summary refs log tree commit diff stats
path: root/target/ppc/mmu-hash64.c
diff options
context:
space:
mode:
Diffstat (limited to 'target/ppc/mmu-hash64.c')
-rw-r--r--target/ppc/mmu-hash64.c1059
1 files changed, 1059 insertions, 0 deletions
diff --git a/target/ppc/mmu-hash64.c b/target/ppc/mmu-hash64.c
new file mode 100644
index 0000000000..fdb7a787bf
--- /dev/null
+++ b/target/ppc/mmu-hash64.c
@@ -0,0 +1,1059 @@
+/*
+ *  PowerPC MMU, TLB, SLB and BAT emulation helpers for QEMU.
+ *
+ *  Copyright (c) 2003-2007 Jocelyn Mayer
+ *  Copyright (c) 2013 David Gibson, IBM Corporation
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, see <http://www.gnu.org/licenses/>.
+ */
+#include "qemu/osdep.h"
+#include "qapi/error.h"
+#include "cpu.h"
+#include "exec/exec-all.h"
+#include "exec/helper-proto.h"
+#include "qemu/error-report.h"
+#include "sysemu/kvm.h"
+#include "kvm_ppc.h"
+#include "mmu-hash64.h"
+#include "exec/log.h"
+
+//#define DEBUG_SLB
+
+#ifdef DEBUG_SLB
+#  define LOG_SLB(...) qemu_log_mask(CPU_LOG_MMU, __VA_ARGS__)
+#else
+#  define LOG_SLB(...) do { } while (0)
+#endif
+
+/*
+ * Used to indicate that a CPU has its hash page table (HPT) managed
+ * within the host kernel
+ */
+#define MMU_HASH64_KVM_MANAGED_HPT      ((void *)-1)
+
+/*
+ * SLB handling
+ */
+
+static ppc_slb_t *slb_lookup(PowerPCCPU *cpu, target_ulong eaddr)
+{
+    CPUPPCState *env = &cpu->env;
+    uint64_t esid_256M, esid_1T;
+    int n;
+
+    LOG_SLB("%s: eaddr " TARGET_FMT_lx "\n", __func__, eaddr);
+
+    esid_256M = (eaddr & SEGMENT_MASK_256M) | SLB_ESID_V;
+    esid_1T = (eaddr & SEGMENT_MASK_1T) | SLB_ESID_V;
+
+    for (n = 0; n < env->slb_nr; n++) {
+        ppc_slb_t *slb = &env->slb[n];
+
+        LOG_SLB("%s: slot %d %016" PRIx64 " %016"
+                    PRIx64 "\n", __func__, n, slb->esid, slb->vsid);
+        /* We check for 1T matches on all MMUs here - if the MMU
+         * doesn't have 1T segment support, we will have prevented 1T
+         * entries from being inserted in the slbmte code. */
+        if (((slb->esid == esid_256M) &&
+             ((slb->vsid & SLB_VSID_B) == SLB_VSID_B_256M))
+            || ((slb->esid == esid_1T) &&
+                ((slb->vsid & SLB_VSID_B) == SLB_VSID_B_1T))) {
+            return slb;
+        }
+    }
+
+    return NULL;
+}
+
+void dump_slb(FILE *f, fprintf_function cpu_fprintf, PowerPCCPU *cpu)
+{
+    CPUPPCState *env = &cpu->env;
+    int i;
+    uint64_t slbe, slbv;
+
+    cpu_synchronize_state(CPU(cpu));
+
+    cpu_fprintf(f, "SLB\tESID\t\t\tVSID\n");
+    for (i = 0; i < env->slb_nr; i++) {
+        slbe = env->slb[i].esid;
+        slbv = env->slb[i].vsid;
+        if (slbe == 0 && slbv == 0) {
+            continue;
+        }
+        cpu_fprintf(f, "%d\t0x%016" PRIx64 "\t0x%016" PRIx64 "\n",
+                    i, slbe, slbv);
+    }
+}
+
+void helper_slbia(CPUPPCState *env)
+{
+    int n;
+
+    /* XXX: Warning: slbia never invalidates the first segment */
+    for (n = 1; n < env->slb_nr; n++) {
+        ppc_slb_t *slb = &env->slb[n];
+
+        if (slb->esid & SLB_ESID_V) {
+            slb->esid &= ~SLB_ESID_V;
+            /* XXX: given the fact that segment size is 256 MB or 1TB,
+             *      and we still don't have a tlb_flush_mask(env, n, mask)
+             *      in QEMU, we just invalidate all TLBs
+             */
+            env->tlb_need_flush |= TLB_NEED_LOCAL_FLUSH;
+        }
+    }
+}
+
+void helper_slbie(CPUPPCState *env, target_ulong addr)
+{
+    PowerPCCPU *cpu = ppc_env_get_cpu(env);
+    ppc_slb_t *slb;
+
+    slb = slb_lookup(cpu, addr);
+    if (!slb) {
+        return;
+    }
+
+    if (slb->esid & SLB_ESID_V) {
+        slb->esid &= ~SLB_ESID_V;
+
+        /* XXX: given the fact that segment size is 256 MB or 1TB,
+         *      and we still don't have a tlb_flush_mask(env, n, mask)
+         *      in QEMU, we just invalidate all TLBs
+         */
+        env->tlb_need_flush |= TLB_NEED_LOCAL_FLUSH;
+    }
+}
+
+int ppc_store_slb(PowerPCCPU *cpu, target_ulong slot,
+                  target_ulong esid, target_ulong vsid)
+{
+    CPUPPCState *env = &cpu->env;
+    ppc_slb_t *slb = &env->slb[slot];
+    const struct ppc_one_seg_page_size *sps = NULL;
+    int i;
+
+    if (slot >= env->slb_nr) {
+        return -1; /* Bad slot number */
+    }
+    if (esid & ~(SLB_ESID_ESID | SLB_ESID_V)) {
+        return -1; /* Reserved bits set */
+    }
+    if (vsid & (SLB_VSID_B & ~SLB_VSID_B_1T)) {
+        return -1; /* Bad segment size */
+    }
+    if ((vsid & SLB_VSID_B) && !(env->mmu_model & POWERPC_MMU_1TSEG)) {
+        return -1; /* 1T segment on MMU that doesn't support it */
+    }
+
+    for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
+        const struct ppc_one_seg_page_size *sps1 = &env->sps.sps[i];
+
+        if (!sps1->page_shift) {
+            break;
+        }
+
+        if ((vsid & SLB_VSID_LLP_MASK) == sps1->slb_enc) {
+            sps = sps1;
+            break;
+        }
+    }
+
+    if (!sps) {
+        error_report("Bad page size encoding in SLB store: slot "TARGET_FMT_lu
+                     " esid 0x"TARGET_FMT_lx" vsid 0x"TARGET_FMT_lx,
+                     slot, esid, vsid);
+        return -1;
+    }
+
+    slb->esid = esid;
+    slb->vsid = vsid;
+    slb->sps = sps;
+
+    LOG_SLB("%s: %d " TARGET_FMT_lx " - " TARGET_FMT_lx " => %016" PRIx64
+            " %016" PRIx64 "\n", __func__, slot, esid, vsid,
+            slb->esid, slb->vsid);
+
+    return 0;
+}
+
+static int ppc_load_slb_esid(PowerPCCPU *cpu, target_ulong rb,
+                             target_ulong *rt)
+{
+    CPUPPCState *env = &cpu->env;
+    int slot = rb & 0xfff;
+    ppc_slb_t *slb = &env->slb[slot];
+
+    if (slot >= env->slb_nr) {
+        return -1;
+    }
+
+    *rt = slb->esid;
+    return 0;
+}
+
+static int ppc_load_slb_vsid(PowerPCCPU *cpu, target_ulong rb,
+                             target_ulong *rt)
+{
+    CPUPPCState *env = &cpu->env;
+    int slot = rb & 0xfff;
+    ppc_slb_t *slb = &env->slb[slot];
+
+    if (slot >= env->slb_nr) {
+        return -1;
+    }
+
+    *rt = slb->vsid;
+    return 0;
+}
+
+static int ppc_find_slb_vsid(PowerPCCPU *cpu, target_ulong rb,
+                             target_ulong *rt)
+{
+    CPUPPCState *env = &cpu->env;
+    ppc_slb_t *slb;
+
+    if (!msr_is_64bit(env, env->msr)) {
+        rb &= 0xffffffff;
+    }
+    slb = slb_lookup(cpu, rb);
+    if (slb == NULL) {
+        *rt = (target_ulong)-1ul;
+    } else {
+        *rt = slb->vsid;
+    }
+    return 0;
+}
+
+void helper_store_slb(CPUPPCState *env, target_ulong rb, target_ulong rs)
+{
+    PowerPCCPU *cpu = ppc_env_get_cpu(env);
+
+    if (ppc_store_slb(cpu, rb & 0xfff, rb & ~0xfffULL, rs) < 0) {
+        raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
+                               POWERPC_EXCP_INVAL, GETPC());
+    }
+}
+
+target_ulong helper_load_slb_esid(CPUPPCState *env, target_ulong rb)
+{
+    PowerPCCPU *cpu = ppc_env_get_cpu(env);
+    target_ulong rt = 0;
+
+    if (ppc_load_slb_esid(cpu, rb, &rt) < 0) {
+        raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
+                               POWERPC_EXCP_INVAL, GETPC());
+    }
+    return rt;
+}
+
+target_ulong helper_find_slb_vsid(CPUPPCState *env, target_ulong rb)
+{
+    PowerPCCPU *cpu = ppc_env_get_cpu(env);
+    target_ulong rt = 0;
+
+    if (ppc_find_slb_vsid(cpu, rb, &rt) < 0) {
+        raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
+                               POWERPC_EXCP_INVAL, GETPC());
+    }
+    return rt;
+}
+
+target_ulong helper_load_slb_vsid(CPUPPCState *env, target_ulong rb)
+{
+    PowerPCCPU *cpu = ppc_env_get_cpu(env);
+    target_ulong rt = 0;
+
+    if (ppc_load_slb_vsid(cpu, rb, &rt) < 0) {
+        raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM,
+                               POWERPC_EXCP_INVAL, GETPC());
+    }
+    return rt;
+}
+
+/*
+ * 64-bit hash table MMU handling
+ */
+void ppc_hash64_set_sdr1(PowerPCCPU *cpu, target_ulong value,
+                         Error **errp)
+{
+    CPUPPCState *env = &cpu->env;
+    target_ulong htabsize = value & SDR_64_HTABSIZE;
+
+    env->spr[SPR_SDR1] = value;
+    if (htabsize > 28) {
+        error_setg(errp,
+                   "Invalid HTABSIZE 0x" TARGET_FMT_lx" stored in SDR1",
+                   htabsize);
+        htabsize = 28;
+    }
+    env->htab_mask = (1ULL << (htabsize + 18 - 7)) - 1;
+    env->htab_base = value & SDR_64_HTABORG;
+}
+
+void ppc_hash64_set_external_hpt(PowerPCCPU *cpu, void *hpt, int shift,
+                                 Error **errp)
+{
+    CPUPPCState *env = &cpu->env;
+    Error *local_err = NULL;
+
+    if (hpt) {
+        env->external_htab = hpt;
+    } else {
+        env->external_htab = MMU_HASH64_KVM_MANAGED_HPT;
+    }
+    ppc_hash64_set_sdr1(cpu, (target_ulong)(uintptr_t)hpt | (shift - 18),
+                        &local_err);
+    if (local_err) {
+        error_propagate(errp, local_err);
+        return;
+    }
+
+    /* Not strictly necessary, but makes it clearer that an external
+     * htab is in use when debugging */
+    env->htab_base = -1;
+
+    if (kvm_enabled()) {
+        if (kvmppc_put_books_sregs(cpu) < 0) {
+            error_setg(errp, "Unable to update SDR1 in KVM");
+        }
+    }
+}
+
+static int ppc_hash64_pte_prot(PowerPCCPU *cpu,
+                               ppc_slb_t *slb, ppc_hash_pte64_t pte)
+{
+    CPUPPCState *env = &cpu->env;
+    unsigned pp, key;
+    /* Some pp bit combinations have undefined behaviour, so default
+     * to no access in those cases */
+    int prot = 0;
+
+    key = !!(msr_pr ? (slb->vsid & SLB_VSID_KP)
+             : (slb->vsid & SLB_VSID_KS));
+    pp = (pte.pte1 & HPTE64_R_PP) | ((pte.pte1 & HPTE64_R_PP0) >> 61);
+
+    if (key == 0) {
+        switch (pp) {
+        case 0x0:
+        case 0x1:
+        case 0x2:
+            prot = PAGE_READ | PAGE_WRITE;
+            break;
+
+        case 0x3:
+        case 0x6:
+            prot = PAGE_READ;
+            break;
+        }
+    } else {
+        switch (pp) {
+        case 0x0:
+        case 0x6:
+            prot = 0;
+            break;
+
+        case 0x1:
+        case 0x3:
+            prot = PAGE_READ;
+            break;
+
+        case 0x2:
+            prot = PAGE_READ | PAGE_WRITE;
+            break;
+        }
+    }
+
+    /* No execute if either noexec or guarded bits set */
+    if (!(pte.pte1 & HPTE64_R_N) || (pte.pte1 & HPTE64_R_G)
+        || (slb->vsid & SLB_VSID_N)) {
+        prot |= PAGE_EXEC;
+    }
+
+    return prot;
+}
+
+static int ppc_hash64_amr_prot(PowerPCCPU *cpu, ppc_hash_pte64_t pte)
+{
+    CPUPPCState *env = &cpu->env;
+    int key, amrbits;
+    int prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC;
+
+    /* Only recent MMUs implement Virtual Page Class Key Protection */
+    if (!(env->mmu_model & POWERPC_MMU_AMR)) {
+        return prot;
+    }
+
+    key = HPTE64_R_KEY(pte.pte1);
+    amrbits = (env->spr[SPR_AMR] >> 2*(31 - key)) & 0x3;
+
+    /* fprintf(stderr, "AMR protection: key=%d AMR=0x%" PRIx64 "\n", key, */
+    /*         env->spr[SPR_AMR]); */
+
+    /*
+     * A store is permitted if the AMR bit is 0. Remove write
+     * protection if it is set.
+     */
+    if (amrbits & 0x2) {
+        prot &= ~PAGE_WRITE;
+    }
+    /*
+     * A load is permitted if the AMR bit is 0. Remove read
+     * protection if it is set.
+     */
+    if (amrbits & 0x1) {
+        prot &= ~PAGE_READ;
+    }
+
+    return prot;
+}
+
+uint64_t ppc_hash64_start_access(PowerPCCPU *cpu, target_ulong pte_index)
+{
+    uint64_t token = 0;
+    hwaddr pte_offset;
+
+    pte_offset = pte_index * HASH_PTE_SIZE_64;
+    if (cpu->env.external_htab == MMU_HASH64_KVM_MANAGED_HPT) {
+        /*
+         * HTAB is controlled by KVM. Fetch the PTEG into a new buffer.
+         */
+        token = kvmppc_hash64_read_pteg(cpu, pte_index);
+    } else if (cpu->env.external_htab) {
+        /*
+         * HTAB is controlled by QEMU. Just point to the internally
+         * accessible PTEG.
+         */
+        token = (uint64_t)(uintptr_t) cpu->env.external_htab + pte_offset;
+    } else if (cpu->env.htab_base) {
+        token = cpu->env.htab_base + pte_offset;
+    }
+    return token;
+}
+
+void ppc_hash64_stop_access(PowerPCCPU *cpu, uint64_t token)
+{
+    if (cpu->env.external_htab == MMU_HASH64_KVM_MANAGED_HPT) {
+        kvmppc_hash64_free_pteg(token);
+    }
+}
+
+static unsigned hpte_page_shift(const struct ppc_one_seg_page_size *sps,
+    uint64_t pte0, uint64_t pte1)
+{
+    int i;
+
+    if (!(pte0 & HPTE64_V_LARGE)) {
+        if (sps->page_shift != 12) {
+            /* 4kiB page in a non 4kiB segment */
+            return 0;
+        }
+        /* Normal 4kiB page */
+        return 12;
+    }
+
+    for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
+        const struct ppc_one_page_size *ps = &sps->enc[i];
+        uint64_t mask;
+
+        if (!ps->page_shift) {
+            break;
+        }
+
+        if (ps->page_shift == 12) {
+            /* L bit is set so this can't be a 4kiB page */
+            continue;
+        }
+
+        mask = ((1ULL << ps->page_shift) - 1) & HPTE64_R_RPN;
+
+        if ((pte1 & mask) == ((uint64_t)ps->pte_enc << HPTE64_R_RPN_SHIFT)) {
+            return ps->page_shift;
+        }
+    }
+
+    return 0; /* Bad page size encoding */
+}
+
+static hwaddr ppc_hash64_pteg_search(PowerPCCPU *cpu, hwaddr hash,
+                                     const struct ppc_one_seg_page_size *sps,
+                                     target_ulong ptem,
+                                     ppc_hash_pte64_t *pte, unsigned *pshift)
+{
+    CPUPPCState *env = &cpu->env;
+    int i;
+    uint64_t token;
+    target_ulong pte0, pte1;
+    target_ulong pte_index;
+
+    pte_index = (hash & env->htab_mask) * HPTES_PER_GROUP;
+    token = ppc_hash64_start_access(cpu, pte_index);
+    if (!token) {
+        return -1;
+    }
+    for (i = 0; i < HPTES_PER_GROUP; i++) {
+        pte0 = ppc_hash64_load_hpte0(cpu, token, i);
+        pte1 = ppc_hash64_load_hpte1(cpu, token, i);
+
+        /* This compares V, B, H (secondary) and the AVPN */
+        if (HPTE64_V_COMPARE(pte0, ptem)) {
+            *pshift = hpte_page_shift(sps, pte0, pte1);
+            /*
+             * If there is no match, ignore the PTE, it could simply
+             * be for a different segment size encoding and the
+             * architecture specifies we should not match. Linux will
+             * potentially leave behind PTEs for the wrong base page
+             * size when demoting segments.
+             */
+            if (*pshift == 0) {
+                continue;
+            }
+            /* We don't do anything with pshift yet as qemu TLB only deals
+             * with 4K pages anyway
+             */
+            pte->pte0 = pte0;
+            pte->pte1 = pte1;
+            ppc_hash64_stop_access(cpu, token);
+            return (pte_index + i) * HASH_PTE_SIZE_64;
+        }
+    }
+    ppc_hash64_stop_access(cpu, token);
+    /*
+     * We didn't find a valid entry.
+     */
+    return -1;
+}
+
+static hwaddr ppc_hash64_htab_lookup(PowerPCCPU *cpu,
+                                     ppc_slb_t *slb, target_ulong eaddr,
+                                     ppc_hash_pte64_t *pte, unsigned *pshift)
+{
+    CPUPPCState *env = &cpu->env;
+    hwaddr pte_offset;
+    hwaddr hash;
+    uint64_t vsid, epnmask, epn, ptem;
+    const struct ppc_one_seg_page_size *sps = slb->sps;
+
+    /* The SLB store path should prevent any bad page size encodings
+     * getting in there, so: */
+    assert(sps);
+
+    /* If ISL is set in LPCR we need to clamp the page size to 4K */
+    if (env->spr[SPR_LPCR] & LPCR_ISL) {
+        /* We assume that when using TCG, 4k is first entry of SPS */
+        sps = &env->sps.sps[0];
+        assert(sps->page_shift == 12);
+    }
+
+    epnmask = ~((1ULL << sps->page_shift) - 1);
+
+    if (slb->vsid & SLB_VSID_B) {
+        /* 1TB segment */
+        vsid = (slb->vsid & SLB_VSID_VSID) >> SLB_VSID_SHIFT_1T;
+        epn = (eaddr & ~SEGMENT_MASK_1T) & epnmask;
+        hash = vsid ^ (vsid << 25) ^ (epn >> sps->page_shift);
+    } else {
+        /* 256M segment */
+        vsid = (slb->vsid & SLB_VSID_VSID) >> SLB_VSID_SHIFT;
+        epn = (eaddr & ~SEGMENT_MASK_256M) & epnmask;
+        hash = vsid ^ (epn >> sps->page_shift);
+    }
+    ptem = (slb->vsid & SLB_VSID_PTEM) | ((epn >> 16) & HPTE64_V_AVPN);
+    ptem |= HPTE64_V_VALID;
+
+    /* Page address translation */
+    qemu_log_mask(CPU_LOG_MMU,
+            "htab_base " TARGET_FMT_plx " htab_mask " TARGET_FMT_plx
+            " hash " TARGET_FMT_plx "\n",
+            env->htab_base, env->htab_mask, hash);
+
+    /* Primary PTEG lookup */
+    qemu_log_mask(CPU_LOG_MMU,
+            "0 htab=" TARGET_FMT_plx "/" TARGET_FMT_plx
+            " vsid=" TARGET_FMT_lx " ptem=" TARGET_FMT_lx
+            " hash=" TARGET_FMT_plx "\n",
+            env->htab_base, env->htab_mask, vsid, ptem,  hash);
+    pte_offset = ppc_hash64_pteg_search(cpu, hash, sps, ptem, pte, pshift);
+
+    if (pte_offset == -1) {
+        /* Secondary PTEG lookup */
+        ptem |= HPTE64_V_SECONDARY;
+        qemu_log_mask(CPU_LOG_MMU,
+                "1 htab=" TARGET_FMT_plx "/" TARGET_FMT_plx
+                " vsid=" TARGET_FMT_lx " api=" TARGET_FMT_lx
+                " hash=" TARGET_FMT_plx "\n", env->htab_base,
+                env->htab_mask, vsid, ptem, ~hash);
+
+        pte_offset = ppc_hash64_pteg_search(cpu, ~hash, sps, ptem, pte, pshift);
+    }
+
+    return pte_offset;
+}
+
+unsigned ppc_hash64_hpte_page_shift_noslb(PowerPCCPU *cpu,
+                                          uint64_t pte0, uint64_t pte1)
+{
+    CPUPPCState *env = &cpu->env;
+    int i;
+
+    if (!(pte0 & HPTE64_V_LARGE)) {
+        return 12;
+    }
+
+    /*
+     * The encodings in env->sps need to be carefully chosen so that
+     * this gives an unambiguous result.
+     */
+    for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
+        const struct ppc_one_seg_page_size *sps = &env->sps.sps[i];
+        unsigned shift;
+
+        if (!sps->page_shift) {
+            break;
+        }
+
+        shift = hpte_page_shift(sps, pte0, pte1);
+        if (shift) {
+            return shift;
+        }
+    }
+
+    return 0;
+}
+
+static void ppc_hash64_set_isi(CPUState *cs, CPUPPCState *env,
+                               uint64_t error_code)
+{
+    bool vpm;
+
+    if (msr_ir) {
+        vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM1);
+    } else {
+        vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM0);
+    }
+    if (vpm && !msr_hv) {
+        cs->exception_index = POWERPC_EXCP_HISI;
+    } else {
+        cs->exception_index = POWERPC_EXCP_ISI;
+    }
+    env->error_code = error_code;
+}
+
+static void ppc_hash64_set_dsi(CPUState *cs, CPUPPCState *env, uint64_t dar,
+                               uint64_t dsisr)
+{
+    bool vpm;
+
+    if (msr_dr) {
+        vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM1);
+    } else {
+        vpm = !!(env->spr[SPR_LPCR] & LPCR_VPM0);
+    }
+    if (vpm && !msr_hv) {
+        cs->exception_index = POWERPC_EXCP_HDSI;
+        env->spr[SPR_HDAR] = dar;
+        env->spr[SPR_HDSISR] = dsisr;
+    } else {
+        cs->exception_index = POWERPC_EXCP_DSI;
+        env->spr[SPR_DAR] = dar;
+        env->spr[SPR_DSISR] = dsisr;
+   }
+    env->error_code = 0;
+}
+
+
+int ppc_hash64_handle_mmu_fault(PowerPCCPU *cpu, vaddr eaddr,
+                                int rwx, int mmu_idx)
+{
+    CPUState *cs = CPU(cpu);
+    CPUPPCState *env = &cpu->env;
+    ppc_slb_t *slb;
+    unsigned apshift;
+    hwaddr pte_offset;
+    ppc_hash_pte64_t pte;
+    int pp_prot, amr_prot, prot;
+    uint64_t new_pte1, dsisr;
+    const int need_prot[] = {PAGE_READ, PAGE_WRITE, PAGE_EXEC};
+    hwaddr raddr;
+
+    assert((rwx == 0) || (rwx == 1) || (rwx == 2));
+
+    /* Note on LPCR usage: 970 uses HID4, but our special variant
+     * of store_spr copies relevant fields into env->spr[SPR_LPCR].
+     * Similarily we filter unimplemented bits when storing into
+     * LPCR depending on the MMU version. This code can thus just
+     * use the LPCR "as-is".
+     */
+
+    /* 1. Handle real mode accesses */
+    if (((rwx == 2) && (msr_ir == 0)) || ((rwx != 2) && (msr_dr == 0))) {
+        /* Translation is supposedly "off"  */
+        /* In real mode the top 4 effective address bits are (mostly) ignored */
+        raddr = eaddr & 0x0FFFFFFFFFFFFFFFULL;
+
+        /* In HV mode, add HRMOR if top EA bit is clear */
+        if (msr_hv || !env->has_hv_mode) {
+            if (!(eaddr >> 63)) {
+                raddr |= env->spr[SPR_HRMOR];
+            }
+        } else {
+            /* Otherwise, check VPM for RMA vs VRMA */
+            if (env->spr[SPR_LPCR] & LPCR_VPM0) {
+                slb = &env->vrma_slb;
+                if (slb->sps) {
+                    goto skip_slb_search;
+                }
+                /* Not much else to do here */
+                cs->exception_index = POWERPC_EXCP_MCHECK;
+                env->error_code = 0;
+                return 1;
+            } else if (raddr < env->rmls) {
+                /* RMA. Check bounds in RMLS */
+                raddr |= env->spr[SPR_RMOR];
+            } else {
+                /* The access failed, generate the approriate interrupt */
+                if (rwx == 2) {
+                    ppc_hash64_set_isi(cs, env, 0x08000000);
+                } else {
+                    dsisr = 0x08000000;
+                    if (rwx == 1) {
+                        dsisr |= 0x02000000;
+                    }
+                    ppc_hash64_set_dsi(cs, env, eaddr, dsisr);
+                }
+                return 1;
+            }
+        }
+        tlb_set_page(cs, eaddr & TARGET_PAGE_MASK, raddr & TARGET_PAGE_MASK,
+                     PAGE_READ | PAGE_WRITE | PAGE_EXEC, mmu_idx,
+                     TARGET_PAGE_SIZE);
+        return 0;
+    }
+
+    /* 2. Translation is on, so look up the SLB */
+    slb = slb_lookup(cpu, eaddr);
+    if (!slb) {
+        if (rwx == 2) {
+            cs->exception_index = POWERPC_EXCP_ISEG;
+            env->error_code = 0;
+        } else {
+            cs->exception_index = POWERPC_EXCP_DSEG;
+            env->error_code = 0;
+            env->spr[SPR_DAR] = eaddr;
+        }
+        return 1;
+    }
+
+skip_slb_search:
+
+    /* 3. Check for segment level no-execute violation */
+    if ((rwx == 2) && (slb->vsid & SLB_VSID_N)) {
+        ppc_hash64_set_isi(cs, env, 0x10000000);
+        return 1;
+    }
+
+    /* 4. Locate the PTE in the hash table */
+    pte_offset = ppc_hash64_htab_lookup(cpu, slb, eaddr, &pte, &apshift);
+    if (pte_offset == -1) {
+        dsisr = 0x40000000;
+        if (rwx == 2) {
+            ppc_hash64_set_isi(cs, env, dsisr);
+        } else {
+            if (rwx == 1) {
+                dsisr |= 0x02000000;
+            }
+            ppc_hash64_set_dsi(cs, env, eaddr, dsisr);
+        }
+        return 1;
+    }
+    qemu_log_mask(CPU_LOG_MMU,
+                "found PTE at offset %08" HWADDR_PRIx "\n", pte_offset);
+
+    /* 5. Check access permissions */
+
+    pp_prot = ppc_hash64_pte_prot(cpu, slb, pte);
+    amr_prot = ppc_hash64_amr_prot(cpu, pte);
+    prot = pp_prot & amr_prot;
+
+    if ((need_prot[rwx] & ~prot) != 0) {
+        /* Access right violation */
+        qemu_log_mask(CPU_LOG_MMU, "PTE access rejected\n");
+        if (rwx == 2) {
+            ppc_hash64_set_isi(cs, env, 0x08000000);
+        } else {
+            dsisr = 0;
+            if (need_prot[rwx] & ~pp_prot) {
+                dsisr |= 0x08000000;
+            }
+            if (rwx == 1) {
+                dsisr |= 0x02000000;
+            }
+            if (need_prot[rwx] & ~amr_prot) {
+                dsisr |= 0x00200000;
+            }
+            ppc_hash64_set_dsi(cs, env, eaddr, dsisr);
+        }
+        return 1;
+    }
+
+    qemu_log_mask(CPU_LOG_MMU, "PTE access granted !\n");
+
+    /* 6. Update PTE referenced and changed bits if necessary */
+
+    new_pte1 = pte.pte1 | HPTE64_R_R; /* set referenced bit */
+    if (rwx == 1) {
+        new_pte1 |= HPTE64_R_C; /* set changed (dirty) bit */
+    } else {
+        /* Treat the page as read-only for now, so that a later write
+         * will pass through this function again to set the C bit */
+        prot &= ~PAGE_WRITE;
+    }
+
+    if (new_pte1 != pte.pte1) {
+        ppc_hash64_store_hpte(cpu, pte_offset / HASH_PTE_SIZE_64,
+                              pte.pte0, new_pte1);
+    }
+
+    /* 7. Determine the real address from the PTE */
+
+    raddr = deposit64(pte.pte1 & HPTE64_R_RPN, 0, apshift, eaddr);
+
+    tlb_set_page(cs, eaddr & TARGET_PAGE_MASK, raddr & TARGET_PAGE_MASK,
+                 prot, mmu_idx, 1ULL << apshift);
+
+    return 0;
+}
+
+hwaddr ppc_hash64_get_phys_page_debug(PowerPCCPU *cpu, target_ulong addr)
+{
+    CPUPPCState *env = &cpu->env;
+    ppc_slb_t *slb;
+    hwaddr pte_offset, raddr;
+    ppc_hash_pte64_t pte;
+    unsigned apshift;
+
+    /* Handle real mode */
+    if (msr_dr == 0) {
+        /* In real mode the top 4 effective address bits are ignored */
+        raddr = addr & 0x0FFFFFFFFFFFFFFFULL;
+
+        /* In HV mode, add HRMOR if top EA bit is clear */
+        if ((msr_hv || !env->has_hv_mode) && !(addr >> 63)) {
+            return raddr | env->spr[SPR_HRMOR];
+        }
+
+        /* Otherwise, check VPM for RMA vs VRMA */
+        if (env->spr[SPR_LPCR] & LPCR_VPM0) {
+            slb = &env->vrma_slb;
+            if (!slb->sps) {
+                return -1;
+            }
+        } else if (raddr < env->rmls) {
+            /* RMA. Check bounds in RMLS */
+            return raddr | env->spr[SPR_RMOR];
+        } else {
+            return -1;
+        }
+    } else {
+        slb = slb_lookup(cpu, addr);
+        if (!slb) {
+            return -1;
+        }
+    }
+
+    pte_offset = ppc_hash64_htab_lookup(cpu, slb, addr, &pte, &apshift);
+    if (pte_offset == -1) {
+        return -1;
+    }
+
+    return deposit64(pte.pte1 & HPTE64_R_RPN, 0, apshift, addr)
+        & TARGET_PAGE_MASK;
+}
+
+void ppc_hash64_store_hpte(PowerPCCPU *cpu,
+                           target_ulong pte_index,
+                           target_ulong pte0, target_ulong pte1)
+{
+    CPUPPCState *env = &cpu->env;
+
+    if (env->external_htab == MMU_HASH64_KVM_MANAGED_HPT) {
+        kvmppc_hash64_write_pte(env, pte_index, pte0, pte1);
+        return;
+    }
+
+    pte_index *= HASH_PTE_SIZE_64;
+    if (env->external_htab) {
+        stq_p(env->external_htab + pte_index, pte0);
+        stq_p(env->external_htab + pte_index + HASH_PTE_SIZE_64 / 2, pte1);
+    } else {
+        stq_phys(CPU(cpu)->as, env->htab_base + pte_index, pte0);
+        stq_phys(CPU(cpu)->as,
+                 env->htab_base + pte_index + HASH_PTE_SIZE_64 / 2, pte1);
+    }
+}
+
+void ppc_hash64_tlb_flush_hpte(PowerPCCPU *cpu,
+                               target_ulong pte_index,
+                               target_ulong pte0, target_ulong pte1)
+{
+    /*
+     * XXX: given the fact that there are too many segments to
+     * invalidate, and we still don't have a tlb_flush_mask(env, n,
+     * mask) in QEMU, we just invalidate all TLBs
+     */
+    cpu->env.tlb_need_flush = TLB_NEED_GLOBAL_FLUSH | TLB_NEED_LOCAL_FLUSH;
+}
+
+void ppc_hash64_update_rmls(CPUPPCState *env)
+{
+    uint64_t lpcr = env->spr[SPR_LPCR];
+
+    /*
+     * This is the full 4 bits encoding of POWER8. Previous
+     * CPUs only support a subset of these but the filtering
+     * is done when writing LPCR
+     */
+    switch ((lpcr & LPCR_RMLS) >> LPCR_RMLS_SHIFT) {
+    case 0x8: /* 32MB */
+        env->rmls = 0x2000000ull;
+        break;
+    case 0x3: /* 64MB */
+        env->rmls = 0x4000000ull;
+        break;
+    case 0x7: /* 128MB */
+        env->rmls = 0x8000000ull;
+        break;
+    case 0x4: /* 256MB */
+        env->rmls = 0x10000000ull;
+        break;
+    case 0x2: /* 1GB */
+        env->rmls = 0x40000000ull;
+        break;
+    case 0x1: /* 16GB */
+        env->rmls = 0x400000000ull;
+        break;
+    default:
+        /* What to do here ??? */
+        env->rmls = 0;
+    }
+}
+
+void ppc_hash64_update_vrma(CPUPPCState *env)
+{
+    const struct ppc_one_seg_page_size *sps = NULL;
+    target_ulong esid, vsid, lpcr;
+    ppc_slb_t *slb = &env->vrma_slb;
+    uint32_t vrmasd;
+    int i;
+
+    /* First clear it */
+    slb->esid = slb->vsid = 0;
+    slb->sps = NULL;
+
+    /* Is VRMA enabled ? */
+    lpcr = env->spr[SPR_LPCR];
+    if (!(lpcr & LPCR_VPM0)) {
+        return;
+    }
+
+    /* Make one up. Mostly ignore the ESID which will not be
+     * needed for translation
+     */
+    vsid = SLB_VSID_VRMA;
+    vrmasd = (lpcr & LPCR_VRMASD) >> LPCR_VRMASD_SHIFT;
+    vsid |= (vrmasd << 4) & (SLB_VSID_L | SLB_VSID_LP);
+    esid = SLB_ESID_V;
+
+   for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
+        const struct ppc_one_seg_page_size *sps1 = &env->sps.sps[i];
+
+        if (!sps1->page_shift) {
+            break;
+        }
+
+        if ((vsid & SLB_VSID_LLP_MASK) == sps1->slb_enc) {
+            sps = sps1;
+            break;
+        }
+    }
+
+    if (!sps) {
+        error_report("Bad page size encoding esid 0x"TARGET_FMT_lx
+                     " vsid 0x"TARGET_FMT_lx, esid, vsid);
+        return;
+    }
+
+    slb->vsid = vsid;
+    slb->esid = esid;
+    slb->sps = sps;
+}
+
+void helper_store_lpcr(CPUPPCState *env, target_ulong val)
+{
+    uint64_t lpcr = 0;
+
+    /* Filter out bits */
+    switch (env->mmu_model) {
+    case POWERPC_MMU_64B: /* 970 */
+        if (val & 0x40) {
+            lpcr |= LPCR_LPES0;
+        }
+        if (val & 0x8000000000000000ull) {
+            lpcr |= LPCR_LPES1;
+        }
+        if (val & 0x20) {
+            lpcr |= (0x4ull << LPCR_RMLS_SHIFT);
+        }
+        if (val & 0x4000000000000000ull) {
+            lpcr |= (0x2ull << LPCR_RMLS_SHIFT);
+        }
+        if (val & 0x2000000000000000ull) {
+            lpcr |= (0x1ull << LPCR_RMLS_SHIFT);
+        }
+        env->spr[SPR_RMOR] = ((lpcr >> 41) & 0xffffull) << 26;
+
+        /* XXX We could also write LPID from HID4 here
+         * but since we don't tag any translation on it
+         * it doesn't actually matter
+         */
+        /* XXX For proper emulation of 970 we also need
+         * to dig HRMOR out of HID5
+         */
+        break;
+    case POWERPC_MMU_2_03: /* P5p */
+        lpcr = val & (LPCR_RMLS | LPCR_ILE |
+                      LPCR_LPES0 | LPCR_LPES1 |
+                      LPCR_RMI | LPCR_HDICE);
+        break;
+    case POWERPC_MMU_2_06: /* P7 */
+        lpcr = val & (LPCR_VPM0 | LPCR_VPM1 | LPCR_ISL | LPCR_DPFD |
+                      LPCR_VRMASD | LPCR_RMLS | LPCR_ILE |
+                      LPCR_P7_PECE0 | LPCR_P7_PECE1 | LPCR_P7_PECE2 |
+                      LPCR_MER | LPCR_TC |
+                      LPCR_LPES0 | LPCR_LPES1 | LPCR_HDICE);
+        break;
+    case POWERPC_MMU_2_07: /* P8 */
+        lpcr = val & (LPCR_VPM0 | LPCR_VPM1 | LPCR_ISL | LPCR_KBV |
+                      LPCR_DPFD | LPCR_VRMASD | LPCR_RMLS | LPCR_ILE |
+                      LPCR_AIL | LPCR_ONL | LPCR_P8_PECE0 | LPCR_P8_PECE1 |
+                      LPCR_P8_PECE2 | LPCR_P8_PECE3 | LPCR_P8_PECE4 |
+                      LPCR_MER | LPCR_TC | LPCR_LPES0 | LPCR_HDICE);
+        break;
+    default:
+        ;
+    }
+    env->spr[SPR_LPCR] = lpcr;
+    ppc_hash64_update_rmls(env);
+    ppc_hash64_update_vrma(env);
+}