# # Copyright (C) 2011 EADS France, Fabrice Desclaux # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License along # with this program; if not, write to the Free Software Foundation, Inc., # 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. # # These module implements Miasm IR components and basic operations related. # IR components are : # - ExprInt # - ExprId # - ExprAff # - ExprCond # - ExprMem # - ExprOp # - ExprSlice # - ExprCompose # import itertools from miasm2.expression.modint import * from miasm2.core.graph import DiGraph def visit_chk(visitor): "Function decorator launching callback on Expression visit" def wrapped(e, cb, test_visit=lambda x: True): if (test_visit is not None) and (not test_visit(e)): return e e_new = visitor(e, cb, test_visit) if e_new is None: return None e_new2 = cb(e_new) return e_new2 return wrapped # Hashing constants EXPRINT = 1 EXPRID = 2 EXPRAFF = 3 EXPRCOND = 4 EXPRMEM = 5 EXPROP = 6 EXPRSLICE = 5 EXPRCOMPOSE = 5 # Expression display class DiGraphExpr(DiGraph): """Enhanced graph for Expression diplay Expression are displayed as a tree with node and edge labeled with only relevant information""" def node2str(self, node): if isinstance(node, ExprOp): return node.op elif isinstance(node, ExprId): return node.name elif isinstance(node, ExprMem): return "@%d" % node.size elif isinstance(node, ExprCompose): return "{ %d }" % node.size elif isinstance(node, ExprCond): return "? %d" % node.size elif isinstance(node, ExprSlice): return "[%d:%d]" % (node.start, node.stop) return str(node) def edge2str(self, nfrom, nto): if isinstance(nfrom, ExprCompose): for i in nfrom.args: if i[0] == nto: return "[%s, %s]" % (i[1], i[2]) elif isinstance(nfrom, ExprCond): if nfrom.cond == nto: return "?" elif nfrom.src1 == nto: return "True" elif nfrom.src2 == nto: return "False" return "" # IR definitions class Expr(object): "Parent class for Miasm Expressions" is_term = False # Terminal expression is_simp = False # Expression already simplified is_canon = False # Expression already canonised is_eval = False # Expression already evalued def set_size(self, value): raise ValueError('size is not mutable') size = property(lambda self: self._size) def __init__(self, arg): self.arg = arg # Common operations def __str__(self): return str(self.arg) def __getitem__(self, i): if not isinstance(i, slice): raise TypeError("Expression: Bad slice: %s" % i) start, stop, step = i.indices(self.size) if step != 1: raise ValueError("Expression: Bad slice: %s" % i) return ExprSlice(self, start, stop) def get_size(self): raise DeprecationWarning("use X.size instead of X.get_size()") def get_r(self, mem_read=False, cst_read=False): return self.arg.get_r(mem_read, cst_read) def get_w(self): return self.arg.get_w() def __repr__(self): return "<%s_%d_0x%x>" % (self.__class__.__name__, self.size, id(self)) def __hash__(self): return self._hash def __eq__(self, a): if isinstance(a, Expr): return self._hash == a._hash else: return False def __ne__(self, a): return not self.__eq__(a) def __add__(self, a): return ExprOp('+', self, a) def __sub__(self, a): return ExprOp('+', self, ExprOp('-', a)) def __div__(self, a): return ExprOp('/', self, a) def __mod__(self, a): return ExprOp('%', self, a) def __mul__(self, a): return ExprOp('*', self, a) def __lshift__(self, a): return ExprOp('<<', self, a) def __rshift__(self, a): return ExprOp('>>', self, a) def __xor__(self, a): return ExprOp('^', self, a) def __or__(self, a): return ExprOp('|', self, a) def __and__(self, a): return ExprOp('&', self, a) def __neg__(self): return ExprOp('-', self) def __invert__(self): s = self.size return ExprOp('^', self, ExprInt(mod_size2uint[s](size2mask(s)))) def copy(self): "Deep copy of the expression" return self.visit(lambda x: x) def replace_expr(self, dct=None): """Find and replace sub expression using dct @dct: dictionnary of Expr -> * """ if dct is None: dct = {} def my_replace(e, dct): if e in dct: return dct[e] return e return self.visit(lambda e: my_replace(e, dct)) def canonize(self): "Canonize the Expression" def must_canon(e): # print 'test VISIT', e return not e.is_simp def my_canon(e): if e.is_simp: return e if isinstance(e, ExprOp): if e.is_associative(): # ((a+b) + c) => (a + b + c) args = [] for a in e.args: if isinstance(a, ExprOp) and e.op == a.op: args += a.args else: args.append(a) args = canonize_expr_list(args) new_e = ExprOp(e.op, *args) else: new_e = e elif isinstance(e, ExprCompose): new_e = ExprCompose(canonize_expr_list_compose(e.args)) else: new_e = e return new_e return self.visit(my_canon, must_canon) def msb(self): "Return the Most Significant Bit" s = self.size return self[s - 1:s] def zeroExtend(self, size): """Zero extend to size @size: int """ assert(self.size <= size) if self.size == size: return self ad_size = size - self.size n = ExprInt_fromsize(ad_size, 0) return ExprCompose([(self, 0, self.size), (n, self.size, size)]) def signExtend(self, size): """Sign extend to size @size: int """ assert(self.size <= size) if self.size == size: return self ad_size = size - self.size c = ExprCompose([(self, 0, self.size), (ExprCond(self.msb(), ExprInt_fromsize( ad_size, size2mask(ad_size)), ExprInt_fromsize(ad_size, 0)), self.size, size) ]) return c def graph_recursive(self, graph): """Recursive method used by graph @graph: miasm2.core.graph.DiGraph instance Update @graph instance to include sons This is an Abstract method""" raise ValueError("Abstract method") def graph(self): """Return a DiGraph instance standing for Expr tree Instance's display functions have been override for better visibility Wrapper on graph_recursive""" # Create recursively the graph graph = DiGraphExpr() self.graph_recursive(graph) return graph def set_mask(self, value): raise ValueError('mask is not mutable') mask = property(lambda self: ExprInt_fromsize(self.size, -1)) class ExprInt(Expr): """An ExprInt represent a constant in Miasm IR. Some use cases: - Constant 0x42 - Constant -0x30 - Constant 0x12345678 on 32bits """ def __init__(self, arg): """Create an ExprInt from a numpy int @arg: numpy int""" if not is_modint(arg): raise ValueError('arg must by numpy int! %s' % arg) self.arg = arg self._size = self.arg.size self._hash = self.myhash() def __get_int(self): "Return self integer representation" return int(self.arg & size2mask(self.size)) def __str__(self): if self.arg < 0: return str("-0x%X" % (- self.__get_int())) else: return str("0x%X" % self.__get_int()) def get_r(self, mem_read=False, cst_read=False): if cst_read: return set([self]) else: return set() def get_w(self): return set() def __contains__(self, e): return self == e def myhash(self): return hash((EXPRINT, self.arg, self.size)) def __repr__(self): return Expr.__repr__(self)[:-1] + " 0x%X>" % self.__get_int() @visit_chk def visit(self, cb, tv=None): return self def copy(self): return ExprInt(self.arg) def depth(self): return 1 def graph_recursive(self, graph): graph.add_node(self) class ExprId(Expr): """An ExprId represent an identifier in Miasm IR. Some use cases: - EAX register - 'start' offset - variable v1 """ def __init__(self, name, size=32, is_term=False): """Create an identifier @name: str, identifier's name @size: int, identifier's size @is_term: boolean, is the identifier a terminal expression ? """ self.name, self._size = name, size self.is_term = is_term self._hash = self.myhash() def __str__(self): return str(self.name) def get_r(self, mem_read=False, cst_read=False): return set([self]) def get_w(self): return set([self]) def __contains__(self, e): return self == e def myhash(self): # TODO XXX: hash size ?? return hash((EXPRID, self.name, self._size)) def __repr__(self): return Expr.__repr__(self)[:-1] + " %s>" % self.name @visit_chk def visit(self, cb, tv=None): return self def copy(self): return ExprId(self.name, self._size) def depth(self): return 1 def graph_recursive(self, graph): graph.add_node(self) class ExprAff(Expr): """An ExprAff represent an affection from an Expression to another one. Some use cases: - var1 <- 2 """ def __init__(self, dst, src): """Create an ExprAff for dst <- src @dst: Expr, affectation destination @src: Expr, affectation source """ if dst.size != src.size: raise ValueError( "sanitycheck: ExprAff args must have same size! %s" % ([(str(x), x.size) for x in [dst, src]])) if isinstance(dst, ExprSlice): # Complete the source with missing slice parts self.dst = dst.arg rest = [(ExprSlice(dst.arg, r[0], r[1]), r[0], r[1]) for r in dst.slice_rest()] all_a = [(src, dst.start, dst.stop)] + rest all_a.sort(key=lambda x: x[1]) self.src = ExprCompose(all_a) else: self.dst, self.src = dst, src self._hash = self.myhash() self._size = self.dst.size def __str__(self): return "%s = %s" % (str(self.dst), str(self.src)) def get_r(self, mem_read=False, cst_read=False): r = self.src.get_r(mem_read, cst_read) if isinstance(self.dst, ExprMem): r.update(self.dst.arg.get_r(mem_read, cst_read)) return r def get_w(self): if isinstance(self.dst, ExprMem): return set([self.dst]) # [memreg] else: return self.dst.get_w() def __contains__(self, e): return self == e or self.src.__contains__(e) or self.dst.__contains__(e) def myhash(self): return hash((EXPRAFF, self.dst._hash, self.src._hash)) # XXX /!\ for hackish expraff to slice def get_modified_slice(self): """Return an Expr list of extra expressions needed during the object instanciation""" dst = self.dst if not isinstance(self.src, ExprCompose): raise ValueError("Get mod slice not on expraff slice", str(self)) modified_s = [] for x in self.src.args: if (not isinstance(x[0], ExprSlice) or x[0].arg != dst or x[1] != x[0].start or x[2] != x[0].stop): # If x is not the initial expression modified_s.append(x) return modified_s @visit_chk def visit(self, cb, tv=None): dst, src = self.dst.visit(cb, tv), self.src.visit(cb, tv) if dst == self.dst and src == self.src: return self else: return ExprAff(dst, src) def copy(self): return ExprAff(self.dst.copy(), self.src.copy()) def depth(self): return max(self.src.depth(), self.dst.depth()) + 1 def graph_recursive(self, graph): graph.add_node(self) for a in [self.src, self.dst]: a.graph_recursive(graph) graph.add_uniq_edge(self, a) class ExprCond(Expr): """An ExprCond stand for a condition on an Expr Use cases: - var1 < var2 - min(var1, var2) - if (cond) then ... else ... """ def __init__(self, cond, src1, src2): """Create an ExprCond @cond: Expr, condition @src1: Expr, value if condition is evaled to not zero @src2: Expr, value if condition is evaled zero """ self.cond, self.src1, self.src2 = cond, src1, src2 assert(src1.size == src2.size) self._hash = self.myhash() self._size = self.src1.size def __str__(self): return "%s?(%s,%s)" % (str(self.cond), str(self.src1), str(self.src2)) def get_r(self, mem_read=False, cst_read=False): out_src1 = self.src1.get_r(mem_read, cst_read) out_src2 = self.src2.get_r(mem_read, cst_read) return self.cond.get_r(mem_read, cst_read).union(out_src1).union(out_src2) def get_w(self): return set() def __contains__(self, e): return (self == e or self.cond.__contains__(e) or self.src1.__contains__(e) or self.src2.__contains__(e)) def myhash(self): return hash((EXPRCOND, self.cond._hash, self.src1._hash, self.src2._hash)) @visit_chk def visit(self, cb, tv=None): cond = self.cond.visit(cb, tv) src1 = self.src1.visit(cb, tv) src2 = self.src2.visit(cb, tv) if cond == self.cond and \ src1 == self.src1 and \ src2 == self.src2: return self return ExprCond(cond, src1, src2) def copy(self): return ExprCond(self.cond.copy(), self.src1.copy(), self.src2.copy()) def depth(self): return max(self.cond.depth(), self.src1.depth(), self.src2.depth()) + 1 def graph_recursive(self, graph): graph.add_node(self) for a in [self.cond, self.src1, self.src2]: a.graph_recursive(graph) graph.add_uniq_edge(self, a) class ExprMem(Expr): """An ExprMem stand for a memory access Use cases: - Memory read - Memory write """ def __init__(self, arg, size=32): """Create an ExprMem @arg: Expr, memory access address @size: int, memory access size """ if not isinstance(arg, Expr): raise ValueError( 'ExprMem: arg must be an Expr (not %s)' % type(arg)) self.arg, self._size = arg, size self._hash = self.myhash() def __str__(self): return "@%d[%s]" % (self._size, str(self.arg)) def get_r(self, mem_read=False, cst_read=False): if mem_read: return set(self.arg.get_r(mem_read, cst_read).union(set([self]))) else: return set([self]) def get_w(self): return set([self]) # [memreg] def __contains__(self, e): return self == e or self.arg.__contains__(e) def myhash(self): return hash((EXPRMEM, self.arg._hash, self._size)) @visit_chk def visit(self, cb, tv=None): arg = self.arg.visit(cb, tv) if arg == self.arg: return self return ExprMem(arg, self._size) def copy(self): arg = self.arg.copy() return ExprMem(arg, size=self._size) def is_op_segm(self): return isinstance(self.arg, ExprOp) and self.arg.op == 'segm' def depth(self): return self.arg.depth() + 1 def graph_recursive(self, graph): graph.add_node(self) self.arg.graph_recursive(graph) graph.add_uniq_edge(self, self.arg) class ExprOp(Expr): """An ExprOp stand for an operation between Expr Use cases: - var1 XOR var2 - var1 + var2 + var3 - parity bit(var1) """ def __init__(self, op, *args): """Create an ExprOp @op: str, operation @*args: Expr, operand list """ sizes = set([x.size for x in args]) if None not in sizes and len(sizes) != 1: # Special cases : operande sizes can differ if op not in ["segm"]: raise ValueError( "sanitycheck: ExprOp args must have same size! %s" % ([(str(x), x.size) for x in args])) if not isinstance(op, str): raise ValueError("ExprOp: 'op' argument must be a string") self.op, self.args = op, tuple(args) self._hash = self.myhash() # Set size for special cases if self.op in [ '==', 'parity', 'fcom_c0', 'fcom_c1', 'fcom_c2', 'fcom_c3', "access_segment_ok", "load_segment_limit_ok", "bcdadd_cf", "ucomiss_zf", "ucomiss_pf", "ucomiss_cf"]: sz = 1 elif self.op in ['mem_16_to_double', 'mem_32_to_double', 'mem_64_to_double', 'mem_80_to_double', 'int_16_to_double', 'int_32_to_double', 'int_64_to_double', 'int_80_to_double']: sz = 64 elif self.op in ['double_to_mem_16', 'double_to_int_16', 'double_trunc_to_int_16']: sz = 16 elif self.op in ['double_to_mem_32', 'double_to_int_32', 'double_trunc_to_int_32']: sz = 32 elif self.op in ['double_to_mem_64', 'double_to_int_64', 'double_trunc_to_int_64']: sz = 64 elif self.op in ['double_to_mem_80', 'double_to_int_80', 'double_trunc_to_int_80']: sz = 80 elif self.op in ['segm']: sz = self.args[1].size else: if None in sizes: sz = None else: # All arguments have the same size sz = list(sizes)[0] self._size = sz def __str__(self): if self.is_associative(): return '(' + self.op.join([str(x) for x in self.args]) + ')' if len(self.args) == 2: return '(' + str(self.args[0]) + \ ' ' + self.op + ' ' + str(self.args[1]) + ')' elif len(self.args) > 2: return self.op + '(' + ', '.join([str(x) for x in self.args]) + ')' else: return reduce(lambda x, y: x + ' ' + str(y), self.args, '(' + str(self.op)) + ')' def get_r(self, mem_read=False, cst_read=False): return reduce(lambda x, y: x.union(y.get_r(mem_read, cst_read)), self.args, set()) def get_w(self): raise ValueError('op cannot be written!', self) def __contains__(self, e): if self == e: return True for a in self.args: if a.__contains__(e): return True return False def myhash(self): h_hargs = [x._hash for x in self.args] return hash((EXPROP, self.op, tuple(h_hargs))) def is_associative(self): "Return True iff current operation is associative" return (self.op in ['+', '*', '^', '&', '|']) def is_commutative(self): "Return True iff current operation is commutative" return (self.op in ['+', '*', '^', '&', '|']) @visit_chk def visit(self, cb, tv=None): args = [a.visit(cb, tv) for a in self.args] modified = any([x[0] != x[1] for x in zip(self.args, args)]) if modified: return ExprOp(self.op, *args) return self def copy(self): args = [a.copy() for a in self.args] return ExprOp(self.op, *args) def depth(self): depth = [a.depth() for a in self.args] return max(depth) + 1 def graph_recursive(self, graph): graph.add_node(self) for a in self.args: a.graph_recursive(graph) graph.add_uniq_edge(self, a) class ExprSlice(Expr): def __init__(self, arg, start, stop): assert(start < stop) self.arg, self.start, self.stop = arg, start, stop self._hash = self.myhash() self._size = self.stop - self.start def __str__(self): return "%s[%d:%d]" % (str(self.arg), self.start, self.stop) def get_r(self, mem_read=False, cst_read=False): return self.arg.get_r(mem_read, cst_read) def get_w(self): return self.arg.get_w() def __contains__(self, e): if self == e: return True return self.arg.__contains__(e) def myhash(self): return hash((EXPRSLICE, self.arg._hash, self.start, self.stop)) @visit_chk def visit(self, cb, tv=None): arg = self.arg.visit(cb, tv) if arg == self.arg: return self return ExprSlice(arg, self.start, self.stop) def copy(self): return ExprSlice(self.arg.copy(), self.start, self.stop) def depth(self): return self.arg.depth() + 1 def slice_rest(self): "Return the completion of the current slice" size = self.arg.size if self.start >= size or self.stop > size: raise ValueError('bad slice rest %s %s %s' % (size, self.start, self.stop)) if self.start == self.stop: return [(0, size)] rest = [] if self.start != 0: rest.append((0, self.start)) if self.stop < size: rest.append((self.stop, size)) return rest def graph_recursive(self, graph): graph.add_node(self) self.arg.graph_recursive(graph) graph.add_uniq_edge(self, self.arg) class ExprCompose(Expr): """ Compose is like a hambuger. It's arguments are tuple of: (Expression, start, stop) start and stop are intergers, determining Expression position in the compose. Burger Example: ExprCompose([(salad, 0, 3), (cheese, 3, 10), (beacon, 10, 16)]) In the example, salad.size == 3. """ def __init__(self, args): """Create an ExprCompose @args: tuple(Expr, int, int) """ for e, start, stop in args: if e.size != stop - start: raise ValueError( "sanitycheck: ExprCompose args must have correct size!" + " %r %r %r" % (e, e.size, stop - start)) # Transform args to lists o = [] for e, a, b in args: assert(a >= 0 and b >= 0) o.append(tuple([e, a, b])) self.args = tuple(o) self._hash = self.myhash() self._size = max([x[2] for x in self.args]) - min([x[1] for x in self.args]) def __str__(self): return '{' + ', '.join(['%s,%d,%d' % (str(x[0]), x[1], x[2]) for x in self.args]) + '}' def get_r(self, mem_read=False, cst_read=False): return reduce(lambda x, y: x.union(y[0].get_r(mem_read, cst_read)), self.args, set()) def get_w(self): return reduce(lambda x, y: x.union(y[0].get_r(mem_read, cst_read)), self.args, set()) def __contains__(self, e): if self == e: return True for a in self.args: if a == e: return True if a[0].__contains__(e): return True return False def myhash(self): h_args = [EXPRCOMPOSE] + [(x[0]._hash, x[1], x[2]) for x in self.args] return hash(tuple(h_args)) @visit_chk def visit(self, cb, tv=None): args = [(a[0].visit(cb, tv), a[1], a[2]) for a in self.args] modified = any([x[0] != x[1] for x in zip(self.args, args)]) if modified: return ExprCompose(args) return self def copy(self): args = [(a[0].copy(), a[1], a[2]) for a in self.args] return ExprCompose(args) def depth(self): depth = [a[0].depth() for a in self.args] return max(depth) + 1 def graph_recursive(self, graph): graph.add_node(self) for a in self.args: a[0].graph_recursive(graph) graph.add_uniq_edge(self, a[0]) # Expression order for comparaison expr_order_dict = {ExprId: 1, ExprCond: 2, ExprMem: 3, ExprOp: 4, ExprSlice: 5, ExprCompose: 7, ExprInt: 8, } def compare_exprs_compose(e1, e2): # Sort by start bit address, then expr, then stop but address x = cmp(e1[1], e2[1]) if x: return x x = compare_exprs(e1[0], e2[0]) if x: return x x = cmp(e1[2], e2[2]) return x def compare_expr_list_compose(l1_e, l2_e): # Sort by list elements in incremental order, then by list size for i in xrange(min(len(l1_e), len(l2_e))): x = compare_exprs_compose(l1_e[i], l2_e[i]) if x: return x return cmp(len(l1_e), len(l2_e)) def compare_expr_list(l1_e, l2_e): # Sort by list elements in incremental order, then by list size for i in xrange(min(len(l1_e), len(l2_e))): x = compare_exprs(l1_e[i], l2_e[i]) if x: return x return cmp(len(l1_e), len(l2_e)) def compare_exprs(e1, e2): """Compare 2 expressions for canonization @e1: Expr @e2: Expr 0 => == 1 => e1 > e2 -1 => e1 < e2 """ c1 = e1.__class__ c2 = e2.__class__ if c1 != c2: return cmp(expr_order_dict[c1], expr_order_dict[c2]) if e1 == e2: return 0 if c1 == ExprInt: return cmp(e1.arg, e2.arg) elif c1 == ExprId: x = cmp(e1.name, e2.name) if x: return x return cmp(e1._size, e2._size) elif c1 == ExprAff: raise NotImplementedError( "Comparaison from an ExprAff not yet implemented") elif c2 == ExprCond: x = compare_exprs(e1.cond, e2.cond) if x: return x x = compare_exprs(e1.src1, e2.src1) if x: return x x = compare_exprs(e1.src2, e2.src2) return x elif c1 == ExprMem: x = compare_exprs(e1.arg, e2.arg) if x: return x return cmp(e1._size, e2._size) elif c1 == ExprOp: if e1.op != e2.op: return cmp(e1.op, e2.op) return compare_expr_list(e1.args, e2.args) elif c1 == ExprSlice: x = compare_exprs(e1.arg, e2.arg) if x: return x x = cmp(e1.start, e2.start) if x: return x x = cmp(e1.stop, e2.stop) return x elif c1 == ExprCompose: return compare_expr_list_compose(e1.args, e2.args) raise NotImplementedError( "Comparaison between %r %r not implemented" % (e1, e2)) def canonize_expr_list(l): l = list(l) l.sort(cmp=compare_exprs) return l def canonize_expr_list_compose(l): l = list(l) l.sort(cmp=compare_exprs_compose) return l # Generate ExprInt with common size def ExprInt1(i): return ExprInt(uint1(i)) def ExprInt8(i): return ExprInt(uint8(i)) def ExprInt16(i): return ExprInt(uint16(i)) def ExprInt32(i): return ExprInt(uint32(i)) def ExprInt64(i): return ExprInt(uint64(i)) def ExprInt_from(e, i): "Generate ExprInt with size equal to expression" return ExprInt(mod_size2uint[e.size](i)) def ExprInt_fromsize(size, i): "Generate ExprInt with a given size" return ExprInt(mod_size2uint[size](i)) def get_expr_ids_visit(e, ids): if isinstance(e, ExprId): ids.add(e) return e def get_expr_ids(e): ids = set() e.visit(lambda x: get_expr_ids_visit(x, ids)) return ids def test_set(e, v, tks, result): """Test if v can correspond to e. If so, update the context in result. Otherwise, return False @e : Expr @v : Expr @tks : list of ExprId, available jokers @result : dictionnary of ExprId -> Expr, current context """ if not v in tks: return e == v if v in result and result[v] != e: return False result[v] = e return result def MatchExpr(e, m, tks, result=None): """Try to match m expression with e expression with tks jokers. Result is output dictionnary with matching joker values. @e : Expr to test @m : Targetted Expr @tks : list of ExprId, available jokers @result : dictionnary of ExprId -> Expr, output matching context """ if result is None: result = {} if m in tks: # m is a Joker return test_set(e, m, tks, result) if isinstance(e, ExprInt): return test_set(e, m, tks, result) elif isinstance(e, ExprId): return test_set(e, m, tks, result) elif isinstance(e, ExprOp): # e need to be the same operation than m if not isinstance(m, ExprOp): return False if e.op != m.op: return False if len(e.args) != len(m.args): return False # Perform permutation only if the current operation is commutative if e.is_commutative(): permutations = itertools.permutations(e.args) else: permutations = [e.args] # For each permutations of arguments for permut in permutations: good = True # We need to use a copy of result to not override it myresult = dict(result) for a1, a2 in zip(permut, m.args): r = MatchExpr(a1, a2, tks, myresult) # If the current permutation do not match EVERY terms if r is False: good = False break if good is True: # We found a possibility for k, v in myresult.items(): # Updating result in place (to keep pointer in recursion) result[k] = v return result return False # Recursive tests elif isinstance(e, ExprMem): if not isinstance(m, ExprMem): return False if e._size != m._size: return False return MatchExpr(e.arg, m.arg, tks, result) elif isinstance(e, ExprSlice): if not isinstance(m, ExprSlice): return False if e.start != m.start or e.stop != m.stop: return False return MatchExpr(e.arg, m.arg, tks, result) elif isinstance(e, ExprCond): if not isinstance(m, ExprCond): return False r = MatchExpr(e.cond, m.cond, tks, result) if r is False: return False r = MatchExpr(e.src1, m.src1, tks, result) if r is False: return False r = MatchExpr(e.src2, m.src2, tks, result) if r is False: return False return result elif isinstance(e, ExprCompose): if not isinstance(m, ExprCompose): return False for a1, a2 in zip(e.args, m.args): if a1[1] != a2[1] or a1[2] != a2[2]: return False r = MatchExpr(a1[0], a2[0], tks, result) if r is False: return False return result else: raise NotImplementedError("MatchExpr: Unknown type: %s" % type(e)) def SearchExpr(e, m, tks, result=None): # TODO XXX: to test if result is None: result = set() def visit_search(e, m, tks, result): r = {} MatchExpr(e, m, tks, r) if r: result.add(tuple(r.items())) return e e.visit(lambda x: visit_search(x, m, tks, result)) def get_rw(exprs): o_r = set() o_w = set() for e in exprs: o_r.update(e.get_r(mem_read=True)) for e in exprs: o_w.update(e.get_w()) return o_r, o_w def get_list_rw(exprs, mem_read=False, cst_read=True): """ return list of read/write reg/cst/mem for each expressions """ list_rw = [] # cst_num = 0 for e in exprs: o_r = set() o_w = set() # get r/w o_r.update(e.get_r(mem_read=mem_read, cst_read=cst_read)) if isinstance(e.dst, ExprMem): o_r.update(e.dst.arg.get_r(mem_read=mem_read, cst_read=cst_read)) o_w.update(e.get_w()) # each cst is indexed o_r_rw = set() for r in o_r: # if isinstance(r, ExprInt): # r = ExprOp('cst_%d'%cst_num, r) # cst_num += 1 o_r_rw.add(r) o_r = o_r_rw list_rw.append((o_r, o_w)) return list_rw def get_expr_ops(e): def visit_getops(e, out=None): if out is None: out = set() if isinstance(e, ExprOp): out.add(e.op) return e ops = set() e.visit(lambda x: visit_getops(x, ops)) return ops def get_expr_mem(e): def visit_getmem(e, out=None): if out is None: out = set() if isinstance(e, ExprMem): out.add(e) return e ops = set() e.visit(lambda x: visit_getmem(x, ops)) return ops