summary refs log tree commit diff stats
path: root/target/sparc/ldst_helper.c
diff options
context:
space:
mode:
Diffstat (limited to 'target/sparc/ldst_helper.c')
-rw-r--r--target/sparc/ldst_helper.c1709
1 files changed, 1709 insertions, 0 deletions
diff --git a/target/sparc/ldst_helper.c b/target/sparc/ldst_helper.c
new file mode 100644
index 0000000000..de7d53ae20
--- /dev/null
+++ b/target/sparc/ldst_helper.c
@@ -0,0 +1,1709 @@
+/*
+ * Helpers for loads and stores
+ *
+ *  Copyright (c) 2003-2005 Fabrice Bellard
+ *
+ * This library is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2 of the License, or (at your option) any later version.
+ *
+ * This library is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with this library; if not, see <http://www.gnu.org/licenses/>.
+ */
+
+#include "qemu/osdep.h"
+#include "cpu.h"
+#include "tcg.h"
+#include "exec/helper-proto.h"
+#include "exec/exec-all.h"
+#include "exec/cpu_ldst.h"
+#include "asi.h"
+
+//#define DEBUG_MMU
+//#define DEBUG_MXCC
+//#define DEBUG_UNALIGNED
+//#define DEBUG_UNASSIGNED
+//#define DEBUG_ASI
+//#define DEBUG_CACHE_CONTROL
+
+#ifdef DEBUG_MMU
+#define DPRINTF_MMU(fmt, ...)                                   \
+    do { printf("MMU: " fmt , ## __VA_ARGS__); } while (0)
+#else
+#define DPRINTF_MMU(fmt, ...) do {} while (0)
+#endif
+
+#ifdef DEBUG_MXCC
+#define DPRINTF_MXCC(fmt, ...)                                  \
+    do { printf("MXCC: " fmt , ## __VA_ARGS__); } while (0)
+#else
+#define DPRINTF_MXCC(fmt, ...) do {} while (0)
+#endif
+
+#ifdef DEBUG_ASI
+#define DPRINTF_ASI(fmt, ...)                                   \
+    do { printf("ASI: " fmt , ## __VA_ARGS__); } while (0)
+#endif
+
+#ifdef DEBUG_CACHE_CONTROL
+#define DPRINTF_CACHE_CONTROL(fmt, ...)                                 \
+    do { printf("CACHE_CONTROL: " fmt , ## __VA_ARGS__); } while (0)
+#else
+#define DPRINTF_CACHE_CONTROL(fmt, ...) do {} while (0)
+#endif
+
+#ifdef TARGET_SPARC64
+#ifndef TARGET_ABI32
+#define AM_CHECK(env1) ((env1)->pstate & PS_AM)
+#else
+#define AM_CHECK(env1) (1)
+#endif
+#endif
+
+#define QT0 (env->qt0)
+#define QT1 (env->qt1)
+
+#if defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
+/* Calculates TSB pointer value for fault page size 8k or 64k */
+static uint64_t ultrasparc_tsb_pointer(uint64_t tsb_register,
+                                       uint64_t tag_access_register,
+                                       int page_size)
+{
+    uint64_t tsb_base = tsb_register & ~0x1fffULL;
+    int tsb_split = (tsb_register & 0x1000ULL) ? 1 : 0;
+    int tsb_size  = tsb_register & 0xf;
+
+    /* discard lower 13 bits which hold tag access context */
+    uint64_t tag_access_va = tag_access_register & ~0x1fffULL;
+
+    /* now reorder bits */
+    uint64_t tsb_base_mask = ~0x1fffULL;
+    uint64_t va = tag_access_va;
+
+    /* move va bits to correct position */
+    if (page_size == 8*1024) {
+        va >>= 9;
+    } else if (page_size == 64*1024) {
+        va >>= 12;
+    }
+
+    if (tsb_size) {
+        tsb_base_mask <<= tsb_size;
+    }
+
+    /* calculate tsb_base mask and adjust va if split is in use */
+    if (tsb_split) {
+        if (page_size == 8*1024) {
+            va &= ~(1ULL << (13 + tsb_size));
+        } else if (page_size == 64*1024) {
+            va |= (1ULL << (13 + tsb_size));
+        }
+        tsb_base_mask <<= 1;
+    }
+
+    return ((tsb_base & tsb_base_mask) | (va & ~tsb_base_mask)) & ~0xfULL;
+}
+
+/* Calculates tag target register value by reordering bits
+   in tag access register */
+static uint64_t ultrasparc_tag_target(uint64_t tag_access_register)
+{
+    return ((tag_access_register & 0x1fff) << 48) | (tag_access_register >> 22);
+}
+
+static void replace_tlb_entry(SparcTLBEntry *tlb,
+                              uint64_t tlb_tag, uint64_t tlb_tte,
+                              CPUSPARCState *env1)
+{
+    target_ulong mask, size, va, offset;
+
+    /* flush page range if translation is valid */
+    if (TTE_IS_VALID(tlb->tte)) {
+        CPUState *cs = CPU(sparc_env_get_cpu(env1));
+
+        mask = 0xffffffffffffe000ULL;
+        mask <<= 3 * ((tlb->tte >> 61) & 3);
+        size = ~mask + 1;
+
+        va = tlb->tag & mask;
+
+        for (offset = 0; offset < size; offset += TARGET_PAGE_SIZE) {
+            tlb_flush_page(cs, va + offset);
+        }
+    }
+
+    tlb->tag = tlb_tag;
+    tlb->tte = tlb_tte;
+}
+
+static void demap_tlb(SparcTLBEntry *tlb, target_ulong demap_addr,
+                      const char *strmmu, CPUSPARCState *env1)
+{
+    unsigned int i;
+    target_ulong mask;
+    uint64_t context;
+
+    int is_demap_context = (demap_addr >> 6) & 1;
+
+    /* demap context */
+    switch ((demap_addr >> 4) & 3) {
+    case 0: /* primary */
+        context = env1->dmmu.mmu_primary_context;
+        break;
+    case 1: /* secondary */
+        context = env1->dmmu.mmu_secondary_context;
+        break;
+    case 2: /* nucleus */
+        context = 0;
+        break;
+    case 3: /* reserved */
+    default:
+        return;
+    }
+
+    for (i = 0; i < 64; i++) {
+        if (TTE_IS_VALID(tlb[i].tte)) {
+
+            if (is_demap_context) {
+                /* will remove non-global entries matching context value */
+                if (TTE_IS_GLOBAL(tlb[i].tte) ||
+                    !tlb_compare_context(&tlb[i], context)) {
+                    continue;
+                }
+            } else {
+                /* demap page
+                   will remove any entry matching VA */
+                mask = 0xffffffffffffe000ULL;
+                mask <<= 3 * ((tlb[i].tte >> 61) & 3);
+
+                if (!compare_masked(demap_addr, tlb[i].tag, mask)) {
+                    continue;
+                }
+
+                /* entry should be global or matching context value */
+                if (!TTE_IS_GLOBAL(tlb[i].tte) &&
+                    !tlb_compare_context(&tlb[i], context)) {
+                    continue;
+                }
+            }
+
+            replace_tlb_entry(&tlb[i], 0, 0, env1);
+#ifdef DEBUG_MMU
+            DPRINTF_MMU("%s demap invalidated entry [%02u]\n", strmmu, i);
+            dump_mmu(stdout, fprintf, env1);
+#endif
+        }
+    }
+}
+
+static void replace_tlb_1bit_lru(SparcTLBEntry *tlb,
+                                 uint64_t tlb_tag, uint64_t tlb_tte,
+                                 const char *strmmu, CPUSPARCState *env1)
+{
+    unsigned int i, replace_used;
+
+    /* Try replacing invalid entry */
+    for (i = 0; i < 64; i++) {
+        if (!TTE_IS_VALID(tlb[i].tte)) {
+            replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
+#ifdef DEBUG_MMU
+            DPRINTF_MMU("%s lru replaced invalid entry [%i]\n", strmmu, i);
+            dump_mmu(stdout, fprintf, env1);
+#endif
+            return;
+        }
+    }
+
+    /* All entries are valid, try replacing unlocked entry */
+
+    for (replace_used = 0; replace_used < 2; ++replace_used) {
+
+        /* Used entries are not replaced on first pass */
+
+        for (i = 0; i < 64; i++) {
+            if (!TTE_IS_LOCKED(tlb[i].tte) && !TTE_IS_USED(tlb[i].tte)) {
+
+                replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
+#ifdef DEBUG_MMU
+                DPRINTF_MMU("%s lru replaced unlocked %s entry [%i]\n",
+                            strmmu, (replace_used ? "used" : "unused"), i);
+                dump_mmu(stdout, fprintf, env1);
+#endif
+                return;
+            }
+        }
+
+        /* Now reset used bit and search for unused entries again */
+
+        for (i = 0; i < 64; i++) {
+            TTE_SET_UNUSED(tlb[i].tte);
+        }
+    }
+
+#ifdef DEBUG_MMU
+    DPRINTF_MMU("%s lru replacement failed: no entries available\n", strmmu);
+#endif
+    /* error state? */
+}
+
+#endif
+
+#ifdef TARGET_SPARC64
+/* returns true if access using this ASI is to have address translated by MMU
+   otherwise access is to raw physical address */
+/* TODO: check sparc32 bits */
+static inline int is_translating_asi(int asi)
+{
+    /* Ultrasparc IIi translating asi
+       - note this list is defined by cpu implementation
+    */
+    switch (asi) {
+    case 0x04 ... 0x11:
+    case 0x16 ... 0x19:
+    case 0x1E ... 0x1F:
+    case 0x24 ... 0x2C:
+    case 0x70 ... 0x73:
+    case 0x78 ... 0x79:
+    case 0x80 ... 0xFF:
+        return 1;
+
+    default:
+        return 0;
+    }
+}
+
+static inline target_ulong address_mask(CPUSPARCState *env1, target_ulong addr)
+{
+    if (AM_CHECK(env1)) {
+        addr &= 0xffffffffULL;
+    }
+    return addr;
+}
+
+static inline target_ulong asi_address_mask(CPUSPARCState *env,
+                                            int asi, target_ulong addr)
+{
+    if (is_translating_asi(asi)) {
+        addr = address_mask(env, addr);
+    }
+    return addr;
+}
+#endif
+
+static void do_check_align(CPUSPARCState *env, target_ulong addr,
+                           uint32_t align, uintptr_t ra)
+{
+    if (addr & align) {
+#ifdef DEBUG_UNALIGNED
+        printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
+               "\n", addr, env->pc);
+#endif
+        cpu_raise_exception_ra(env, TT_UNALIGNED, ra);
+    }
+}
+
+void helper_check_align(CPUSPARCState *env, target_ulong addr, uint32_t align)
+{
+    do_check_align(env, addr, align, GETPC());
+}
+
+#if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) &&   \
+    defined(DEBUG_MXCC)
+static void dump_mxcc(CPUSPARCState *env)
+{
+    printf("mxccdata: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
+           "\n",
+           env->mxccdata[0], env->mxccdata[1],
+           env->mxccdata[2], env->mxccdata[3]);
+    printf("mxccregs: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
+           "\n"
+           "          %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
+           "\n",
+           env->mxccregs[0], env->mxccregs[1],
+           env->mxccregs[2], env->mxccregs[3],
+           env->mxccregs[4], env->mxccregs[5],
+           env->mxccregs[6], env->mxccregs[7]);
+}
+#endif
+
+#if (defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY))     \
+    && defined(DEBUG_ASI)
+static void dump_asi(const char *txt, target_ulong addr, int asi, int size,
+                     uint64_t r1)
+{
+    switch (size) {
+    case 1:
+        DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %02" PRIx64 "\n", txt,
+                    addr, asi, r1 & 0xff);
+        break;
+    case 2:
+        DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %04" PRIx64 "\n", txt,
+                    addr, asi, r1 & 0xffff);
+        break;
+    case 4:
+        DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %08" PRIx64 "\n", txt,
+                    addr, asi, r1 & 0xffffffff);
+        break;
+    case 8:
+        DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %016" PRIx64 "\n", txt,
+                    addr, asi, r1);
+        break;
+    }
+}
+#endif
+
+#ifndef TARGET_SPARC64
+#ifndef CONFIG_USER_ONLY
+
+
+/* Leon3 cache control */
+
+static void leon3_cache_control_st(CPUSPARCState *env, target_ulong addr,
+                                   uint64_t val, int size)
+{
+    DPRINTF_CACHE_CONTROL("st addr:%08x, val:%" PRIx64 ", size:%d\n",
+                          addr, val, size);
+
+    if (size != 4) {
+        DPRINTF_CACHE_CONTROL("32bits only\n");
+        return;
+    }
+
+    switch (addr) {
+    case 0x00:              /* Cache control */
+
+        /* These values must always be read as zeros */
+        val &= ~CACHE_CTRL_FD;
+        val &= ~CACHE_CTRL_FI;
+        val &= ~CACHE_CTRL_IB;
+        val &= ~CACHE_CTRL_IP;
+        val &= ~CACHE_CTRL_DP;
+
+        env->cache_control = val;
+        break;
+    case 0x04:              /* Instruction cache configuration */
+    case 0x08:              /* Data cache configuration */
+        /* Read Only */
+        break;
+    default:
+        DPRINTF_CACHE_CONTROL("write unknown register %08x\n", addr);
+        break;
+    };
+}
+
+static uint64_t leon3_cache_control_ld(CPUSPARCState *env, target_ulong addr,
+                                       int size)
+{
+    uint64_t ret = 0;
+
+    if (size != 4) {
+        DPRINTF_CACHE_CONTROL("32bits only\n");
+        return 0;
+    }
+
+    switch (addr) {
+    case 0x00:              /* Cache control */
+        ret = env->cache_control;
+        break;
+
+        /* Configuration registers are read and only always keep those
+           predefined values */
+
+    case 0x04:              /* Instruction cache configuration */
+        ret = 0x10220000;
+        break;
+    case 0x08:              /* Data cache configuration */
+        ret = 0x18220000;
+        break;
+    default:
+        DPRINTF_CACHE_CONTROL("read unknown register %08x\n", addr);
+        break;
+    };
+    DPRINTF_CACHE_CONTROL("ld addr:%08x, ret:0x%" PRIx64 ", size:%d\n",
+                          addr, ret, size);
+    return ret;
+}
+
+uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr,
+                       int asi, uint32_t memop)
+{
+    int size = 1 << (memop & MO_SIZE);
+    int sign = memop & MO_SIGN;
+    CPUState *cs = CPU(sparc_env_get_cpu(env));
+    uint64_t ret = 0;
+#if defined(DEBUG_MXCC) || defined(DEBUG_ASI)
+    uint32_t last_addr = addr;
+#endif
+
+    do_check_align(env, addr, size - 1, GETPC());
+    switch (asi) {
+    case ASI_M_MXCC: /* SuperSparc MXCC registers, or... */
+    /* case ASI_LEON_CACHEREGS:  Leon3 cache control */
+        switch (addr) {
+        case 0x00:          /* Leon3 Cache Control */
+        case 0x08:          /* Leon3 Instruction Cache config */
+        case 0x0C:          /* Leon3 Date Cache config */
+            if (env->def->features & CPU_FEATURE_CACHE_CTRL) {
+                ret = leon3_cache_control_ld(env, addr, size);
+            }
+            break;
+        case 0x01c00a00: /* MXCC control register */
+            if (size == 8) {
+                ret = env->mxccregs[3];
+            } else {
+                qemu_log_mask(LOG_UNIMP,
+                              "%08x: unimplemented access size: %d\n", addr,
+                              size);
+            }
+            break;
+        case 0x01c00a04: /* MXCC control register */
+            if (size == 4) {
+                ret = env->mxccregs[3];
+            } else {
+                qemu_log_mask(LOG_UNIMP,
+                              "%08x: unimplemented access size: %d\n", addr,
+                              size);
+            }
+            break;
+        case 0x01c00c00: /* Module reset register */
+            if (size == 8) {
+                ret = env->mxccregs[5];
+                /* should we do something here? */
+            } else {
+                qemu_log_mask(LOG_UNIMP,
+                              "%08x: unimplemented access size: %d\n", addr,
+                              size);
+            }
+            break;
+        case 0x01c00f00: /* MBus port address register */
+            if (size == 8) {
+                ret = env->mxccregs[7];
+            } else {
+                qemu_log_mask(LOG_UNIMP,
+                              "%08x: unimplemented access size: %d\n", addr,
+                              size);
+            }
+            break;
+        default:
+            qemu_log_mask(LOG_UNIMP,
+                          "%08x: unimplemented address, size: %d\n", addr,
+                          size);
+            break;
+        }
+        DPRINTF_MXCC("asi = %d, size = %d, sign = %d, "
+                     "addr = %08x -> ret = %" PRIx64 ","
+                     "addr = %08x\n", asi, size, sign, last_addr, ret, addr);
+#ifdef DEBUG_MXCC
+        dump_mxcc(env);
+#endif
+        break;
+    case ASI_M_FLUSH_PROBE: /* SuperSparc MMU probe */
+    case ASI_LEON_MMUFLUSH: /* LEON3 MMU probe */
+        {
+            int mmulev;
+
+            mmulev = (addr >> 8) & 15;
+            if (mmulev > 4) {
+                ret = 0;
+            } else {
+                ret = mmu_probe(env, addr, mmulev);
+            }
+            DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64 "\n",
+                        addr, mmulev, ret);
+        }
+        break;
+    case ASI_M_MMUREGS: /* SuperSparc MMU regs */
+    case ASI_LEON_MMUREGS: /* LEON3 MMU regs */
+        {
+            int reg = (addr >> 8) & 0x1f;
+
+            ret = env->mmuregs[reg];
+            if (reg == 3) { /* Fault status cleared on read */
+                env->mmuregs[3] = 0;
+            } else if (reg == 0x13) { /* Fault status read */
+                ret = env->mmuregs[3];
+            } else if (reg == 0x14) { /* Fault address read */
+                ret = env->mmuregs[4];
+            }
+            DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64 "\n", reg, ret);
+        }
+        break;
+    case ASI_M_TLBDIAG: /* Turbosparc ITLB Diagnostic */
+    case ASI_M_DIAGS:   /* Turbosparc DTLB Diagnostic */
+    case ASI_M_IODIAG:  /* Turbosparc IOTLB Diagnostic */
+        break;
+    case ASI_KERNELTXT: /* Supervisor code access */
+        switch (size) {
+        case 1:
+            ret = cpu_ldub_code(env, addr);
+            break;
+        case 2:
+            ret = cpu_lduw_code(env, addr);
+            break;
+        default:
+        case 4:
+            ret = cpu_ldl_code(env, addr);
+            break;
+        case 8:
+            ret = cpu_ldq_code(env, addr);
+            break;
+        }
+        break;
+    case ASI_M_TXTC_TAG:   /* SparcStation 5 I-cache tag */
+    case ASI_M_TXTC_DATA:  /* SparcStation 5 I-cache data */
+    case ASI_M_DATAC_TAG:  /* SparcStation 5 D-cache tag */
+    case ASI_M_DATAC_DATA: /* SparcStation 5 D-cache data */
+        break;
+    case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
+        switch (size) {
+        case 1:
+            ret = ldub_phys(cs->as, (hwaddr)addr
+                            | ((hwaddr)(asi & 0xf) << 32));
+            break;
+        case 2:
+            ret = lduw_phys(cs->as, (hwaddr)addr
+                            | ((hwaddr)(asi & 0xf) << 32));
+            break;
+        default:
+        case 4:
+            ret = ldl_phys(cs->as, (hwaddr)addr
+                           | ((hwaddr)(asi & 0xf) << 32));
+            break;
+        case 8:
+            ret = ldq_phys(cs->as, (hwaddr)addr
+                           | ((hwaddr)(asi & 0xf) << 32));
+            break;
+        }
+        break;
+    case 0x30: /* Turbosparc secondary cache diagnostic */
+    case 0x31: /* Turbosparc RAM snoop */
+    case 0x32: /* Turbosparc page table descriptor diagnostic */
+    case 0x39: /* data cache diagnostic register */
+        ret = 0;
+        break;
+    case 0x38: /* SuperSPARC MMU Breakpoint Control Registers */
+        {
+            int reg = (addr >> 8) & 3;
+
+            switch (reg) {
+            case 0: /* Breakpoint Value (Addr) */
+                ret = env->mmubpregs[reg];
+                break;
+            case 1: /* Breakpoint Mask */
+                ret = env->mmubpregs[reg];
+                break;
+            case 2: /* Breakpoint Control */
+                ret = env->mmubpregs[reg];
+                break;
+            case 3: /* Breakpoint Status */
+                ret = env->mmubpregs[reg];
+                env->mmubpregs[reg] = 0ULL;
+                break;
+            }
+            DPRINTF_MMU("read breakpoint reg[%d] 0x%016" PRIx64 "\n", reg,
+                        ret);
+        }
+        break;
+    case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */
+        ret = env->mmubpctrv;
+        break;
+    case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */
+        ret = env->mmubpctrc;
+        break;
+    case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */
+        ret = env->mmubpctrs;
+        break;
+    case 0x4c: /* SuperSPARC MMU Breakpoint Action */
+        ret = env->mmubpaction;
+        break;
+    case ASI_USERTXT: /* User code access, XXX */
+    default:
+        cpu_unassigned_access(cs, addr, false, false, asi, size);
+        ret = 0;
+        break;
+
+    case ASI_USERDATA: /* User data access */
+    case ASI_KERNELDATA: /* Supervisor data access */
+    case ASI_P: /* Implicit primary context data access (v9 only?) */
+    case ASI_M_BYPASS:    /* MMU passthrough */
+    case ASI_LEON_BYPASS: /* LEON MMU passthrough */
+        /* These are always handled inline.  */
+        g_assert_not_reached();
+    }
+    if (sign) {
+        switch (size) {
+        case 1:
+            ret = (int8_t) ret;
+            break;
+        case 2:
+            ret = (int16_t) ret;
+            break;
+        case 4:
+            ret = (int32_t) ret;
+            break;
+        default:
+            break;
+        }
+    }
+#ifdef DEBUG_ASI
+    dump_asi("read ", last_addr, asi, size, ret);
+#endif
+    return ret;
+}
+
+void helper_st_asi(CPUSPARCState *env, target_ulong addr, uint64_t val,
+                   int asi, uint32_t memop)
+{
+    int size = 1 << (memop & MO_SIZE);
+    SPARCCPU *cpu = sparc_env_get_cpu(env);
+    CPUState *cs = CPU(cpu);
+
+    do_check_align(env, addr, size - 1, GETPC());
+    switch (asi) {
+    case ASI_M_MXCC: /* SuperSparc MXCC registers, or... */
+    /* case ASI_LEON_CACHEREGS:  Leon3 cache control */
+        switch (addr) {
+        case 0x00:          /* Leon3 Cache Control */
+        case 0x08:          /* Leon3 Instruction Cache config */
+        case 0x0C:          /* Leon3 Date Cache config */
+            if (env->def->features & CPU_FEATURE_CACHE_CTRL) {
+                leon3_cache_control_st(env, addr, val, size);
+            }
+            break;
+
+        case 0x01c00000: /* MXCC stream data register 0 */
+            if (size == 8) {
+                env->mxccdata[0] = val;
+            } else {
+                qemu_log_mask(LOG_UNIMP,
+                              "%08x: unimplemented access size: %d\n", addr,
+                              size);
+            }
+            break;
+        case 0x01c00008: /* MXCC stream data register 1 */
+            if (size == 8) {
+                env->mxccdata[1] = val;
+            } else {
+                qemu_log_mask(LOG_UNIMP,
+                              "%08x: unimplemented access size: %d\n", addr,
+                              size);
+            }
+            break;
+        case 0x01c00010: /* MXCC stream data register 2 */
+            if (size == 8) {
+                env->mxccdata[2] = val;
+            } else {
+                qemu_log_mask(LOG_UNIMP,
+                              "%08x: unimplemented access size: %d\n", addr,
+                              size);
+            }
+            break;
+        case 0x01c00018: /* MXCC stream data register 3 */
+            if (size == 8) {
+                env->mxccdata[3] = val;
+            } else {
+                qemu_log_mask(LOG_UNIMP,
+                              "%08x: unimplemented access size: %d\n", addr,
+                              size);
+            }
+            break;
+        case 0x01c00100: /* MXCC stream source */
+            if (size == 8) {
+                env->mxccregs[0] = val;
+            } else {
+                qemu_log_mask(LOG_UNIMP,
+                              "%08x: unimplemented access size: %d\n", addr,
+                              size);
+            }
+            env->mxccdata[0] = ldq_phys(cs->as,
+                                        (env->mxccregs[0] & 0xffffffffULL) +
+                                        0);
+            env->mxccdata[1] = ldq_phys(cs->as,
+                                        (env->mxccregs[0] & 0xffffffffULL) +
+                                        8);
+            env->mxccdata[2] = ldq_phys(cs->as,
+                                        (env->mxccregs[0] & 0xffffffffULL) +
+                                        16);
+            env->mxccdata[3] = ldq_phys(cs->as,
+                                        (env->mxccregs[0] & 0xffffffffULL) +
+                                        24);
+            break;
+        case 0x01c00200: /* MXCC stream destination */
+            if (size == 8) {
+                env->mxccregs[1] = val;
+            } else {
+                qemu_log_mask(LOG_UNIMP,
+                              "%08x: unimplemented access size: %d\n", addr,
+                              size);
+            }
+            stq_phys(cs->as, (env->mxccregs[1] & 0xffffffffULL) +  0,
+                     env->mxccdata[0]);
+            stq_phys(cs->as, (env->mxccregs[1] & 0xffffffffULL) +  8,
+                     env->mxccdata[1]);
+            stq_phys(cs->as, (env->mxccregs[1] & 0xffffffffULL) + 16,
+                     env->mxccdata[2]);
+            stq_phys(cs->as, (env->mxccregs[1] & 0xffffffffULL) + 24,
+                     env->mxccdata[3]);
+            break;
+        case 0x01c00a00: /* MXCC control register */
+            if (size == 8) {
+                env->mxccregs[3] = val;
+            } else {
+                qemu_log_mask(LOG_UNIMP,
+                              "%08x: unimplemented access size: %d\n", addr,
+                              size);
+            }
+            break;
+        case 0x01c00a04: /* MXCC control register */
+            if (size == 4) {
+                env->mxccregs[3] = (env->mxccregs[3] & 0xffffffff00000000ULL)
+                    | val;
+            } else {
+                qemu_log_mask(LOG_UNIMP,
+                              "%08x: unimplemented access size: %d\n", addr,
+                              size);
+            }
+            break;
+        case 0x01c00e00: /* MXCC error register  */
+            /* writing a 1 bit clears the error */
+            if (size == 8) {
+                env->mxccregs[6] &= ~val;
+            } else {
+                qemu_log_mask(LOG_UNIMP,
+                              "%08x: unimplemented access size: %d\n", addr,
+                              size);
+            }
+            break;
+        case 0x01c00f00: /* MBus port address register */
+            if (size == 8) {
+                env->mxccregs[7] = val;
+            } else {
+                qemu_log_mask(LOG_UNIMP,
+                              "%08x: unimplemented access size: %d\n", addr,
+                              size);
+            }
+            break;
+        default:
+            qemu_log_mask(LOG_UNIMP,
+                          "%08x: unimplemented address, size: %d\n", addr,
+                          size);
+            break;
+        }
+        DPRINTF_MXCC("asi = %d, size = %d, addr = %08x, val = %" PRIx64 "\n",
+                     asi, size, addr, val);
+#ifdef DEBUG_MXCC
+        dump_mxcc(env);
+#endif
+        break;
+    case ASI_M_FLUSH_PROBE: /* SuperSparc MMU flush */
+    case ASI_LEON_MMUFLUSH: /* LEON3 MMU flush */
+        {
+            int mmulev;
+
+            mmulev = (addr >> 8) & 15;
+            DPRINTF_MMU("mmu flush level %d\n", mmulev);
+            switch (mmulev) {
+            case 0: /* flush page */
+                tlb_flush_page(CPU(cpu), addr & 0xfffff000);
+                break;
+            case 1: /* flush segment (256k) */
+            case 2: /* flush region (16M) */
+            case 3: /* flush context (4G) */
+            case 4: /* flush entire */
+                tlb_flush(CPU(cpu), 1);
+                break;
+            default:
+                break;
+            }
+#ifdef DEBUG_MMU
+            dump_mmu(stdout, fprintf, env);
+#endif
+        }
+        break;
+    case ASI_M_MMUREGS: /* write MMU regs */
+    case ASI_LEON_MMUREGS: /* LEON3 write MMU regs */
+        {
+            int reg = (addr >> 8) & 0x1f;
+            uint32_t oldreg;
+
+            oldreg = env->mmuregs[reg];
+            switch (reg) {
+            case 0: /* Control Register */
+                env->mmuregs[reg] = (env->mmuregs[reg] & 0xff000000) |
+                    (val & 0x00ffffff);
+                /* Mappings generated during no-fault mode
+                   are invalid in normal mode.  */
+                if ((oldreg ^ env->mmuregs[reg])
+                    & (MMU_NF | env->def->mmu_bm)) {
+                    tlb_flush(CPU(cpu), 1);
+                }
+                break;
+            case 1: /* Context Table Pointer Register */
+                env->mmuregs[reg] = val & env->def->mmu_ctpr_mask;
+                break;
+            case 2: /* Context Register */
+                env->mmuregs[reg] = val & env->def->mmu_cxr_mask;
+                if (oldreg != env->mmuregs[reg]) {
+                    /* we flush when the MMU context changes because
+                       QEMU has no MMU context support */
+                    tlb_flush(CPU(cpu), 1);
+                }
+                break;
+            case 3: /* Synchronous Fault Status Register with Clear */
+            case 4: /* Synchronous Fault Address Register */
+                break;
+            case 0x10: /* TLB Replacement Control Register */
+                env->mmuregs[reg] = val & env->def->mmu_trcr_mask;
+                break;
+            case 0x13: /* Synchronous Fault Status Register with Read
+                          and Clear */
+                env->mmuregs[3] = val & env->def->mmu_sfsr_mask;
+                break;
+            case 0x14: /* Synchronous Fault Address Register */
+                env->mmuregs[4] = val;
+                break;
+            default:
+                env->mmuregs[reg] = val;
+                break;
+            }
+            if (oldreg != env->mmuregs[reg]) {
+                DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n",
+                            reg, oldreg, env->mmuregs[reg]);
+            }
+#ifdef DEBUG_MMU
+            dump_mmu(stdout, fprintf, env);
+#endif
+        }
+        break;
+    case ASI_M_TLBDIAG: /* Turbosparc ITLB Diagnostic */
+    case ASI_M_DIAGS:   /* Turbosparc DTLB Diagnostic */
+    case ASI_M_IODIAG:  /* Turbosparc IOTLB Diagnostic */
+        break;
+    case ASI_M_TXTC_TAG:   /* I-cache tag */
+    case ASI_M_TXTC_DATA:  /* I-cache data */
+    case ASI_M_DATAC_TAG:  /* D-cache tag */
+    case ASI_M_DATAC_DATA: /* D-cache data */
+    case ASI_M_FLUSH_PAGE:   /* I/D-cache flush page */
+    case ASI_M_FLUSH_SEG:    /* I/D-cache flush segment */
+    case ASI_M_FLUSH_REGION: /* I/D-cache flush region */
+    case ASI_M_FLUSH_CTX:    /* I/D-cache flush context */
+    case ASI_M_FLUSH_USER:   /* I/D-cache flush user */
+        break;
+    case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
+        {
+            switch (size) {
+            case 1:
+                stb_phys(cs->as, (hwaddr)addr
+                         | ((hwaddr)(asi & 0xf) << 32), val);
+                break;
+            case 2:
+                stw_phys(cs->as, (hwaddr)addr
+                         | ((hwaddr)(asi & 0xf) << 32), val);
+                break;
+            case 4:
+            default:
+                stl_phys(cs->as, (hwaddr)addr
+                         | ((hwaddr)(asi & 0xf) << 32), val);
+                break;
+            case 8:
+                stq_phys(cs->as, (hwaddr)addr
+                         | ((hwaddr)(asi & 0xf) << 32), val);
+                break;
+            }
+        }
+        break;
+    case 0x30: /* store buffer tags or Turbosparc secondary cache diagnostic */
+    case 0x31: /* store buffer data, Ross RT620 I-cache flush or
+                  Turbosparc snoop RAM */
+    case 0x32: /* store buffer control or Turbosparc page table
+                  descriptor diagnostic */
+    case 0x36: /* I-cache flash clear */
+    case 0x37: /* D-cache flash clear */
+        break;
+    case 0x38: /* SuperSPARC MMU Breakpoint Control Registers*/
+        {
+            int reg = (addr >> 8) & 3;
+
+            switch (reg) {
+            case 0: /* Breakpoint Value (Addr) */
+                env->mmubpregs[reg] = (val & 0xfffffffffULL);
+                break;
+            case 1: /* Breakpoint Mask */
+                env->mmubpregs[reg] = (val & 0xfffffffffULL);
+                break;
+            case 2: /* Breakpoint Control */
+                env->mmubpregs[reg] = (val & 0x7fULL);
+                break;
+            case 3: /* Breakpoint Status */
+                env->mmubpregs[reg] = (val & 0xfULL);
+                break;
+            }
+            DPRINTF_MMU("write breakpoint reg[%d] 0x%016x\n", reg,
+                        env->mmuregs[reg]);
+        }
+        break;
+    case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */
+        env->mmubpctrv = val & 0xffffffff;
+        break;
+    case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */
+        env->mmubpctrc = val & 0x3;
+        break;
+    case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */
+        env->mmubpctrs = val & 0x3;
+        break;
+    case 0x4c: /* SuperSPARC MMU Breakpoint Action */
+        env->mmubpaction = val & 0x1fff;
+        break;
+    case ASI_USERTXT: /* User code access, XXX */
+    case ASI_KERNELTXT: /* Supervisor code access, XXX */
+    default:
+        cpu_unassigned_access(CPU(sparc_env_get_cpu(env)),
+                              addr, true, false, asi, size);
+        break;
+
+    case ASI_USERDATA: /* User data access */
+    case ASI_KERNELDATA: /* Supervisor data access */
+    case ASI_P:
+    case ASI_M_BYPASS:    /* MMU passthrough */
+    case ASI_LEON_BYPASS: /* LEON MMU passthrough */
+    case ASI_M_BCOPY: /* Block copy, sta access */
+    case ASI_M_BFILL: /* Block fill, stda access */
+        /* These are always handled inline.  */
+        g_assert_not_reached();
+    }
+#ifdef DEBUG_ASI
+    dump_asi("write", addr, asi, size, val);
+#endif
+}
+
+#endif /* CONFIG_USER_ONLY */
+#else /* TARGET_SPARC64 */
+
+#ifdef CONFIG_USER_ONLY
+uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr,
+                       int asi, uint32_t memop)
+{
+    int size = 1 << (memop & MO_SIZE);
+    int sign = memop & MO_SIGN;
+    uint64_t ret = 0;
+
+    if (asi < 0x80) {
+        cpu_raise_exception_ra(env, TT_PRIV_ACT, GETPC());
+    }
+    do_check_align(env, addr, size - 1, GETPC());
+    addr = asi_address_mask(env, asi, addr);
+
+    switch (asi) {
+    case ASI_PNF:  /* Primary no-fault */
+    case ASI_PNFL: /* Primary no-fault LE */
+    case ASI_SNF:  /* Secondary no-fault */
+    case ASI_SNFL: /* Secondary no-fault LE */
+        if (page_check_range(addr, size, PAGE_READ) == -1) {
+            ret = 0;
+            break;
+        }
+        switch (size) {
+        case 1:
+            ret = cpu_ldub_data(env, addr);
+            break;
+        case 2:
+            ret = cpu_lduw_data(env, addr);
+            break;
+        case 4:
+            ret = cpu_ldl_data(env, addr);
+            break;
+        case 8:
+            ret = cpu_ldq_data(env, addr);
+            break;
+        default:
+            g_assert_not_reached();
+        }
+        break;
+        break;
+
+    case ASI_P: /* Primary */
+    case ASI_PL: /* Primary LE */
+    case ASI_S:  /* Secondary */
+    case ASI_SL: /* Secondary LE */
+        /* These are always handled inline.  */
+        g_assert_not_reached();
+
+    default:
+        cpu_raise_exception_ra(env, TT_DATA_ACCESS, GETPC());
+    }
+
+    /* Convert from little endian */
+    switch (asi) {
+    case ASI_PNFL: /* Primary no-fault LE */
+    case ASI_SNFL: /* Secondary no-fault LE */
+        switch (size) {
+        case 2:
+            ret = bswap16(ret);
+            break;
+        case 4:
+            ret = bswap32(ret);
+            break;
+        case 8:
+            ret = bswap64(ret);
+            break;
+        }
+    }
+
+    /* Convert to signed number */
+    if (sign) {
+        switch (size) {
+        case 1:
+            ret = (int8_t) ret;
+            break;
+        case 2:
+            ret = (int16_t) ret;
+            break;
+        case 4:
+            ret = (int32_t) ret;
+            break;
+        }
+    }
+#ifdef DEBUG_ASI
+    dump_asi("read", addr, asi, size, ret);
+#endif
+    return ret;
+}
+
+void helper_st_asi(CPUSPARCState *env, target_ulong addr, target_ulong val,
+                   int asi, uint32_t memop)
+{
+    int size = 1 << (memop & MO_SIZE);
+#ifdef DEBUG_ASI
+    dump_asi("write", addr, asi, size, val);
+#endif
+    if (asi < 0x80) {
+        cpu_raise_exception_ra(env, TT_PRIV_ACT, GETPC());
+    }
+    do_check_align(env, addr, size - 1, GETPC());
+
+    switch (asi) {
+    case ASI_P:  /* Primary */
+    case ASI_PL: /* Primary LE */
+    case ASI_S:  /* Secondary */
+    case ASI_SL: /* Secondary LE */
+        /* These are always handled inline.  */
+        g_assert_not_reached();
+
+    case ASI_PNF:  /* Primary no-fault, RO */
+    case ASI_SNF:  /* Secondary no-fault, RO */
+    case ASI_PNFL: /* Primary no-fault LE, RO */
+    case ASI_SNFL: /* Secondary no-fault LE, RO */
+    default:
+        cpu_raise_exception_ra(env, TT_DATA_ACCESS, GETPC());
+    }
+}
+
+#else /* CONFIG_USER_ONLY */
+
+uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr,
+                       int asi, uint32_t memop)
+{
+    int size = 1 << (memop & MO_SIZE);
+    int sign = memop & MO_SIGN;
+    CPUState *cs = CPU(sparc_env_get_cpu(env));
+    uint64_t ret = 0;
+#if defined(DEBUG_ASI)
+    target_ulong last_addr = addr;
+#endif
+
+    asi &= 0xff;
+
+    if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
+        || (cpu_has_hypervisor(env)
+            && asi >= 0x30 && asi < 0x80
+            && !(env->hpstate & HS_PRIV))) {
+        cpu_raise_exception_ra(env, TT_PRIV_ACT, GETPC());
+    }
+
+    do_check_align(env, addr, size - 1, GETPC());
+    addr = asi_address_mask(env, asi, addr);
+
+    switch (asi) {
+    case ASI_PNF:
+    case ASI_PNFL:
+    case ASI_SNF:
+    case ASI_SNFL:
+        {
+            TCGMemOpIdx oi;
+            int idx = (env->pstate & PS_PRIV
+                       ? (asi & 1 ? MMU_KERNEL_SECONDARY_IDX : MMU_KERNEL_IDX)
+                       : (asi & 1 ? MMU_USER_SECONDARY_IDX : MMU_USER_IDX));
+
+            if (cpu_get_phys_page_nofault(env, addr, idx) == -1ULL) {
+#ifdef DEBUG_ASI
+                dump_asi("read ", last_addr, asi, size, ret);
+#endif
+                /* exception_index is set in get_physical_address_data. */
+                cpu_raise_exception_ra(env, cs->exception_index, GETPC());
+            }
+            oi = make_memop_idx(memop, idx);
+            switch (size) {
+            case 1:
+                ret = helper_ret_ldub_mmu(env, addr, oi, GETPC());
+                break;
+            case 2:
+                if (asi & 8) {
+                    ret = helper_le_lduw_mmu(env, addr, oi, GETPC());
+                } else {
+                    ret = helper_be_lduw_mmu(env, addr, oi, GETPC());
+                }
+                break;
+            case 4:
+                if (asi & 8) {
+                    ret = helper_le_ldul_mmu(env, addr, oi, GETPC());
+                } else {
+                    ret = helper_be_ldul_mmu(env, addr, oi, GETPC());
+                }
+                break;
+            case 8:
+                if (asi & 8) {
+                    ret = helper_le_ldq_mmu(env, addr, oi, GETPC());
+                } else {
+                    ret = helper_be_ldq_mmu(env, addr, oi, GETPC());
+                }
+                break;
+            default:
+                g_assert_not_reached();
+            }
+        }
+        break;
+
+    case ASI_AIUP:  /* As if user primary */
+    case ASI_AIUS:  /* As if user secondary */
+    case ASI_AIUPL: /* As if user primary LE */
+    case ASI_AIUSL: /* As if user secondary LE */
+    case ASI_P:  /* Primary */
+    case ASI_S:  /* Secondary */
+    case ASI_PL: /* Primary LE */
+    case ASI_SL: /* Secondary LE */
+    case ASI_REAL:      /* Bypass */
+    case ASI_REAL_IO:   /* Bypass, non-cacheable */
+    case ASI_REAL_L:    /* Bypass LE */
+    case ASI_REAL_IO_L: /* Bypass, non-cacheable LE */
+    case ASI_N:  /* Nucleus */
+    case ASI_NL: /* Nucleus Little Endian (LE) */
+    case ASI_NUCLEUS_QUAD_LDD:   /* Nucleus quad LDD 128 bit atomic */
+    case ASI_NUCLEUS_QUAD_LDD_L: /* Nucleus quad LDD 128 bit atomic LE */
+    case ASI_TWINX_AIUP:   /* As if user primary, twinx */
+    case ASI_TWINX_AIUS:   /* As if user secondary, twinx */
+    case ASI_TWINX_REAL:   /* Real address, twinx */
+    case ASI_TWINX_AIUP_L: /* As if user primary, twinx, LE */
+    case ASI_TWINX_AIUS_L: /* As if user secondary, twinx, LE */
+    case ASI_TWINX_REAL_L: /* Real address, twinx, LE */
+    case ASI_TWINX_N:  /* Nucleus, twinx */
+    case ASI_TWINX_NL: /* Nucleus, twinx, LE */
+    /* ??? From the UA2011 document; overlaps BLK_INIT_QUAD_LDD_* */
+    case ASI_TWINX_P:  /* Primary, twinx */
+    case ASI_TWINX_PL: /* Primary, twinx, LE */
+    case ASI_TWINX_S:  /* Secondary, twinx */
+    case ASI_TWINX_SL: /* Secondary, twinx, LE */
+        /* These are always handled inline.  */
+        g_assert_not_reached();
+
+    case ASI_UPA_CONFIG: /* UPA config */
+        /* XXX */
+        break;
+    case ASI_LSU_CONTROL: /* LSU */
+        ret = env->lsu;
+        break;
+    case ASI_IMMU: /* I-MMU regs */
+        {
+            int reg = (addr >> 3) & 0xf;
+
+            if (reg == 0) {
+                /* I-TSB Tag Target register */
+                ret = ultrasparc_tag_target(env->immu.tag_access);
+            } else {
+                ret = env->immuregs[reg];
+            }
+
+            break;
+        }
+    case ASI_IMMU_TSB_8KB_PTR: /* I-MMU 8k TSB pointer */
+        {
+            /* env->immuregs[5] holds I-MMU TSB register value
+               env->immuregs[6] holds I-MMU Tag Access register value */
+            ret = ultrasparc_tsb_pointer(env->immu.tsb, env->immu.tag_access,
+                                         8*1024);
+            break;
+        }
+    case ASI_IMMU_TSB_64KB_PTR: /* I-MMU 64k TSB pointer */
+        {
+            /* env->immuregs[5] holds I-MMU TSB register value
+               env->immuregs[6] holds I-MMU Tag Access register value */
+            ret = ultrasparc_tsb_pointer(env->immu.tsb, env->immu.tag_access,
+                                         64*1024);
+            break;
+        }
+    case ASI_ITLB_DATA_ACCESS: /* I-MMU data access */
+        {
+            int reg = (addr >> 3) & 0x3f;
+
+            ret = env->itlb[reg].tte;
+            break;
+        }
+    case ASI_ITLB_TAG_READ: /* I-MMU tag read */
+        {
+            int reg = (addr >> 3) & 0x3f;
+
+            ret = env->itlb[reg].tag;
+            break;
+        }
+    case ASI_DMMU: /* D-MMU regs */
+        {
+            int reg = (addr >> 3) & 0xf;
+
+            if (reg == 0) {
+                /* D-TSB Tag Target register */
+                ret = ultrasparc_tag_target(env->dmmu.tag_access);
+            } else {
+                ret = env->dmmuregs[reg];
+            }
+            break;
+        }
+    case ASI_DMMU_TSB_8KB_PTR: /* D-MMU 8k TSB pointer */
+        {
+            /* env->dmmuregs[5] holds D-MMU TSB register value
+               env->dmmuregs[6] holds D-MMU Tag Access register value */
+            ret = ultrasparc_tsb_pointer(env->dmmu.tsb, env->dmmu.tag_access,
+                                         8*1024);
+            break;
+        }
+    case ASI_DMMU_TSB_64KB_PTR: /* D-MMU 64k TSB pointer */
+        {
+            /* env->dmmuregs[5] holds D-MMU TSB register value
+               env->dmmuregs[6] holds D-MMU Tag Access register value */
+            ret = ultrasparc_tsb_pointer(env->dmmu.tsb, env->dmmu.tag_access,
+                                         64*1024);
+            break;
+        }
+    case ASI_DTLB_DATA_ACCESS: /* D-MMU data access */
+        {
+            int reg = (addr >> 3) & 0x3f;
+
+            ret = env->dtlb[reg].tte;
+            break;
+        }
+    case ASI_DTLB_TAG_READ: /* D-MMU tag read */
+        {
+            int reg = (addr >> 3) & 0x3f;
+
+            ret = env->dtlb[reg].tag;
+            break;
+        }
+    case ASI_INTR_DISPATCH_STAT: /* Interrupt dispatch, RO */
+        break;
+    case ASI_INTR_RECEIVE: /* Interrupt data receive */
+        ret = env->ivec_status;
+        break;
+    case ASI_INTR_R: /* Incoming interrupt vector, RO */
+        {
+            int reg = (addr >> 4) & 0x3;
+            if (reg < 3) {
+                ret = env->ivec_data[reg];
+            }
+            break;
+        }
+    case ASI_DCACHE_DATA:     /* D-cache data */
+    case ASI_DCACHE_TAG:      /* D-cache tag access */
+    case ASI_ESTATE_ERROR_EN: /* E-cache error enable */
+    case ASI_AFSR:            /* E-cache asynchronous fault status */
+    case ASI_AFAR:            /* E-cache asynchronous fault address */
+    case ASI_EC_TAG_DATA:     /* E-cache tag data */
+    case ASI_IC_INSTR:        /* I-cache instruction access */
+    case ASI_IC_TAG:          /* I-cache tag access */
+    case ASI_IC_PRE_DECODE:   /* I-cache predecode */
+    case ASI_IC_NEXT_FIELD:   /* I-cache LRU etc. */
+    case ASI_EC_W:            /* E-cache tag */
+    case ASI_EC_R:            /* E-cache tag */
+        break;
+    case ASI_DMMU_TSB_DIRECT_PTR: /* D-MMU data pointer */
+    case ASI_ITLB_DATA_IN:        /* I-MMU data in, WO */
+    case ASI_IMMU_DEMAP:          /* I-MMU demap, WO */
+    case ASI_DTLB_DATA_IN:        /* D-MMU data in, WO */
+    case ASI_DMMU_DEMAP:          /* D-MMU demap, WO */
+    case ASI_INTR_W:              /* Interrupt vector, WO */
+    default:
+        cpu_unassigned_access(cs, addr, false, false, 1, size);
+        ret = 0;
+        break;
+    }
+
+    /* Convert to signed number */
+    if (sign) {
+        switch (size) {
+        case 1:
+            ret = (int8_t) ret;
+            break;
+        case 2:
+            ret = (int16_t) ret;
+            break;
+        case 4:
+            ret = (int32_t) ret;
+            break;
+        default:
+            break;
+        }
+    }
+#ifdef DEBUG_ASI
+    dump_asi("read ", last_addr, asi, size, ret);
+#endif
+    return ret;
+}
+
+void helper_st_asi(CPUSPARCState *env, target_ulong addr, target_ulong val,
+                   int asi, uint32_t memop)
+{
+    int size = 1 << (memop & MO_SIZE);
+    SPARCCPU *cpu = sparc_env_get_cpu(env);
+    CPUState *cs = CPU(cpu);
+
+#ifdef DEBUG_ASI
+    dump_asi("write", addr, asi, size, val);
+#endif
+
+    asi &= 0xff;
+
+    if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
+        || (cpu_has_hypervisor(env)
+            && asi >= 0x30 && asi < 0x80
+            && !(env->hpstate & HS_PRIV))) {
+        cpu_raise_exception_ra(env, TT_PRIV_ACT, GETPC());
+    }
+
+    do_check_align(env, addr, size - 1, GETPC());
+    addr = asi_address_mask(env, asi, addr);
+
+    switch (asi) {
+    case ASI_AIUP:  /* As if user primary */
+    case ASI_AIUS:  /* As if user secondary */
+    case ASI_AIUPL: /* As if user primary LE */
+    case ASI_AIUSL: /* As if user secondary LE */
+    case ASI_P:  /* Primary */
+    case ASI_S:  /* Secondary */
+    case ASI_PL: /* Primary LE */
+    case ASI_SL: /* Secondary LE */
+    case ASI_REAL:      /* Bypass */
+    case ASI_REAL_IO:   /* Bypass, non-cacheable */
+    case ASI_REAL_L:    /* Bypass LE */
+    case ASI_REAL_IO_L: /* Bypass, non-cacheable LE */
+    case ASI_N:  /* Nucleus */
+    case ASI_NL: /* Nucleus Little Endian (LE) */
+    case ASI_NUCLEUS_QUAD_LDD:   /* Nucleus quad LDD 128 bit atomic */
+    case ASI_NUCLEUS_QUAD_LDD_L: /* Nucleus quad LDD 128 bit atomic LE */
+    case ASI_TWINX_AIUP:   /* As if user primary, twinx */
+    case ASI_TWINX_AIUS:   /* As if user secondary, twinx */
+    case ASI_TWINX_REAL:   /* Real address, twinx */
+    case ASI_TWINX_AIUP_L: /* As if user primary, twinx, LE */
+    case ASI_TWINX_AIUS_L: /* As if user secondary, twinx, LE */
+    case ASI_TWINX_REAL_L: /* Real address, twinx, LE */
+    case ASI_TWINX_N:  /* Nucleus, twinx */
+    case ASI_TWINX_NL: /* Nucleus, twinx, LE */
+    /* ??? From the UA2011 document; overlaps BLK_INIT_QUAD_LDD_* */
+    case ASI_TWINX_P:  /* Primary, twinx */
+    case ASI_TWINX_PL: /* Primary, twinx, LE */
+    case ASI_TWINX_S:  /* Secondary, twinx */
+    case ASI_TWINX_SL: /* Secondary, twinx, LE */
+        /* These are always handled inline.  */
+        g_assert_not_reached();
+
+    case ASI_UPA_CONFIG: /* UPA config */
+        /* XXX */
+        return;
+    case ASI_LSU_CONTROL: /* LSU */
+        env->lsu = val & (DMMU_E | IMMU_E);
+        return;
+    case ASI_IMMU: /* I-MMU regs */
+        {
+            int reg = (addr >> 3) & 0xf;
+            uint64_t oldreg;
+
+            oldreg = env->immuregs[reg];
+            switch (reg) {
+            case 0: /* RO */
+                return;
+            case 1: /* Not in I-MMU */
+            case 2:
+                return;
+            case 3: /* SFSR */
+                if ((val & 1) == 0) {
+                    val = 0; /* Clear SFSR */
+                }
+                env->immu.sfsr = val;
+                break;
+            case 4: /* RO */
+                return;
+            case 5: /* TSB access */
+                DPRINTF_MMU("immu TSB write: 0x%016" PRIx64 " -> 0x%016"
+                            PRIx64 "\n", env->immu.tsb, val);
+                env->immu.tsb = val;
+                break;
+            case 6: /* Tag access */
+                env->immu.tag_access = val;
+                break;
+            case 7:
+            case 8:
+                return;
+            default:
+                break;
+            }
+
+            if (oldreg != env->immuregs[reg]) {
+                DPRINTF_MMU("immu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
+                            PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
+            }
+#ifdef DEBUG_MMU
+            dump_mmu(stdout, fprintf, env);
+#endif
+            return;
+        }
+    case ASI_ITLB_DATA_IN: /* I-MMU data in */
+        replace_tlb_1bit_lru(env->itlb, env->immu.tag_access, val, "immu", env);
+        return;
+    case ASI_ITLB_DATA_ACCESS: /* I-MMU data access */
+        {
+            /* TODO: auto demap */
+
+            unsigned int i = (addr >> 3) & 0x3f;
+
+            replace_tlb_entry(&env->itlb[i], env->immu.tag_access, val, env);
+
+#ifdef DEBUG_MMU
+            DPRINTF_MMU("immu data access replaced entry [%i]\n", i);
+            dump_mmu(stdout, fprintf, env);
+#endif
+            return;
+        }
+    case ASI_IMMU_DEMAP: /* I-MMU demap */
+        demap_tlb(env->itlb, addr, "immu", env);
+        return;
+    case ASI_DMMU: /* D-MMU regs */
+        {
+            int reg = (addr >> 3) & 0xf;
+            uint64_t oldreg;
+
+            oldreg = env->dmmuregs[reg];
+            switch (reg) {
+            case 0: /* RO */
+            case 4:
+                return;
+            case 3: /* SFSR */
+                if ((val & 1) == 0) {
+                    val = 0; /* Clear SFSR, Fault address */
+                    env->dmmu.sfar = 0;
+                }
+                env->dmmu.sfsr = val;
+                break;
+            case 1: /* Primary context */
+                env->dmmu.mmu_primary_context = val;
+                /* can be optimized to only flush MMU_USER_IDX
+                   and MMU_KERNEL_IDX entries */
+                tlb_flush(CPU(cpu), 1);
+                break;
+            case 2: /* Secondary context */
+                env->dmmu.mmu_secondary_context = val;
+                /* can be optimized to only flush MMU_USER_SECONDARY_IDX
+                   and MMU_KERNEL_SECONDARY_IDX entries */
+                tlb_flush(CPU(cpu), 1);
+                break;
+            case 5: /* TSB access */
+                DPRINTF_MMU("dmmu TSB write: 0x%016" PRIx64 " -> 0x%016"
+                            PRIx64 "\n", env->dmmu.tsb, val);
+                env->dmmu.tsb = val;
+                break;
+            case 6: /* Tag access */
+                env->dmmu.tag_access = val;
+                break;
+            case 7: /* Virtual Watchpoint */
+            case 8: /* Physical Watchpoint */
+            default:
+                env->dmmuregs[reg] = val;
+                break;
+            }
+
+            if (oldreg != env->dmmuregs[reg]) {
+                DPRINTF_MMU("dmmu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
+                            PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
+            }
+#ifdef DEBUG_MMU
+            dump_mmu(stdout, fprintf, env);
+#endif
+            return;
+        }
+    case ASI_DTLB_DATA_IN: /* D-MMU data in */
+        replace_tlb_1bit_lru(env->dtlb, env->dmmu.tag_access, val, "dmmu", env);
+        return;
+    case ASI_DTLB_DATA_ACCESS: /* D-MMU data access */
+        {
+            unsigned int i = (addr >> 3) & 0x3f;
+
+            replace_tlb_entry(&env->dtlb[i], env->dmmu.tag_access, val, env);
+
+#ifdef DEBUG_MMU
+            DPRINTF_MMU("dmmu data access replaced entry [%i]\n", i);
+            dump_mmu(stdout, fprintf, env);
+#endif
+            return;
+        }
+    case ASI_DMMU_DEMAP: /* D-MMU demap */
+        demap_tlb(env->dtlb, addr, "dmmu", env);
+        return;
+    case ASI_INTR_RECEIVE: /* Interrupt data receive */
+        env->ivec_status = val & 0x20;
+        return;
+    case ASI_DCACHE_DATA: /* D-cache data */
+    case ASI_DCACHE_TAG: /* D-cache tag access */
+    case ASI_ESTATE_ERROR_EN: /* E-cache error enable */
+    case ASI_AFSR: /* E-cache asynchronous fault status */
+    case ASI_AFAR: /* E-cache asynchronous fault address */
+    case ASI_EC_TAG_DATA: /* E-cache tag data */
+    case ASI_IC_INSTR: /* I-cache instruction access */
+    case ASI_IC_TAG: /* I-cache tag access */
+    case ASI_IC_PRE_DECODE: /* I-cache predecode */
+    case ASI_IC_NEXT_FIELD: /* I-cache LRU etc. */
+    case ASI_EC_W: /* E-cache tag */
+    case ASI_EC_R: /* E-cache tag */
+        return;
+    case ASI_IMMU_TSB_8KB_PTR: /* I-MMU 8k TSB pointer, RO */
+    case ASI_IMMU_TSB_64KB_PTR: /* I-MMU 64k TSB pointer, RO */
+    case ASI_ITLB_TAG_READ: /* I-MMU tag read, RO */
+    case ASI_DMMU_TSB_8KB_PTR: /* D-MMU 8k TSB pointer, RO */
+    case ASI_DMMU_TSB_64KB_PTR: /* D-MMU 64k TSB pointer, RO */
+    case ASI_DMMU_TSB_DIRECT_PTR: /* D-MMU data pointer, RO */
+    case ASI_DTLB_TAG_READ: /* D-MMU tag read, RO */
+    case ASI_INTR_DISPATCH_STAT: /* Interrupt dispatch, RO */
+    case ASI_INTR_R: /* Incoming interrupt vector, RO */
+    case ASI_PNF: /* Primary no-fault, RO */
+    case ASI_SNF: /* Secondary no-fault, RO */
+    case ASI_PNFL: /* Primary no-fault LE, RO */
+    case ASI_SNFL: /* Secondary no-fault LE, RO */
+    default:
+        cpu_unassigned_access(cs, addr, true, false, 1, size);
+        return;
+    }
+}
+#endif /* CONFIG_USER_ONLY */
+#endif /* TARGET_SPARC64 */
+
+#if !defined(CONFIG_USER_ONLY)
+#ifndef TARGET_SPARC64
+void sparc_cpu_unassigned_access(CPUState *cs, hwaddr addr,
+                                 bool is_write, bool is_exec, int is_asi,
+                                 unsigned size)
+{
+    SPARCCPU *cpu = SPARC_CPU(cs);
+    CPUSPARCState *env = &cpu->env;
+    int fault_type;
+
+#ifdef DEBUG_UNASSIGNED
+    if (is_asi) {
+        printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
+               " asi 0x%02x from " TARGET_FMT_lx "\n",
+               is_exec ? "exec" : is_write ? "write" : "read", size,
+               size == 1 ? "" : "s", addr, is_asi, env->pc);
+    } else {
+        printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
+               " from " TARGET_FMT_lx "\n",
+               is_exec ? "exec" : is_write ? "write" : "read", size,
+               size == 1 ? "" : "s", addr, env->pc);
+    }
+#endif
+    /* Don't overwrite translation and access faults */
+    fault_type = (env->mmuregs[3] & 0x1c) >> 2;
+    if ((fault_type > 4) || (fault_type == 0)) {
+        env->mmuregs[3] = 0; /* Fault status register */
+        if (is_asi) {
+            env->mmuregs[3] |= 1 << 16;
+        }
+        if (env->psrs) {
+            env->mmuregs[3] |= 1 << 5;
+        }
+        if (is_exec) {
+            env->mmuregs[3] |= 1 << 6;
+        }
+        if (is_write) {
+            env->mmuregs[3] |= 1 << 7;
+        }
+        env->mmuregs[3] |= (5 << 2) | 2;
+        /* SuperSPARC will never place instruction fault addresses in the FAR */
+        if (!is_exec) {
+            env->mmuregs[4] = addr; /* Fault address register */
+        }
+    }
+    /* overflow (same type fault was not read before another fault) */
+    if (fault_type == ((env->mmuregs[3] & 0x1c)) >> 2) {
+        env->mmuregs[3] |= 1;
+    }
+
+    if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) {
+        int tt = is_exec ? TT_CODE_ACCESS : TT_DATA_ACCESS;
+        cpu_raise_exception_ra(env, tt, GETPC());
+    }
+
+    /* flush neverland mappings created during no-fault mode,
+       so the sequential MMU faults report proper fault types */
+    if (env->mmuregs[0] & MMU_NF) {
+        tlb_flush(cs, 1);
+    }
+}
+#else
+void sparc_cpu_unassigned_access(CPUState *cs, hwaddr addr,
+                                 bool is_write, bool is_exec, int is_asi,
+                                 unsigned size)
+{
+    SPARCCPU *cpu = SPARC_CPU(cs);
+    CPUSPARCState *env = &cpu->env;
+    int tt = is_exec ? TT_CODE_ACCESS : TT_DATA_ACCESS;
+
+#ifdef DEBUG_UNASSIGNED
+    printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx
+           "\n", addr, env->pc);
+#endif
+
+    cpu_raise_exception_ra(env, tt, GETPC());
+}
+#endif
+#endif
+
+#if !defined(CONFIG_USER_ONLY)
+void QEMU_NORETURN sparc_cpu_do_unaligned_access(CPUState *cs, vaddr addr,
+                                                 MMUAccessType access_type,
+                                                 int mmu_idx,
+                                                 uintptr_t retaddr)
+{
+    SPARCCPU *cpu = SPARC_CPU(cs);
+    CPUSPARCState *env = &cpu->env;
+
+#ifdef DEBUG_UNALIGNED
+    printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
+           "\n", addr, env->pc);
+#endif
+    cpu_raise_exception_ra(env, TT_UNALIGNED, retaddr);
+}
+
+/* try to fill the TLB and return an exception if error. If retaddr is
+   NULL, it means that the function was called in C code (i.e. not
+   from generated code or from helper.c) */
+/* XXX: fix it to restore all registers */
+void tlb_fill(CPUState *cs, target_ulong addr, MMUAccessType access_type,
+              int mmu_idx, uintptr_t retaddr)
+{
+    int ret;
+
+    ret = sparc_cpu_handle_mmu_fault(cs, addr, access_type, mmu_idx);
+    if (ret) {
+        cpu_loop_exit_restore(cs, retaddr);
+    }
+}
+#endif