1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
|
"""Invocable like this:
gdb -n --batch -x qemu_tool.py
But please use `tools/verify_qemu.py` instead because we have some more setup
work to do.
"""
import gdb
from typing import Iterable
import focaccia.parser as parser
from focaccia.arch import supported_architectures, Arch
from focaccia.compare import compare_symbolic
from focaccia.snapshot import ProgramState, ReadableProgramState, \
RegisterAccessError, MemoryAccessError
from focaccia.symbolic import SymbolicTransform, eval_symbol, ExprMem
from focaccia.trace import Trace, TraceEnvironment
from focaccia.utils import print_result
from verify_qemu import make_argparser, verbosity
class GDBProgramState(ReadableProgramState):
from focaccia.arch import aarch64, x86
flag_register_names = {
aarch64.archname: 'cpsr',
x86.archname: 'eflags',
}
flag_register_decompose = {
aarch64.archname: aarch64.decompose_cpsr,
x86.archname: x86.decompose_rflags,
}
def __init__(self, process: gdb.Inferior, frame: gdb.Frame, arch: Arch):
super().__init__(arch)
self._proc = process
self._frame = frame
@staticmethod
def _read_vector_reg_aarch64(val, size) -> int:
return int(str(val['u']), 10)
@staticmethod
def _read_vector_reg_x86(val, size) -> int:
num_longs = size // 64
vals = val[f'v{num_longs}_int64']
res = 0
for i in range(num_longs):
val = int(vals[i].cast(gdb.lookup_type('unsigned long')))
res += val << i * 64
return res
read_vector_reg = {
aarch64.archname: _read_vector_reg_aarch64,
x86.archname: _read_vector_reg_x86,
}
def read_register(self, reg: str) -> int:
if reg == 'RFLAGS':
reg = 'EFLAGS'
try:
val = self._frame.read_register(reg.lower())
size = val.type.sizeof * 8
# For vector registers, we need to apply architecture-specific
# logic because GDB's interface is not consistent.
if size >= 128: # Value is a vector
if self.arch.archname not in self.read_vector_reg:
raise NotImplementedError(
f'Reading vector registers is not implemented for'
f' architecture {self.arch.archname}.')
return self.read_vector_reg[self.arch.archname](val, size)
elif size < 64:
return int(val.cast(gdb.lookup_type('unsigned int')))
# For non-vector values, just return the 64-bit value
return int(val.cast(gdb.lookup_type('unsigned long')))
except ValueError as err:
# Try to access the flags register with `reg` as a logical flag name
if self.arch.archname in self.flag_register_names:
flags_reg = self.flag_register_names[self.arch.archname]
flags = int(self._frame.read_register(flags_reg))
flags = self.flag_register_decompose[self.arch.archname](flags)
if reg in flags:
return flags[reg]
raise RegisterAccessError(reg,
f'[GDB] Unable to access {reg}: {err}')
def read_memory(self, addr: int, size: int) -> bytes:
try:
mem = self._proc.read_memory(addr, size).tobytes()
if self.arch.endianness == 'little':
return mem
else:
return bytes(reversed(mem)) # Convert to big endian
except gdb.MemoryError as err:
raise MemoryAccessError(addr, size, str(err))
class GDBServerStateIterator:
def __init__(self, address: str, port: int):
gdb.execute('set pagination 0')
gdb.execute('set sysroot')
gdb.execute(f'target remote {address}:{port}')
self._process = gdb.selected_inferior()
self._first_next = True
# Try to determine the guest architecture. This is a bit hacky and
# tailored to GDB's naming for the x86-64 architecture.
split = self._process.architecture().name().split(':')
archname = split[1] if len(split) > 1 else split[0]
archname = archname.replace('-', '_')
if archname not in supported_architectures:
print(f'Error: Current platform ({archname}) is not'
f' supported by Focaccia. Exiting.')
exit(1)
self.arch = supported_architectures[archname]
self.binary = self._process.progspace.filename
def __iter__(self):
return self
def __next__(self):
# The first call to __next__ should yield the first program state,
# i.e. before stepping the first time
if self._first_next:
self._first_next = False
return GDBProgramState(self._process, gdb.selected_frame(), self.arch)
# Step
pc = gdb.selected_frame().read_register('pc')
new_pc = pc
while pc == new_pc: # Skip instruction chains from REP STOS etc.
gdb.execute('si', to_string=True)
if not self._process.is_valid() or len(self._process.threads()) == 0:
raise StopIteration
new_pc = gdb.selected_frame().read_register('pc')
return GDBProgramState(self._process, gdb.selected_frame(), self.arch)
def record_minimal_snapshot(prev_state: ReadableProgramState,
cur_state: ReadableProgramState,
prev_transform: SymbolicTransform,
cur_transform: SymbolicTransform) \
-> ProgramState:
"""Record a minimal snapshot.
A minimal snapshot must include values (registers and memory) that are
accessed by two transformations:
1. The values produced by the previous transformation (the
transformation that is producing this snapshot) to check these
values against expected values calculated from the previous
program state.
2. The values that act as inputs to the transformation acting on this
snapshot, to calculate the expected values of the next snapshot.
:param prev_transform: The symbolic transformation generating, or
leading to, `cur_state`. Values generated by
this transformation are included in the
snapshot.
:param transform: The symbolic transformation operating on this
snapshot. Input values to this transformation are
included in the snapshot.
"""
assert(cur_state.read_register('pc') == cur_transform.addr)
assert(prev_transform.arch == cur_transform.arch)
def get_written_addresses(t: SymbolicTransform):
"""Get all output memory accesses of a symbolic transformation."""
return [ExprMem(a, v.size) for a, v in t.changed_mem.items()]
def set_values(regs: Iterable[str], mems: Iterable[ExprMem],
cur_state: ReadableProgramState,
prev_state: ReadableProgramState,
out_state: ProgramState):
"""
:param prev_state: Addresses of memory included in the snapshot are
resolved relative to this state.
"""
for regname in regs:
try:
regval = cur_state.read_register(regname)
out_state.set_register(regname, regval)
except RegisterAccessError:
pass
for mem in mems:
assert(mem.size % 8 == 0)
addr = eval_symbol(mem.ptr, prev_state)
try:
mem = cur_state.read_memory(addr, int(mem.size / 8))
out_state.write_memory(addr, mem)
except MemoryAccessError:
pass
state = ProgramState(cur_transform.arch)
state.set_register('PC', cur_transform.addr)
set_values(prev_transform.changed_regs.keys(),
get_written_addresses(prev_transform),
cur_state,
prev_state, # Evaluate memory addresses based on previous
# state because they are that state's output
# addresses.
state)
set_values(cur_transform.get_used_registers(),
cur_transform.get_used_memory_addresses(),
cur_state,
cur_state,
state)
return state
def collect_conc_trace(gdb: GDBServerStateIterator, \
strace: list[SymbolicTransform]) \
-> tuple[list[ProgramState], list[SymbolicTransform]]:
"""Collect a trace of concrete states from GDB.
Records minimal concrete states from GDB by using symbolic trace
information to determine which register/memory values are required to
verify the correctness of the program running in GDB.
May drop symbolic transformations if the symbolic trace and the GDB trace
diverge (e.g. because of differences in environment, etc.). Returns the
new, possibly modified, symbolic trace that matches the returned concrete
trace.
:return: A list of concrete states and a list of corresponding symbolic
transformations. The lists are guaranteed to have the same length.
"""
def find_index(seq, target, access=lambda el: el):
for i, el in enumerate(seq):
if access(el) == target:
return i
return None
if not strace:
return [], []
states = []
matched_transforms = []
state_iter = iter(gdb)
cur_state = next(state_iter)
symb_i = 0
# An online trace matching algorithm.
while True:
try:
pc = cur_state.read_register('pc')
while pc != strace[symb_i].addr:
next_i = find_index(strace[symb_i+1:], pc, lambda t: t.addr)
# Drop the concrete state if no address in the symbolic trace
# matches
if next_i is None:
print(f'Warning: Dropping concrete state {hex(pc)}, as no'
f' matching instruction can be found in the symbolic'
f' reference trace.')
cur_state = next(state_iter)
pc = cur_state.read_register('pc')
continue
# Otherwise, jump to the next matching symbolic state
symb_i += next_i + 1
assert(cur_state.read_register('pc') == strace[symb_i].addr)
states.append(record_minimal_snapshot(
states[-1] if states else cur_state,
cur_state,
matched_transforms[-1] if matched_transforms else strace[symb_i],
strace[symb_i]))
matched_transforms.append(strace[symb_i])
cur_state = next(state_iter)
symb_i += 1
except StopIteration:
break
return states, matched_transforms
def main():
args = make_argparser().parse_args()
gdbserver_addr = 'localhost'
gdbserver_port = args.port
gdb_server = GDBServerStateIterator(gdbserver_addr, gdbserver_port)
executable = gdb_server.binary
argv = [] # QEMU's GDB stub does not support 'info proc cmdline'
envp = [] # Can't get the remote target's environment
env = TraceEnvironment(executable, argv, envp, '?')
# Read pre-computed symbolic trace
with open(args.symb_trace, 'r') as strace:
symb_transforms = parser.parse_transformations(strace)
# Use symbolic trace to collect concrete trace from QEMU
conc_states, matched_transforms = collect_conc_trace(
gdb_server,
symb_transforms.states)
# Verify and print result
if not args.quiet:
res = compare_symbolic(conc_states, matched_transforms)
print_result(res, verbosity[args.error_level])
if args.output:
from focaccia.parser import serialize_snapshots
with open(args.output, 'w') as file:
serialize_snapshots(Trace(conc_states, env), file)
if __name__ == "__main__":
main()
|