about summary refs log tree commit diff stats
diff options
context:
space:
mode:
authorAjax <commial@gmail.com>2017-08-10 15:06:35 +0200
committerAjax <commial@gmail.com>2017-09-05 13:39:23 +0200
commitbff30d8da16a8665ca63902546ee81569a42ef46 (patch)
treec5e7f10cde3b812954e7f6a74a052264cf717e54
parent15a5cc861a6d9e8b14d9b23b6ee3a208eade96d9 (diff)
downloadmiasm-bff30d8da16a8665ca63902546ee81569a42ef46.tar.gz
miasm-bff30d8da16a8665ca63902546ee81569a42ef46.zip
Add a simpler illustrating the DSE use
-rw-r--r--example/symbol_exec/dse_strategies.py129
1 files changed, 129 insertions, 0 deletions
diff --git a/example/symbol_exec/dse_strategies.py b/example/symbol_exec/dse_strategies.py
new file mode 100644
index 00000000..40998425
--- /dev/null
+++ b/example/symbol_exec/dse_strategies.py
@@ -0,0 +1,129 @@
+"""Example of DynamicSymbolicExecution engine use
+
+This example highlights how coverage can be obtained on a binary
+
+Expected target: 'simple_test.bin'
+
+Global overview:
+ - Prepare a 'jitter' instance with the targeted function
+ - Attach a DSE instance
+ - Make the function argument symbolic, to track constraints on it
+ - Take a snapshot
+ - Initialize the argument candidate list with an arbitrary value, 0
+ - Main loop:
+   - Restore the snapshot (initial state, before running the function)
+   - Take an argument candidate and set it in the jitter
+   - Run the function
+   - Ask the DSE for new candidates, according to its strategy, ie. finding new
+block / branch / path
+"""
+from argparse import ArgumentParser
+
+from miasm2.analysis.machine import Machine
+from miasm2.jitter.csts import PAGE_READ, PAGE_WRITE
+from miasm2.analysis.dse import DSEPathConstraint
+from miasm2.expression.expression import ExprMem, ExprId, ExprInt, ExprAff
+
+# Argument handling
+parser = ArgumentParser("DSE Example")
+parser.add_argument("filename", help="Target x86 shellcode")
+parser.add_argument("strategy", choices=["code-cov", "branch-cov", "path-cov"],
+                    help="Strategy to use for solution creation")
+args = parser.parse_args()
+
+# Convert strategy to the correct value
+strategy = {
+    "code-cov": DSEPathConstraint.PRODUCE_SOLUTION_CODE_COV,
+    "branch-cov": DSEPathConstraint.PRODUCE_SOLUTION_BRANCH_COV,
+    "path-cov": DSEPathConstraint.PRODUCE_SOLUTION_PATH_COV,
+}[args.strategy]
+
+# Map the shellcode
+run_addr = 0x40000
+machine = Machine("x86_32")
+jitter = machine.jitter("python")
+with open(args.filename) as fdesc:
+    jitter.vm.add_memory_page(run_addr, PAGE_READ | PAGE_WRITE, fdesc.read(),
+                              "Binary")
+
+# Expect a binary with one argument on the stack
+jitter.init_stack()
+
+# Argument
+jitter.push_uint32_t(0)
+
+# Handle return
+def code_sentinelle(jitter):
+    jitter.run = False
+    return False
+
+ret_addr = 0x1337beef
+jitter.add_breakpoint(ret_addr, code_sentinelle)
+jitter.push_uint32_t(ret_addr)
+
+# Init the jitter
+jitter.init_run(run_addr)
+
+# Init a DSE instance with a given strategy
+dse = DSEPathConstraint(machine, produce_solution=strategy)
+dse.attach(jitter)
+# Concretize everything exept the argument
+dse.update_state_from_concrete()
+regs = jitter.ir_arch.arch.regs
+arg = ExprId("ARG", 32)
+arg_addr = ExprMem(ExprInt(jitter.cpu.ESP + 4, regs.ESP.size), arg.size)
+dse.update_state({
+    # @[ESP + 4] = ARG
+    arg_addr: arg
+})
+
+# Explore solutions
+todo = set([ExprInt(0, arg.size)])
+done = set()
+snapshot = dse.take_snapshot()
+
+# Only needed for the final output
+reachs = set()
+
+while todo:
+    # Get the next candidate
+    arg_value = todo.pop()
+
+    # Avoid using twice the same input
+    if arg_value in done:
+        continue
+    done.add(arg_value)
+
+    print "Run with ARG = %s" % arg_value
+    # Restore state, while keeping already found solutions
+    dse.restore_snapshot(snapshot, keep_known_solutions=True)
+
+    # Reinit jitter (reset jitter.run, etc.)
+    jitter.init_run(run_addr) # TODO degage avec new PR?
+
+    # Set the argument value in the jitter context
+    jitter.eval_expr(ExprAff(arg_addr, arg_value))
+
+    # Launch
+    jitter.continue_run()
+
+    # Obtained solutions are in dse.new_solutions: identifier -> solution model
+    # The identifier depends on the strategy:
+    # - block address for code coverage
+    # - last edge for branch coverage
+    # - execution path for path coverage
+
+    for sol_ident, model in dse.new_solutions.iteritems():
+        print "Found a solution to reach: %s" % str(sol_ident)
+        # Get the argument to use as a Miasm Expr
+        sol_value = model.eval(dse.z3_trans.from_expr(arg)).as_long()
+        sol_expr = ExprInt(sol_value, arg.size)
+
+        # Display info and update storages
+        print "\tARG = %s" % sol_expr
+        todo.add(sol_expr)
+        reachs.add(sol_ident)
+
+print "Found %d input, to reach %d element of coverage" % (len(done),
+                                                           len(reachs))
+