1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
|
import os
import lldb
from .arch import supported_architectures, x86
from .snapshot import ProgramState
class MemoryMap:
"""Description of a range of mapped memory.
Inspired by https://github.com/angr/angr-targets/blob/master/angr_targets/memory_map.py,
meaning we initially used angr and I wanted to keep the interface when we
switched to a different tool.
"""
def __init__(self, start_address, end_address, name, perms):
self.start_address = start_address
self.end_address = end_address
self.name = name
self.perms = perms
def __str__(self):
return f'MemoryMap[0x{self.start_address:x}, 0x{self.end_address:x}]' \
f': {self.name}'
class ConcreteRegisterError(Exception):
pass
class ConcreteMemoryError(Exception):
pass
class ConcreteSectionError(Exception):
pass
class LLDBConcreteTarget:
def __init__(self,
executable: str,
argv: list[str] = [],
envp: list[str] | None = None):
"""Construct an LLDB concrete target. Stop at entry.
:param argv: List of arguements. Does NOT include the conventional
executable name as the first entry.
:param envp: List of environment entries. Defaults to current
`os.environ` if `None`.
:raises RuntimeError: If the process is unable to launch.
"""
if envp is None:
envp = [f'{k}={v}' for k, v in os.environ.items()]
self.debugger = lldb.SBDebugger.Create()
self.debugger.SetAsync(False)
self.target = self.debugger.CreateTargetWithFileAndArch(executable,
lldb.LLDB_ARCH_DEFAULT)
self.module = self.target.FindModule(self.target.GetExecutable())
self.interpreter = self.debugger.GetCommandInterpreter()
# Set up objects for process execution
self.error = lldb.SBError()
self.listener = self.debugger.GetListener()
self.process = self.target.Launch(self.listener,
argv, envp, # argv, envp
None, None, None, # stdin, stdout, stderr
None, # working directory
0,
True, self.error)
if not self.process.IsValid():
raise RuntimeError(f'[In LLDBConcreteTarget.__init__]: Failed to'
f' launch process.')
self.archname = self.target.GetPlatform().GetTriple().split('-')[0]
def is_exited(self):
"""Signals whether the concrete process has exited.
:return: True if the process has exited. False otherwise.
"""
return self.process.GetState() == lldb.eStateExited
def run(self):
"""Continue execution of the concrete process."""
state = self.process.GetState()
if state == lldb.eStateExited:
raise RuntimeError(f'Tried to resume process execution, but the'
f' process has already exited.')
assert(state == lldb.eStateStopped)
self.process.Continue()
def step(self):
"""Step forward by a single instruction."""
thread: lldb.SBThread = self.process.GetThreadAtIndex(0)
thread.StepInstruction(False)
def run_until(self, address: int) -> None:
"""Continue execution until the address is arrived, ignores other breakpoints"""
bp = self.target.BreakpointCreateByAddress(address)
while self.read_register("pc") != address:
self.run()
self.target.BreakpointDelete(bp.GetID())
def record_snapshot(self) -> ProgramState:
"""Record the concrete target's state in a ProgramState object."""
# Determine current arch
if self.archname not in supported_architectures:
print(f'[ERROR] LLDBConcreteTarget: Recording snapshots is not'
f' supported for architecture {self.archname}!')
raise NotImplementedError()
arch = supported_architectures[self.archname]
state = ProgramState(arch)
# Query and store register state
for regname in arch.regnames:
try:
conc_val = self.read_register(regname)
state.set_register(regname, conc_val)
except KeyError:
pass
except ConcreteRegisterError:
# Special rule for flags on X86
if arch.archname == x86.archname:
rflags = x86.decompose_rflags(self.read_register('rflags'))
if regname in rflags:
state.set_register(regname, rflags[regname])
# Query and store memory state
for mapping in self.get_mappings():
assert(mapping.end_address > mapping.start_address)
size = mapping.end_address - mapping.start_address
try:
data = self.read_memory(mapping.start_address, size)
state.write_memory(mapping.start_address, data)
except ConcreteMemoryError:
pass
return state
def _get_register(self, regname: str) -> lldb.SBValue:
"""Find a register by name.
:raise ConcreteRegisterError: If no register with the specified name
can be found.
"""
frame = self.process.GetThreadAtIndex(0).GetFrameAtIndex(0)
reg = frame.FindRegister(regname)
if reg is None:
raise ConcreteRegisterError(
f'[In LLDBConcreteTarget._get_register]: Register {regname}'
f' not found.')
return reg
def read_register(self, regname: str) -> int:
"""Read the value of a register.
:raise ConcreteRegisterError: If `regname` is not a valid register name
or the target is otherwise unable to read
the register's value.
"""
reg = self._get_register(regname)
val = reg.GetValue()
if val is None:
raise ConcreteRegisterError(
f'[In LLDBConcreteTarget.read_register]: Register has an'
f' invalid value of {val}.')
return int(val, 16)
def write_register(self, regname: str, value: int):
"""Read the value of a register.
:raise ConcreteRegisterError: If `regname` is not a valid register name
or the target is otherwise unable to set
the register's value.
"""
reg = self._get_register(regname)
error = lldb.SBError()
reg.SetValueFromCString(hex(value), error)
if not error.success:
raise ConcreteRegisterError(
f'[In LLDBConcreteTarget.write_register]: Unable to set'
f' {regname} to value {hex(value)}!')
def read_memory(self, addr, size):
"""Read bytes from memory.
:raise ConcreteMemoryError: If unable to read `size` bytes from `addr`.
"""
err = lldb.SBError()
content = self.process.ReadMemory(addr, size, err)
if not err.success:
raise ConcreteMemoryError(f'Error when reading {size} bytes at'
f' address {hex(addr)}: {err}')
return bytes(reversed(content)) # Convert to big endian
def write_memory(self, addr, value: bytes):
"""Write bytes to memory.
:raise ConcreteMemoryError: If unable to write at `addr`.
"""
err = lldb.SBError()
res = self.process.WriteMemory(addr, value, err)
if not err.success or res != len(value):
raise ConcreteMemoryError(f'Error when writing to address'
f' {hex(addr)}: {err}')
def get_mappings(self) -> list[MemoryMap]:
mmap = []
region_list = self.process.GetMemoryRegions()
for i in range(region_list.GetSize()):
region = lldb.SBMemoryRegionInfo()
region_list.GetMemoryRegionAtIndex(i, region)
perms = f'{"r" if region.IsReadable() else "-"}' \
f'{"w" if region.IsWritable() else "-"}' \
f'{"x" if region.IsExecutable() else "-"}'
name = region.GetName()
mmap.append(MemoryMap(region.GetRegionBase(),
region.GetRegionEnd(),
name if name is not None else '<none>',
perms))
return mmap
def set_breakpoint(self, addr):
command = f'b -a {addr} -s {self.module.GetFileSpec().GetFilename()}'
result = lldb.SBCommandReturnObject()
self.interpreter.HandleCommand(command, result)
def remove_breakpoint(self, addr):
command = f'breakpoint delete {addr}'
result = lldb.SBCommandReturnObject()
self.interpreter.HandleCommand(command, result)
def get_basic_block(self, addr: int) -> list[lldb.SBInstruction]:
"""Returns a basic block pointed by addr
a code section is considered a basic block only if
the last instruction is a brach, e.g. JUMP, CALL, RET
"""
block = []
while not self.target.ReadInstructions(lldb.SBAddress(addr, self.target), 1)[0].is_branch:
block.append(self.target.ReadInstructions(lldb.SBAddress(addr, self.target), 1)[0])
addr += self.target.ReadInstructions(lldb.SBAddress(addr, self.target), 1)[0].size
block.append(self.target.ReadInstructions(lldb.SBAddress(addr, self.target), 1)[0])
return block
def get_basic_block_inst(self, addr: int) -> list[str]:
inst = []
for bb in self.get_basic_block(addr):
inst.append(f'{bb.GetMnemonic(self.target)} {bb.GetOperands(self.target)}')
return inst
def get_next_basic_block(self) -> list[lldb.SBInstruction]:
return self.get_basic_block(self.read_register("pc"))
def get_symbol(self, addr: int) -> lldb.SBSymbol:
"""Returns the symbol that belongs to the addr
"""
for s in self.module.symbols:
if (s.GetType() == lldb.eSymbolTypeCode and s.GetStartAddress().GetLoadAddress(self.target) <= addr < s.GetEndAddress().GetLoadAddress(self.target)):
return s
raise ConcreteSectionError(f'Error getting the symbol to which address {hex(addr)} belongs to')
def get_symbol_limit(self) -> int:
"""Returns the address after all the symbols"""
addr = 0
for s in self.module.symbols:
if s.GetStartAddress().IsValid():
if s.GetStartAddress().GetLoadAddress(self.target) > addr:
addr = s.GetEndAddress().GetLoadAddress(self.target)
return addr
|