summary refs log tree commit diff stats
path: root/target/ppc/power8-pmu.c
diff options
context:
space:
mode:
Diffstat (limited to 'target/ppc/power8-pmu.c')
-rw-r--r--target/ppc/power8-pmu.c350
1 files changed, 350 insertions, 0 deletions
diff --git a/target/ppc/power8-pmu.c b/target/ppc/power8-pmu.c
new file mode 100644
index 0000000000..08d1902cd5
--- /dev/null
+++ b/target/ppc/power8-pmu.c
@@ -0,0 +1,350 @@
+/*
+ * PMU emulation helpers for TCG IBM POWER chips
+ *
+ *  Copyright IBM Corp. 2021
+ *
+ * Authors:
+ *  Daniel Henrique Barboza      <danielhb413@gmail.com>
+ *
+ * This work is licensed under the terms of the GNU GPL, version 2 or later.
+ * See the COPYING file in the top-level directory.
+ */
+
+#include "qemu/osdep.h"
+
+#include "power8-pmu.h"
+#include "cpu.h"
+#include "helper_regs.h"
+#include "exec/exec-all.h"
+#include "exec/helper-proto.h"
+#include "qemu/error-report.h"
+#include "qemu/main-loop.h"
+#include "hw/ppc/ppc.h"
+
+#if defined(TARGET_PPC64) && !defined(CONFIG_USER_ONLY)
+
+#define PMC_COUNTER_NEGATIVE_VAL 0x80000000UL
+
+static bool pmc_is_inactive(CPUPPCState *env, int sprn)
+{
+    if (env->spr[SPR_POWER_MMCR0] & MMCR0_FC) {
+        return true;
+    }
+
+    if (sprn < SPR_POWER_PMC5) {
+        return env->spr[SPR_POWER_MMCR0] & MMCR0_FC14;
+    }
+
+    return env->spr[SPR_POWER_MMCR0] & MMCR0_FC56;
+}
+
+static bool pmc_has_overflow_enabled(CPUPPCState *env, int sprn)
+{
+    if (sprn == SPR_POWER_PMC1) {
+        return env->spr[SPR_POWER_MMCR0] & MMCR0_PMC1CE;
+    }
+
+    return env->spr[SPR_POWER_MMCR0] & MMCR0_PMCjCE;
+}
+
+/*
+ * For PMCs 1-4, IBM POWER chips has support for an implementation
+ * dependent event, 0x1E, that enables cycle counting. The Linux kernel
+ * makes extensive use of 0x1E, so let's also support it.
+ *
+ * Likewise, event 0x2 is an implementation-dependent event that IBM
+ * POWER chips implement (at least since POWER8) that is equivalent to
+ * PM_INST_CMPL. Let's support this event on PMCs 1-4 as well.
+ */
+static PMUEventType pmc_get_event(CPUPPCState *env, int sprn)
+{
+    uint8_t mmcr1_evt_extr[] = { MMCR1_PMC1EVT_EXTR, MMCR1_PMC2EVT_EXTR,
+                                 MMCR1_PMC3EVT_EXTR, MMCR1_PMC4EVT_EXTR };
+    PMUEventType evt_type = PMU_EVENT_INVALID;
+    uint8_t pmcsel;
+    int i;
+
+    if (pmc_is_inactive(env, sprn)) {
+        return PMU_EVENT_INACTIVE;
+    }
+
+    if (sprn == SPR_POWER_PMC5) {
+        return PMU_EVENT_INSTRUCTIONS;
+    }
+
+    if (sprn == SPR_POWER_PMC6) {
+        return PMU_EVENT_CYCLES;
+    }
+
+    i = sprn - SPR_POWER_PMC1;
+    pmcsel = extract64(env->spr[SPR_POWER_MMCR1], mmcr1_evt_extr[i],
+                       MMCR1_EVT_SIZE);
+
+    switch (pmcsel) {
+    case 0x2:
+        evt_type = PMU_EVENT_INSTRUCTIONS;
+        break;
+    case 0x1E:
+        evt_type = PMU_EVENT_CYCLES;
+        break;
+    case 0xF0:
+        /*
+         * PMC1SEL = 0xF0 is the architected PowerISA v3.1
+         * event that counts cycles using PMC1.
+         */
+        if (sprn == SPR_POWER_PMC1) {
+            evt_type = PMU_EVENT_CYCLES;
+        }
+        break;
+    case 0xFA:
+        /*
+         * PMC4SEL = 0xFA is the "instructions completed
+         * with run latch set" event.
+         */
+        if (sprn == SPR_POWER_PMC4) {
+            evt_type = PMU_EVENT_INSN_RUN_LATCH;
+        }
+        break;
+    case 0xFE:
+        /*
+         * PMC1SEL = 0xFE is the architected PowerISA v3.1
+         * event to sample instructions using PMC1.
+         */
+        if (sprn == SPR_POWER_PMC1) {
+            evt_type = PMU_EVENT_INSTRUCTIONS;
+        }
+        break;
+    default:
+        break;
+    }
+
+    return evt_type;
+}
+
+bool pmu_insn_cnt_enabled(CPUPPCState *env)
+{
+    int sprn;
+
+    for (sprn = SPR_POWER_PMC1; sprn <= SPR_POWER_PMC5; sprn++) {
+        if (pmc_get_event(env, sprn) == PMU_EVENT_INSTRUCTIONS ||
+            pmc_get_event(env, sprn) == PMU_EVENT_INSN_RUN_LATCH) {
+            return true;
+        }
+    }
+
+    return false;
+}
+
+static bool pmu_increment_insns(CPUPPCState *env, uint32_t num_insns)
+{
+    bool overflow_triggered = false;
+    int sprn;
+
+    /* PMC6 never counts instructions */
+    for (sprn = SPR_POWER_PMC1; sprn <= SPR_POWER_PMC5; sprn++) {
+        PMUEventType evt_type = pmc_get_event(env, sprn);
+        bool insn_event = evt_type == PMU_EVENT_INSTRUCTIONS ||
+                          evt_type == PMU_EVENT_INSN_RUN_LATCH;
+
+        if (pmc_is_inactive(env, sprn) || !insn_event) {
+            continue;
+        }
+
+        if (evt_type == PMU_EVENT_INSTRUCTIONS) {
+            env->spr[sprn] += num_insns;
+        }
+
+        if (evt_type == PMU_EVENT_INSN_RUN_LATCH &&
+            env->spr[SPR_CTRL] & CTRL_RUN) {
+            env->spr[sprn] += num_insns;
+        }
+
+        if (env->spr[sprn] >= PMC_COUNTER_NEGATIVE_VAL &&
+            pmc_has_overflow_enabled(env, sprn)) {
+
+            overflow_triggered = true;
+
+            /*
+             * The real PMU will always trigger a counter overflow with
+             * PMC_COUNTER_NEGATIVE_VAL. We don't have an easy way to
+             * do that since we're counting block of instructions at
+             * the end of each translation block, and we're probably
+             * passing this value at this point.
+             *
+             * Let's write PMC_COUNTER_NEGATIVE_VAL to the overflowed
+             * counter to simulate what the real hardware would do.
+             */
+            env->spr[sprn] = PMC_COUNTER_NEGATIVE_VAL;
+        }
+    }
+
+    return overflow_triggered;
+}
+
+static void pmu_update_cycles(CPUPPCState *env)
+{
+    uint64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
+    uint64_t time_delta = now - env->pmu_base_time;
+    int sprn;
+
+    for (sprn = SPR_POWER_PMC1; sprn <= SPR_POWER_PMC6; sprn++) {
+        if (pmc_get_event(env, sprn) != PMU_EVENT_CYCLES) {
+            continue;
+        }
+
+        /*
+         * The pseries and powernv clock runs at 1Ghz, meaning
+         * that 1 nanosec equals 1 cycle.
+         */
+        env->spr[sprn] += time_delta;
+    }
+
+    /* Update base_time for future calculations */
+    env->pmu_base_time = now;
+}
+
+/*
+ * Helper function to retrieve the cycle overflow timer of the
+ * 'sprn' counter.
+ */
+static QEMUTimer *get_cyc_overflow_timer(CPUPPCState *env, int sprn)
+{
+    return env->pmu_cyc_overflow_timers[sprn - SPR_POWER_PMC1];
+}
+
+static void pmc_update_overflow_timer(CPUPPCState *env, int sprn)
+{
+    QEMUTimer *pmc_overflow_timer = get_cyc_overflow_timer(env, sprn);
+    int64_t timeout;
+
+    /*
+     * PMC5 does not have an overflow timer and this pointer
+     * will be NULL.
+     */
+    if (!pmc_overflow_timer) {
+        return;
+    }
+
+    if (pmc_get_event(env, sprn) != PMU_EVENT_CYCLES ||
+        !pmc_has_overflow_enabled(env, sprn)) {
+        /* Overflow timer is not needed for this counter */
+        timer_del(pmc_overflow_timer);
+        return;
+    }
+
+    if (env->spr[sprn] >= PMC_COUNTER_NEGATIVE_VAL) {
+        timeout =  0;
+    } else {
+        timeout = PMC_COUNTER_NEGATIVE_VAL - env->spr[sprn];
+    }
+
+    /*
+     * Use timer_mod_anticipate() because an overflow timer might
+     * be already running for this PMC.
+     */
+    timer_mod_anticipate(pmc_overflow_timer, env->pmu_base_time + timeout);
+}
+
+static void pmu_update_overflow_timers(CPUPPCState *env)
+{
+    int sprn;
+
+    /*
+     * Scroll through all PMCs and start counter overflow timers for
+     * PM_CYC events, if needed.
+     */
+    for (sprn = SPR_POWER_PMC1; sprn <= SPR_POWER_PMC6; sprn++) {
+        pmc_update_overflow_timer(env, sprn);
+    }
+}
+
+void helper_store_mmcr0(CPUPPCState *env, target_ulong value)
+{
+    pmu_update_cycles(env);
+
+    env->spr[SPR_POWER_MMCR0] = value;
+
+    /* MMCR0 writes can change HFLAGS_PMCCCLEAR and HFLAGS_INSN_CNT */
+    hreg_compute_hflags(env);
+
+    /* Update cycle overflow timers with the current MMCR0 state */
+    pmu_update_overflow_timers(env);
+}
+
+void helper_store_mmcr1(CPUPPCState *env, uint64_t value)
+{
+    pmu_update_cycles(env);
+
+    env->spr[SPR_POWER_MMCR1] = value;
+
+    /* MMCR1 writes can change HFLAGS_INSN_CNT */
+    hreg_compute_hflags(env);
+}
+
+target_ulong helper_read_pmc(CPUPPCState *env, uint32_t sprn)
+{
+    pmu_update_cycles(env);
+
+    return env->spr[sprn];
+}
+
+void helper_store_pmc(CPUPPCState *env, uint32_t sprn, uint64_t value)
+{
+    pmu_update_cycles(env);
+
+    env->spr[sprn] = value;
+
+    pmc_update_overflow_timer(env, sprn);
+}
+
+static void fire_PMC_interrupt(PowerPCCPU *cpu)
+{
+    CPUPPCState *env = &cpu->env;
+
+    if (!(env->spr[SPR_POWER_MMCR0] & MMCR0_EBE)) {
+        return;
+    }
+
+    /* PMC interrupt not implemented yet */
+    return;
+}
+
+/* This helper assumes that the PMC is running. */
+void helper_insns_inc(CPUPPCState *env, uint32_t num_insns)
+{
+    bool overflow_triggered;
+    PowerPCCPU *cpu;
+
+    overflow_triggered = pmu_increment_insns(env, num_insns);
+
+    if (overflow_triggered) {
+        cpu = env_archcpu(env);
+        fire_PMC_interrupt(cpu);
+    }
+}
+
+static void cpu_ppc_pmu_timer_cb(void *opaque)
+{
+    PowerPCCPU *cpu = opaque;
+
+    fire_PMC_interrupt(cpu);
+}
+
+void cpu_ppc_pmu_init(CPUPPCState *env)
+{
+    PowerPCCPU *cpu = env_archcpu(env);
+    int i, sprn;
+
+    for (sprn = SPR_POWER_PMC1; sprn <= SPR_POWER_PMC6; sprn++) {
+        if (sprn == SPR_POWER_PMC5) {
+            continue;
+        }
+
+        i = sprn - SPR_POWER_PMC1;
+
+        env->pmu_cyc_overflow_timers[i] = timer_new_ns(QEMU_CLOCK_VIRTUAL,
+                                                       &cpu_ppc_pmu_timer_cb,
+                                                       cpu);
+    }
+}
+#endif /* defined(TARGET_PPC64) && !defined(CONFIG_USER_ONLY) */