from collections import deque from miasm2.expression.expression import ExprId, ExprAssign, ExprOp, \ ExprLoc, get_expr_ids from miasm2.ir.ir import AssignBlock, IRBlock def sanitize_graph_head(ircfg, head): """ In multiple algorithm, the @head of the ircfg may not have predecessors. The function transform the @ircfg in order to ensure this property @ircfg: IRCFG instance @head: the location of the graph's head """ if not ircfg.predecessors(head): return original_edges = ircfg.predecessors(head) sub_head = ircfg.loc_db.add_location() # Duplicate graph, replacing references to head by sub_head replaced_expr = { ExprLoc(head, ircfg.IRDst.size): ExprLoc(sub_head, ircfg.IRDst.size) } ircfg.simplify( lambda expr:expr.replace_expr(replaced_expr) ) # Duplicate head block ircfg.add_irblock(IRBlock(sub_head, list(ircfg.blocks[head]))) # Remove original head block ircfg.del_node(head) for src in original_edges: ircfg.add_edge(src, sub_head) # Create new head, jumping to sub_head assignblk = AssignBlock({ircfg.IRDst:ExprLoc(sub_head, ircfg.IRDst.size)}) new_irblock = IRBlock(head, [assignblk]) ircfg.add_irblock(new_irblock) class SSA(object): """ Generic class for static single assignment (SSA) transformation Handling of - variable generation - variable renaming - conversion of an IRCFG block into SSA Variables will be renamed to ., whereby the index will be increased in every definition of . Memory expressions are stateless. The addresses are in SSA form, but memory aliasing will occur. For instance, if it holds that RAX == RBX.0 + (-0x8) and @64[RBX.0 + (-0x8)] = RDX RCX.0 = @64[RAX], then it cannot be tracked that RCX.0 == RDX. """ def __init__(self, ircfg): """ Initialises generic class for SSA :param ircfg: instance of IRCFG """ # IRCFG instance self.ircfg = ircfg # SSA blocks self.blocks = {} # stack for RHS self._stack_rhs = {} # stack for LHS self._stack_lhs = {} self.ssa_variable_to_expr = {} # dict of SSA expressions self.expressions = {} # dict of SSA to original location self.ssa_to_location = {} # Don't SSA IRDst self.immutable_ids = set([self.ircfg.IRDst]) def get_regs(self, expr): return get_expr_ids(expr) def transform(self, *args, **kwargs): """Transforms into SSA""" raise NotImplementedError("Abstract method") def get_block(self, loc_key): """ Returns an IRBlock :param loc_key: LocKey instance :return: IRBlock """ irblock = self.ircfg.blocks.get(loc_key, None) return irblock def reverse_variable(self, ssa_var): """ Transforms a variable in SSA form into non-SSA form :param ssa_var: ExprId, variable in SSA form :return: ExprId, variable in non-SSA form """ expr = self.ssa_variable_to_expr.get(ssa_var, ssa_var) return expr def reset(self): """Resets SSA transformation""" self.blocks = {} self.expressions = {} self._stack_rhs = {} self._stack_lhs = {} self.ssa_to_location = {} def _gen_var_expr(self, expr, stack): """ Generates a variable expression in SSA form :param expr: variable expression which will be translated :param stack: self._stack_rhs or self._stack_lhs :return: variable expression in SSA form """ index = stack[expr] name = "%s.%d" % (expr.name, index) ssa_var = ExprId(name, expr.size) self.ssa_variable_to_expr[ssa_var] = expr return ssa_var def _transform_var_rhs(self, ssa_var): """ Transforms a variable on the right hand side into SSA :param ssa_var: variable :return: transformed variable """ # variable has never been on the LHS if ssa_var not in self._stack_rhs: return ssa_var # variable has been on the LHS stack = self._stack_rhs return self._gen_var_expr(ssa_var, stack) def _transform_var_lhs(self, expr): """ Transforms a variable on the left hand side into SSA :param expr: variable :return: transformed variable """ # check if variable has already been on the LHS if expr not in self._stack_lhs: self._stack_lhs[expr] = 0 # save last value for RHS transformation self._stack_rhs[expr] = self._stack_lhs[expr] # generate SSA expression stack = self._stack_lhs ssa_var = self._gen_var_expr(expr, stack) return ssa_var def _transform_expression_lhs(self, dst): """ Transforms an expression on the left hand side into SSA :param dst: expression :return: expression in SSA form """ if dst.is_mem(): # transform with last RHS instance ssa_var = self._transform_expression_rhs(dst) else: # transform LHS ssa_var = self._transform_var_lhs(dst) # increase SSA variable counter self._stack_lhs[dst] += 1 return ssa_var def _transform_expression_rhs(self, src): """ Transforms an expression on the right hand side into SSA :param src: expression :return: expression in SSA form """ # dissect expression in variables variables = self.get_regs(src) src_ssa = src # transform variables for expr in variables: ssa_var = self._transform_var_rhs(expr) src_ssa = src_ssa.replace_expr({expr: ssa_var}) return src_ssa @staticmethod def _parallel_instructions(assignblk): """ Extracts the instruction from a AssignBlock. Since instructions in a AssignBlock are evaluated in parallel, memory instructions on the left hand side will be inserted into the start of the list. Then, memory instruction on the LHS will be transformed firstly. :param assignblk: assignblock :return: sorted list of expressions """ instructions = [] for dst in assignblk: # dst = src aff = assignblk.dst2ExprAssign(dst) # insert memory expression into start of list if dst.is_mem(): instructions.insert(0, aff) else: instructions.append(aff) return instructions @staticmethod def _convert_block(irblock, ssa_list): """ Transforms an IRBlock inplace into SSA :param irblock: IRBlock to be transformed :param ssa_list: list of SSA expressions """ # iterator over SSA expressions ssa_iter = iter(ssa_list) new_irs = [] # walk over IR blocks' assignblocks for assignblk in irblock.assignblks: # list of instructions instructions = [] # insert SSA instructions for _ in assignblk: instructions.append(ssa_iter.next()) # replace instructions of assignblock in IRBlock new_irs.append(AssignBlock(instructions, assignblk.instr)) return IRBlock(irblock.loc_key, new_irs) def _rename_expressions(self, loc_key): """ Transforms variables and expressions of an IRBlock into SSA. IR representations of an assembly instruction are evaluated in parallel. Thus, RHS and LHS instructions will be performed separately. :param loc_key: IRBlock loc_key """ # list of IRBlock's SSA expressions ssa_expressions_block = [] # retrieve IRBlock irblock = self.get_block(loc_key) if irblock is None: # Incomplete graph return # iterate block's IR expressions for index, assignblk in enumerate(irblock.assignblks): # list of parallel instructions instructions = self._parallel_instructions(assignblk) # list for transformed RHS expressions rhs = deque() # transform RHS for expr in instructions: src = expr.src src_ssa = self._transform_expression_rhs(src) # save transformed RHS rhs.append(src_ssa) # transform LHS for expr in instructions: if expr.dst in self.immutable_ids or expr.dst in self.ssa_variable_to_expr: dst_ssa = expr.dst else: dst_ssa = self._transform_expression_lhs(expr.dst) # retrieve corresponding RHS expression src_ssa = rhs.popleft() # rebuild SSA expression expr = ExprAssign(dst_ssa, src_ssa) self.expressions[dst_ssa] = src_ssa self.ssa_to_location[dst_ssa] = (loc_key, index) # append ssa expression to list ssa_expressions_block.append(expr) # replace blocks IR expressions with corresponding SSA transformations new_irblock = self._convert_block(irblock, ssa_expressions_block) self.ircfg.blocks[loc_key] = new_irblock class SSABlock(SSA): """ SSA transformation on block level It handles - transformation of a single IRBlock into SSA - reassembling an SSA expression into a non-SSA expression through iterative resolving of the RHS """ def transform(self, loc_key): """ Transforms a block into SSA form :param loc_key: IRBlock loc_key """ self._rename_expressions(loc_key) def reassemble_expr(self, expr): """ Reassembles an expression in SSA form into a solely non-SSA expression :param expr: expression :return: non-SSA expression """ # worklist todo = {expr.copy()} while todo: # current expression cur = todo.pop() # RHS of current expression cur_rhs = self.expressions[cur] # replace cur with RHS in expr expr = expr.replace_expr({cur: cur_rhs}) # parse ExprIDs on RHS ids_rhs = self.get_regs(cur_rhs) # add RHS ids to worklist for id_rhs in ids_rhs: if id_rhs in self.expressions: todo.add(id_rhs) return expr class SSAPath(SSABlock): """ SSA transformation on path level It handles - transformation of a path of IRBlocks into SSA """ def transform(self, path): """ Transforms a path into SSA :param path: list of IRBlock loc_key """ for block in path: self._rename_expressions(block) class SSADiGraph(SSA): """ SSA transformation on DiGraph level It handles - transformation of a DiGraph into SSA - generation, insertion and filling of phi nodes The implemented SSA form is known as minimal SSA. """ PHI_STR = 'Phi' def __init__(self, ircfg): """ Initialises SSA class for directed graphs :param ircfg: instance of IRCFG """ super(SSADiGraph, self).__init__(ircfg) # variable definitions self.defs = {} # dict of blocks' phi nodes self._phinodes = {} # IRCFG control flow graph self.graph = ircfg def transform(self, head): """Transforms into SSA""" sanitize_graph_head(self.graph, head) self._init_variable_defs(head) self._place_phi(head) self._rename(head) self._insert_phi() self._convert_phi() self._fix_no_def_var(head) def reset(self): """Resets SSA transformation""" super(SSADiGraph, self).reset() self.defs = {} self._phinodes = {} def _init_variable_defs(self, head): """ Initialises all variable definitions and assigns the corresponding IRBlocks. All variable definitions in self.defs contain a set of IRBlocks in which the variable gets assigned """ for loc_key in self.graph.walk_depth_first_forward(head): irblock = self.get_block(loc_key) if irblock is None: # Incomplete graph continue # search for block's IR definitions/destinations for assignblk in irblock.assignblks: for dst in assignblk: # enforce ExprId if dst.is_id(): # exclude immutable ids if dst in self.immutable_ids or dst in self.ssa_variable_to_expr: continue # map variable definition to blocks self.defs.setdefault(dst, set()).add(irblock.loc_key) def _place_phi(self, head): """ For all blocks, empty phi functions will be placed for every variable in the block's dominance frontier. self.phinodes contains a dict for every block in the dominance frontier. In this dict, each variable definition maps to its corresponding phi function. Source: Cytron, Ron, et al. "An efficient method of computing static single assignment form" Proceedings of the 16th ACM SIGPLAN-SIGACT symposium on Principles of programming languages (1989), p. 30 """ # dominance frontier frontier = self.graph.compute_dominance_frontier(head) for variable in self.defs: done = set() todo = set() intodo = set() for loc_key in self.defs[variable]: todo.add(loc_key) intodo.add(loc_key) while todo: loc_key = todo.pop() # walk through block's dominance frontier for node in frontier.get(loc_key, []): if node in done: continue # place empty phi functions for a variable empty_phi = self._gen_empty_phi(variable) # add empty phi node for variable in node self._phinodes.setdefault(node, {})[variable] = empty_phi.src done.add(node) if node not in intodo: intodo.add(node) todo.add(node) def _gen_empty_phi(self, expr): """ Generates an empty phi function for a variable :param expr: variable :return: ExprAssign, empty phi function for expr """ phi = ExprId(self.PHI_STR, expr.size) return ExprAssign(expr, phi) def _fill_phi(self, *args): """ Fills a phi function with variables. phi(x.1, x.5, x.6) :param args: list of ExprId :return: ExprOp """ return ExprOp(self.PHI_STR, *set(args)) def _rename(self, head): """ Transforms each variable expression in the CFG into SSA by traversing the dominator tree in depth-first search. 1. Transform variables of phi functions on LHS into SSA 2. Transform all non-phi expressions into SSA 3. Update the successor's phi functions' RHS with current SSA variables 4. Save current SSA variable stack for successors in the dominator tree Source: Cytron, Ron, et al. "An efficient method of computing static single assignment form" Proceedings of the 16th ACM SIGPLAN-SIGACT symposium on Principles of programming languages (1989), p. 31 """ # compute dominator tree dominator_tree = self.graph.compute_dominator_tree(head) # init SSA variable stack stack = [self._stack_rhs] # walk in DFS over the dominator tree for loc_key in dominator_tree.walk_depth_first_forward(head): # restore SSA variable stack of the predecessor in the dominator tree self._stack_rhs = stack.pop().copy() # Transform variables of phi functions on LHS into SSA self._rename_phi_lhs(loc_key) # Transform all non-phi expressions into SSA self._rename_expressions(loc_key) # Update the successor's phi functions' RHS with current SSA variables # walk over block's successors in the CFG for successor in self.graph.successors_iter(loc_key): self._rename_phi_rhs(successor) # Save current SSA variable stack for successors in the dominator tree for _ in dominator_tree.successors_iter(loc_key): stack.append(self._stack_rhs) def _rename_phi_lhs(self, loc_key): """ Transforms phi function's expressions of an IRBlock on the left hand side into SSA :param loc_key: IRBlock loc_key """ if loc_key in self._phinodes: # create temporary list of phi function assignments for inplace renaming tmp = list(self._phinodes[loc_key]) # iterate over all block's phi nodes for dst in tmp: # transform variables on LHS inplace self._phinodes[loc_key][self._transform_expression_lhs(dst)] = self._phinodes[loc_key].pop(dst) def _rename_phi_rhs(self, successor): """ Transforms the right hand side of each successor's phi function into SSA. Each transformed expression of a phi function's right hand side is of the form phi(., ., ..., .) :param successor: loc_key of block's direct successor in the CFG """ # if successor is in block's dominance frontier if successor in self._phinodes: # walk over all variables on LHS for dst, src in self._phinodes[successor].iteritems(): # transform variable on RHS in non-SSA form expr = self.reverse_variable(dst) # transform expr into it's SSA form using current stack src_ssa = self._transform_expression_rhs(expr) # Add src_ssa to phi args if src.is_id(self.PHI_STR): # phi function is empty expr = self._fill_phi(src_ssa) else: # phi function contains at least one value expr = self._fill_phi(src_ssa, *src.args) # update phi function self._phinodes[successor][dst] = expr def _insert_phi(self): """Inserts phi functions into the list of SSA expressions""" for loc_key in self._phinodes: for dst in self._phinodes[loc_key]: self.expressions[dst] = self._phinodes[loc_key][dst] def _convert_phi(self): """Inserts corresponding phi functions inplace into IRBlock at the beginning""" for loc_key in self._phinodes: irblock = self.get_block(loc_key) if irblock is None: continue assignblk = AssignBlock(self._phinodes[loc_key]) # insert at the beginning new_irs = IRBlock(loc_key, [assignblk] + list(irblock.assignblks)) self.ircfg.blocks[loc_key] = new_irs def _fix_no_def_var(self, head): """ Replace phi source variables which are not ssa vars by ssa vars. @head: loc_key of the graph head """ var_to_insert = set() for loc_key in self._phinodes: for dst, sources in self._phinodes[loc_key].iteritems(): for src in sources.args: if src in self.ssa_variable_to_expr: continue var_to_insert.add(src) var_to_newname = {} newname_to_var = {} for var in var_to_insert: new_var = self._transform_var_lhs(var) var_to_newname[var] = new_var newname_to_var[new_var] = var # Replace non modified node used in phi with new variable self.ircfg.simplify(lambda expr:expr.replace_expr(var_to_newname)) if newname_to_var: irblock = self.ircfg.blocks[head] assignblks = list(irblock) assignblks[0:0] = [AssignBlock(newname_to_var, assignblks[0].instr)] self.ircfg.blocks[head] = IRBlock(head, assignblks) # Updt structure for loc_key in self._phinodes: for dst, sources in self._phinodes[loc_key].items(): self._phinodes[loc_key][dst] = sources.replace_expr(var_to_newname) for var, (loc_key, index) in self.ssa_to_location.items(): if loc_key == head: self.ssa_to_location[var] = loc_key, index + 1 for newname, var in newname_to_var.iteritems(): self.ssa_to_location[newname] = head, 0 self.ssa_variable_to_expr[newname] = var self.expressions[newname] = var def irblock_has_phi(irblock): """ Return True if @irblock has Phi assignments @irblock: IRBlock instance """ if not irblock.assignblks: return False for src in irblock[0].itervalues(): return src.is_op('Phi') return False class Varinfo(object): """Store liveness information for a variable""" __slots__ = ["live_index", "loc_key", "index"] def __init__(self, live_index, loc_key, index): self.live_index = live_index self.loc_key = loc_key self.index = index def get_var_assignment_src(ircfg, node, variables): """ Return the variable of @variables which is written by the irblock at @node @node: Location @variables: a set of variable to test """ irblock = ircfg.blocks[node] for assignblk in irblock: result = set(assignblk).intersection(variables) if not result: continue assert len(result) == 1 return list(result)[0] return None def get_phi_sources_parent_block(ircfg, loc_key, sources): """ Return a dictionary linking a variable to it's direct parent label which belong to a path which affects the node. @loc_key: the starting node @sources: set of variables to resolve """ source_to_parent = {} for parent in ircfg.predecessors(loc_key): done = set() todo = set([parent]) found = False while todo: node = todo.pop() if node in done: continue done.add(node) ret = get_var_assignment_src(ircfg, node, sources) if ret: source_to_parent.setdefault(ret, set()).add(parent) found = True break for pred in ircfg.predecessors(node): todo.add(pred) assert found return source_to_parent class UnSSADiGraph(object): """ Implements unssa algorithm Revisiting Out-of-SSA Translation for Correctness, Code Quality, and Efficiency """ def __init__(self, ssa, head, cfg_liveness): self.cfg_liveness = cfg_liveness self.ssa = ssa self.head = head # Set of created variables self.copy_vars = set() # Virtual parallel copies # On loc_key's Phi node dst -> set((parent, src)) self.phi_parent_sources = {} # On loc_key's Phi node, loc_key -> set(Phi dsts) self.phi_destinations = {} # Phi's dst -> new var self.phi_new_var = {} # For a new_var representing dst: # new_var -> set(parents of Phi's src in dst = Phi(src,...)) self.new_var_to_srcs_parents = {} # new_var -> set(variables to be coalesced with, named "merge_set") self.merge_state = {} # Launch the algorithm in several steps self.isolate_phi_nodes_block() self.init_phis_merge_state() self.order_ssa_var_dom() self.aggressive_coalesce_block() self.insert_parallel_copy() self.replace_merge_sets() self.remove_assign_eq() def insert_parallel_copy(self): """ Naive Out-of-SSA from CSSA (without coalescing for now) - Replace Phi - Create room for parallel copies in Phi's parents """ ircfg = self.ssa.graph for irblock in ircfg.blocks.values(): if not irblock_has_phi(irblock): continue # Replace Phi with Phi's dst = new_var parallel_copies = {} for dst in self.phi_destinations[irblock.loc_key]: new_var = self.phi_new_var[dst] parallel_copies[dst] = new_var assignblks = list(irblock) assignblks[0] = AssignBlock(parallel_copies, irblock[0].instr) new_irblock = IRBlock(irblock.loc_key, assignblks) ircfg.blocks[irblock.loc_key] = new_irblock # Insert new_var = src in each Phi's parent, at the end of the block parent_to_parallel_copies = {} parallel_copies = {} for dst in irblock[0]: new_var = self.phi_new_var[dst] for parent, src in self.phi_parent_sources[dst]: parent_to_parallel_copies.setdefault(parent, {})[new_var] = src for parent, parallel_copies in parent_to_parallel_copies.iteritems(): parent = ircfg.blocks[parent] assignblks = list(parent) assignblks.append(AssignBlock(parallel_copies, parent[-1].instr)) new_irblock = IRBlock(parent.loc_key, assignblks) ircfg.blocks[parent.loc_key] = new_irblock def create_copy_var(self, var): """ Generate a new var standing for @var @var: variable to replace """ new_var = ExprId('var%d' % len(self.copy_vars), var.size) self.copy_vars.add(new_var) return new_var def isolate_phi_nodes_block(self): """ Init structures and virtually insert parallel copy before/after each phi node """ ircfg = self.ssa.graph for irblock in ircfg.blocks.itervalues(): if not irblock_has_phi(irblock): continue for dst, sources in irblock[0].iteritems(): assert sources.is_op('Phi') new_var = self.create_copy_var(dst) self.phi_new_var[dst] = new_var var_to_parents = get_phi_sources_parent_block( self.ssa.graph, irblock.loc_key, sources.args ) for src in sources.args: parents = var_to_parents[src] self.new_var_to_srcs_parents.setdefault(new_var, set()).update(parents) for parent in parents: self.phi_parent_sources.setdefault(dst, set()).add((parent, src)) self.phi_destinations[irblock.loc_key] = set(irblock[0]) def init_phis_merge_state(self): """ Generate trivial coalescing of phi variable and itself """ for phi_new_var in self.phi_new_var.itervalues(): self.merge_state.setdefault(phi_new_var, set([phi_new_var])) def order_ssa_var_dom(self): """Compute dominance order of each ssa variable""" ircfg = self.ssa.graph # compute dominator tree dominator_tree = ircfg.compute_dominator_tree(self.head) # variable -> Varinfo self.var_to_varinfo = {} # live_index can later be used to compare dominance of AssignBlocks live_index = 0 # walk in DFS over the dominator tree for loc_key in dominator_tree.walk_depth_first_forward(self.head): irblock = ircfg.blocks[loc_key] # Create live index for phi new vars # They do not exist in the graph yet, so index is set to None if irblock_has_phi(irblock): for dst in irblock[0]: if not dst.is_id(): continue new_var = self.phi_new_var[dst] self.var_to_varinfo[new_var] = Varinfo(live_index, loc_key, None) live_index += 1 # Create live index for remaining assignments for index, assignblk in enumerate(irblock): used = False for dst in assignblk: if not dst.is_id(): continue if dst in self.ssa.immutable_ids: # Will not be considered by the current algo, ignore it # (for instance, IRDst) continue assert dst not in self.var_to_varinfo self.var_to_varinfo[dst] = Varinfo(live_index, loc_key, index) used = True if used: live_index += 1 def ssa_def_dominates(self, node_a, node_b): """ Return living index order of @node_a and @node_b @node_a: Varinfo instance @node_b: Varinfo instance """ ret = self.var_to_varinfo[node_a].live_index <= self.var_to_varinfo[node_b].live_index return ret def merge_set_sort(self, merge_set): """ Return a sorted list of (live_index, var) from @merge_set in dominance order @merge_set: set of coalescing variables """ return sorted( (self.var_to_varinfo[var].live_index, var) for var in merge_set ) def ssa_def_is_live_at(self, node_a, node_b, parent): """ Return True if @node_a is live during @node_b definition If @parent is None, this is a liveness test for a post phi variable; Else, it is a liveness test for a variable source of the phi node @node_a: Varinfo instance @node_b: Varinfo instance @parent: Optional parent location of the phi source """ loc_key_b, index_b = self.var_to_varinfo[node_b].loc_key, self.var_to_varinfo[node_b].index if parent and index_b is None: index_b = 0 if node_a not in self.new_var_to_srcs_parents: # node_a is not a new var (it is a "classic" var) # -> use a basic liveness test liveness_b = self.cfg_liveness.blocks[loc_key_b].infos[index_b] return node_a in liveness_b.var_out for def_loc_key in self.new_var_to_srcs_parents[node_a]: # Consider node_a as defined at the end of its parents blocks # and compute liveness check accordingly if def_loc_key == parent: # Same path as node_a definition, so SSA ensure b cannot be live # on this path (otherwise, a Phi would already happen earlier) continue liveness_end_block = self.cfg_liveness.blocks[def_loc_key].infos[-1] if node_b in liveness_end_block.var_out: return True return False def merge_nodes_interfere(self, node_a, node_b, parent): """ Return True if @node_a and @node_b interfere @node_a: variable @node_b: variable @parent: Optional parent location of the phi source for liveness tests Interference check is: is x live at y definition (or reverse) TODO: add Value-based interference improvement """ if self.var_to_varinfo[node_a].live_index == self.var_to_varinfo[node_b].live_index: # Defined in the same AssignBlock -> interfere return True if self.var_to_varinfo[node_a].live_index < self.var_to_varinfo[node_b].live_index: return self.ssa_def_is_live_at(node_a, node_b, parent) return self.ssa_def_is_live_at(node_b, node_a, parent) def merge_sets_interfere(self, merge_a, merge_b, parent): """ Return True if no variable in @merge_a and @merge_b interferes. Implementation of "Algorithm 2: Check intersection in a set of variables" @merge_a: a dom ordered list of equivalent variables @merge_b: a dom ordered list of equivalent variables @parent: Optional parent location of the phi source for liveness tests """ if merge_a == merge_b: # No need to consider interference if equal return False merge_a_list = self.merge_set_sort(merge_a) merge_b_list = self.merge_set_sort(merge_b) dom = [] while merge_a_list or merge_b_list: if not merge_a_list: _, current = merge_b_list.pop(0) elif not merge_b_list: _, current = merge_a_list.pop(0) else: # compare live_indexes (standing for dominance) if merge_a_list[-1] < merge_b_list[-1]: _, current = merge_a_list.pop(0) else: _, current = merge_b_list.pop(0) while dom and not self.ssa_def_dominates(dom[-1], current): dom.pop() # Don't test node in same merge_set if ( # Is stack not empty? dom and # Trivial non-interference if dom.top() and current come # from the same merge set not (dom[-1] in merge_a and current in merge_a) and not (dom[-1] in merge_b and current in merge_b) and # Actually test for interference self.merge_nodes_interfere(current, dom[-1], parent) ): return True dom.append(current) return False def aggressive_coalesce_parallel_copy(self, parallel_copies, parent): """ Try to coalesce variables each dst/src couple together from @parallel_copies @parallel_copies: a dictionary representing dst/src parallel assignments. @parent: Optional parent location of the phi source for liveness tests """ for dst, src in parallel_copies.iteritems(): dst_merge = self.merge_state.setdefault(dst, set([dst])) src_merge = self.merge_state.setdefault(src, set([src])) if not self.merge_sets_interfere(dst_merge, src_merge, parent): dst_merge.update(src_merge) for node in dst_merge: self.merge_state[node] = dst_merge def aggressive_coalesce_block(self): """Try to coalesce phi var with their pre/post variables""" ircfg = self.ssa.graph # Run coalesce on the post phi parallel copy for irblock in ircfg.blocks.values(): if not irblock_has_phi(irblock): continue parallel_copies = {} for dst in self.phi_destinations[irblock.loc_key]: parallel_copies[dst] = self.phi_new_var[dst] self.aggressive_coalesce_parallel_copy(parallel_copies, None) # Run coalesce on the pre phi parallel copy # Stand for the virtual parallel copies at the end of Phi's block # parents parent_to_parallel_copies = {} for dst in irblock[0]: new_var = self.phi_new_var[dst] for parent, src in self.phi_parent_sources[dst]: parent_to_parallel_copies.setdefault(parent, {})[new_var] = src for parent, parallel_copies in parent_to_parallel_copies.iteritems(): self.aggressive_coalesce_parallel_copy(parallel_copies, parent) def get_best_merge_set_name(self, merge_set): """ For a given @merge_set, prefer an original SSA variable instead of a created copy. In other case, take a random name. @merge_set: set of equivalent expressions """ if not merge_set: raise RuntimeError("Merge set should not be empty") for var in merge_set: if var not in self.copy_vars: return var # Get random name return var def replace_merge_sets(self): """ In the graph, replace all variables from merge state by their representative variable """ replace = {} merge_sets = set() # Elect representative for merge sets merge_set_to_name = {} for merge_set in self.merge_state.itervalues(): frozen_merge_set = frozenset(merge_set) merge_sets.add(frozen_merge_set) var_name = self.get_best_merge_set_name(merge_set) merge_set_to_name[frozen_merge_set] = var_name # Generate replacement of variable by their representative for merge_set in merge_sets: var_name = merge_set_to_name[merge_set] merge_set = list(merge_set) for var in merge_set: replace[var] = var_name self.ssa.graph.simplify(lambda x: x.replace_expr(replace)) def remove_phi(self): """ Remove phi operators in @ifcfg @ircfg: IRDiGraph instance """ for irblock in self.ssa.graph.blocks.values(): assignblks = list(irblock) out = {} for dst, src in assignblks[0].iteritems(): if src.is_op('Phi'): assert set([dst]) == set(src.args) continue out[dst] = src assignblks[0] = AssignBlock(out, assignblks[0].instr) self.ssa.graph.blocks[irblock.loc_key] = IRBlock(irblock.loc_key, assignblks) def remove_assign_eq(self): """ Remove trivial expressions (a=a) in the current graph """ for irblock in self.ssa.graph.blocks.values(): assignblks = list(irblock) for i, assignblk in enumerate(assignblks): out = {} for dst, src in assignblk.iteritems(): if dst == src: continue out[dst] = src assignblks[i] = AssignBlock(out, assignblk.instr) self.ssa.graph.blocks[irblock.loc_key] = IRBlock(irblock.loc_key, assignblks)