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RAX);
+            uint32_t ecx = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RCX);
+            uint32_t edx = (uint32_t)rreg(cpu->hvf_fd, HV_X86_RDX);
+
+            if (ecx) {
+                macvm_set_rip(cpu, rip + ins_len);
+                break;
+            }
+            env->xcr0 = ((uint64_t)edx << 32) | eax;
+            wreg(cpu->hvf_fd, HV_X86_XCR0, env->xcr0 | 1);
+            macvm_set_rip(cpu, rip + ins_len);
+            break;
+        }
+        case EXIT_REASON_INTR_WINDOW:
+            vmx_clear_int_window_exiting(cpu);
+            ret = EXCP_INTERRUPT;
+            break;
+        case EXIT_REASON_NMI_WINDOW:
+            vmx_clear_nmi_window_exiting(cpu);
+            ret = EXCP_INTERRUPT;
+            break;
+        case EXIT_REASON_EXT_INTR:
+            /* force exit and allow io handling */
+            ret = EXCP_INTERRUPT;
+            break;
+        case EXIT_REASON_RDMSR:
+        case EXIT_REASON_WRMSR:
+        {
+            load_regs(cpu);
+            if (exit_reason == EXIT_REASON_RDMSR) {
+                simulate_rdmsr(cpu);
+            } else {
+                simulate_wrmsr(cpu);
+            }
+            RIP(env) += rvmcs(cpu->hvf_fd, VMCS_EXIT_INSTRUCTION_LENGTH);
+            store_regs(cpu);
+            break;
+        }
+        case EXIT_REASON_CR_ACCESS: {
+            int cr;
+            int reg;
+
+            load_regs(cpu);
+            cr = exit_qual & 15;
+            reg = (exit_qual >> 8) & 15;
+
+            switch (cr) {
+            case 0x0: {
+                macvm_set_cr0(cpu->hvf_fd, RRX(env, reg));
+                break;
+            }
+            case 4: {
+                macvm_set_cr4(cpu->hvf_fd, RRX(env, reg));
+                break;
+            }
+            case 8: {
+                X86CPU *x86_cpu = X86_CPU(cpu);
+                if (exit_qual & 0x10) {
+                    RRX(env, reg) = cpu_get_apic_tpr(x86_cpu->apic_state);
+                } else {
+                    int tpr = RRX(env, reg);
+                    cpu_set_apic_tpr(x86_cpu->apic_state, tpr);
+                    ret = EXCP_INTERRUPT;
+                }
+                break;
+            }
+            default:
+                error_report("Unrecognized CR %d\n", cr);
+                abort();
+            }
+            RIP(env) += ins_len;
+            store_regs(cpu);
+            break;
+        }
+        case EXIT_REASON_APIC_ACCESS: { /* TODO */
+            struct x86_decode decode;
+
+            load_regs(cpu);
+            env->hvf_emul->fetch_rip = rip;
+
+            decode_instruction(env, &decode);
+            exec_instruction(env, &decode);
+            store_regs(cpu);
+            break;
+        }
+        case EXIT_REASON_TPR: {
+            ret = 1;
+            break;
+        }
+        case EXIT_REASON_TASK_SWITCH: {
+            uint64_t vinfo = rvmcs(cpu->hvf_fd, VMCS_IDT_VECTORING_INFO);
+            x68_segment_selector sel = {.sel = exit_qual & 0xffff};
+            vmx_handle_task_switch(cpu, sel, (exit_qual >> 30) & 0x3,
+             vinfo & VMCS_INTR_VALID, vinfo & VECTORING_INFO_VECTOR_MASK, vinfo
+             & VMCS_INTR_T_MASK);
+            break;
+        }
+        case EXIT_REASON_TRIPLE_FAULT: {
+            qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
+            ret = EXCP_INTERRUPT;
+            break;
+        }
+        case EXIT_REASON_RDPMC:
+            wreg(cpu->hvf_fd, HV_X86_RAX, 0);
+            wreg(cpu->hvf_fd, HV_X86_RDX, 0);
+            macvm_set_rip(cpu, rip + ins_len);
+            break;
+        case VMX_REASON_VMCALL:
+            env->exception_injected = EXCP0D_GPF;
+            env->has_error_code = true;
+            env->error_code = 0;
+            break;
+        default:
+            error_report("%llx: unhandled exit %llx\n", rip, exit_reason);
+        }
+    } while (ret == 0);
+
+    return ret;
+}
+
+static bool hvf_allowed;
+
+static int hvf_accel_init(MachineState *ms)
+{
+    int x;
+    hv_return_t ret;
+    HVFState *s;
+
+    hvf_disable(0);
+    ret = hv_vm_create(HV_VM_DEFAULT);
+    assert_hvf_ok(ret);
+
+    s = g_new0(HVFState, 1);
+ 
+    s->num_slots = 32;
+    for (x = 0; x < s->num_slots; ++x) {
+        s->slots[x].size = 0;
+        s->slots[x].slot_id = x;
+    }
+  
+    hvf_state = s;
+    cpu_interrupt_handler = hvf_handle_interrupt;
+    memory_listener_register(&hvf_memory_listener, &address_space_memory);
+    return 0;
+}
+
+static void hvf_accel_class_init(ObjectClass *oc, void *data)
+{
+    AccelClass *ac = ACCEL_CLASS(oc);
+    ac->name = "HVF";
+    ac->init_machine = hvf_accel_init;
+    ac->allowed = &hvf_allowed;
+}
+
+static const TypeInfo hvf_accel_type = {
+    .name = TYPE_HVF_ACCEL,
+    .parent = TYPE_ACCEL,
+    .class_init = hvf_accel_class_init,
+};
+
+static void hvf_type_init(void)
+{
+    type_register_static(&hvf_accel_type);
+}
+
+type_init(hvf_type_init);