1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
|
import sys
from typing import Any
from miasm.arch.x86.sem import Lifter_X86_64
from miasm.analysis.machine import Machine
from miasm.analysis.binary import Container, ContainerELF
from miasm.core.asmblock import disasmEngine, AsmCFG
from miasm.core.interval import interval
from miasm.core.locationdb import LocationDB
from miasm.expression.expression import ExprId, ExprInt, ExprLoc
from miasm.ir.symbexec import SymbolicExecutionEngine, SymbolicState
from miasm.ir.ir import IRBlock, AsmBlock
from miasm.analysis.dse import DSEEngine
from lldb_target import LLDBConcreteTarget, SimConcreteMemoryError, \
SimConcreteRegisterError
from arch import x86
from miasm_util import MiasmProgramState, eval_expr
def print_blocks(asmcfg, file=sys.stdout):
print('=' * 80, file=file)
for block in asmcfg.blocks:
print(block, file=file)
print('-' * 60, file=file)
print('=' * 80, file=file)
def print_state(state: SymbolicState):
print('=' * 80)
for reg, val in state.iteritems():
print(f'{str(reg):10s} = {val}')
print('=' * 80)
def flag_names_to_miasm(regs: dict[str, Any]) -> dict:
"""Convert standard flag names to Miasm's names.
:param regs: Modified in-place.
:return: Returns `regs`.
"""
regs['NF'] = regs.pop('SF')
regs['I_F'] = regs.pop('IF')
regs['IOPL_F'] = regs.pop('IOPL')
regs['I_D'] = regs.pop('ID')
return regs
def disasm_elf(addr, mdis: disasmEngine) -> AsmCFG:
"""Try to disassemble all contents of an ELF file.
Based on the full-disassembly algorithm in
`https://github.com/cea-sec/miasm/blob/master/example/disasm/full.py`
(as of commit `a229f4e`).
:return: An asmcfg.
"""
# Settings for the engine
mdis.follow_call = True
# Initial run
asmcfg = mdis.dis_multiblock(addr)
todo = [addr]
done = set()
done_interval = interval()
while todo:
while todo:
ad = todo.pop(0)
if ad in done:
continue
done.add(ad)
asmcfg = mdis.dis_multiblock(ad, asmcfg)
for block in asmcfg.blocks:
for l in block.lines:
done_interval += interval([(l.offset, l.offset + l.l)])
# Process recursive functions
for block in asmcfg.blocks:
instr = block.get_subcall_instr()
if not instr:
continue
for dest in instr.getdstflow(mdis.loc_db):
if not dest.is_loc():
continue
offset = mdis.loc_db.get_location_offset(dest.loc_key)
todo.append(offset)
# Disassemble all:
for _, b in done_interval.intervals:
if b in done:
continue
todo.append(b)
return asmcfg
def create_state(target: LLDBConcreteTarget) -> MiasmProgramState:
regs: dict[ExprId, ExprInt] = {}
mem = []
# Query and store register state
rflags = target.read_register('rflags')
rflags = flag_names_to_miasm(x86.decompose_rflags(rflags))
for reg in machine.mn.regs.all_regs_ids_no_alias:
regname = reg.name.upper() # Make flag names upper case, too
try:
conc_val = target.read_register(regname)
regs[reg] = ExprInt(conc_val, reg.size)
except SimConcreteRegisterError:
if regname in rflags:
regs[reg] = ExprInt(rflags[regname], reg.size)
# Query and store memory state
for mapping in target.get_mappings():
assert(mapping.end_address > mapping.start_address)
size = mapping.end_address - mapping.start_address
try:
mem_state = target.read_memory(mapping.start_address, size)
except SimConcreteMemoryError:
mem_state = f'<unable to access "{mapping.name}">'
mem.append((mapping, mem_state))
return MiasmProgramState(regs, mem)
binary = 'test_program'
loc_db = LocationDB()
cont = ContainerELF.from_stream(open(binary, 'rb'), loc_db)
machine = Machine(cont.arch)
pc = int(cont.entry_point)
# Disassemble binary
print(f'Disassembling "{binary}"...')
mdis = machine.dis_engine(cont.bin_stream, loc_db=loc_db)
asmcfg = disasm_elf(pc, mdis)
with open('full_disasm', 'w') as file:
print(f'Entry point: {hex(pc)}\n', file=file)
print_blocks(asmcfg, file)
print(f'--- Disassembled "{binary}". Log written to "full_disasm.log".')
# Lift disassembly to IR
print(f'Lifting disassembly to IR...')
lifter: Lifter_X86_64 = machine.lifter(loc_db)
ircfg = lifter.new_ircfg_from_asmcfg(asmcfg)
with open('full_ir', 'w') as file:
print('=' * 80, file=file)
for block in ircfg.blocks.values():
print(block, file=file)
print('-' * 60, file=file)
print('=' * 80, file=file)
print(f'--- Lifted disassembly to IR. Log written to "full_ir.log".')
def record_concrete_states(binary):
states = {}
target = LLDBConcreteTarget(binary)
while not target.is_exited():
states[target.read_register('pc')] = create_state(target)
target.step()
return states
print(f'Recording concrete program trace...')
conc_states = record_concrete_states(binary)
print(f'Recorded {len(conc_states)} trace points.')
def run_block(pc: int, conc_state: MiasmProgramState) -> int | None:
"""Run a basic block.
Tries to run IR blocks until the end of an ASM block/basic block is
reached. Skips 'virtual' blocks that purely exist in the IR.
:param pc: A program counter at which we start executing.
:param conc_state: A concrete reference state at `pc`. Used to resolve
symbolic program counters, i.e. to 'guide' the symbolic
execution on the correct path. This is the concrete part
of our concolic execution.
:return: The next program counter. None if no next program counter can be
found. This happens when an error occurs or when the program
exits.
"""
# Start with a clean, purely symbolic state
engine = SymbolicExecutionEngine(lifter)
while True:
symbolic_pc = engine.run_block_at(ircfg, pc)
# The new program counter might be a symbolic value. Try to evaluate
# it based on the last recorded concrete state at the start of the
# current basic block.
pc = eval_expr(symbolic_pc, conc_state, loc_db)
if ircfg.get_block(pc) is None:
print(f'Unable to access IR block at PC {pc}'
f' (evaluated from the expression PC = {symbolic_pc}).')
return None
# If the resulting PC is an integer, i.e. a concrete address that can
# be mapped to the assembly code, we return as we have reached the end
# of a basic block. Otherwise we might have reached the end of an IR
# block, in which case we keep executing until we reach the end of an
# ASM block.
try:
return int(symbolic_pc)
except:
pass
last_pc = None # Debugging info
# Run until no more states can be reached
print(f'Re-tracing symbolically...')
while pc is not None:
assert(type(pc) is int)
if pc not in conc_states:
print(f'Next PC {hex(pc)} is not contained in the concrete program'
f' trace. Last valid PC: {hex(last_pc)}')
break
last_pc = pc
initial_state = conc_states[pc]
pc = run_block(pc, initial_state)
print(f'--- No new PC found. Exiting.')
|