1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
|
Reverse engineering framework in Python
What is Miasm?
==============
Miasm is a free and open source (GPLv2) reverse engineering framework.
Miasm aims to analyze / modify / generate binary programs. Here is
a non exhaustive list of features:
* Opening / modifying / generating PE / ELF 32 / 64 LE / BE using Elfesteem
* Assembling / Disassembling X86 / ARM / MIPS / SH4 / MSP430
* Representing assembly semantic using intermediate language
* Emulating using JIT (dynamic code analysis, unpacking, ...)
* Expression simplification for automatic de-obfuscation
* ...
Basic examples
==============
Assembling / Disassembling
--------------------------
Import Miasm x86 architecture:
```
>>> from miasm2.arch.x86.arch import mn_x86
```
Assemble a line:
```
>>> l = mn_x86.fromstring('XOR ECX, ECX', 32)
>>> print l
XOR ECX, ECX
>>> mn_x86.asm(l)
['1\xc9', '3\xc9', 'g1\xc9', 'g3\xc9']
```
Modify an operand:
```
>>> l.args[0] = mn_x86.regs.EAX
>>> print l
XOR EAX, ECX
>>> a = mn_x86.asm(l)
>>> print a
['1\xc8', '3\xc1', 'g1\xc8', 'g3\xc1']
```
Disassemble the result:
```
>>> print mn_x86.dis(a[0], 32)
XOR EAX, ECX
```
Using `Machine` abstraction:
```
>>> from miasm2.analysis.machine import Machine
>>> mn = Machine('x86_32').mn
>>> print mn.dis('\x33\x30', 32)
XOR ESI, DWORD PTR [EAX]
```
For Mips:
```
>>> mn = Machine('mips32b').mn
>>> print mn.dis('97A30020'.decode('hex'), "b")
LHU V1, 0x20(SP)
```
Intermediate representation
---------------------------
Create an instruction:
```
>>> machine = Machine('arml')
>>> l = machine.mn.dis('002088e0'.decode('hex'), 'l')
>>> print l
ADD R2, R8, R0
```
Create an intermediate representation (IR) object:
```
>>> ira = machine.ira()
```
Add instruction to the pool:
```
>>> ira.add_instr(l)
```
Print current pool:
```
>>> for lbl, b in ira.blocs.items():
... print b
...
loc_0000000000000000:0x00000000
R2 = (R8+R0)
IRDst = loc_0000000000000004:0x00000004
```
Working with IR, for instance by getting side effects:
```
>>> from miasm2.expression.expression import get_rw
>>> for lbl, b in ira.blocs.items():
... for irs in b.irs:
... o_r, o_w = get_rw(irs)
... print 'read: ', [str(x) for x in o_r]
... print 'written:', [str(x) for x in o_w]
... print
...
read: ['R8', 'R0']
written: ['R2']
read: ['loc_0000000000000004:0x00000004']
written: ['IRDst']
```
Emulation
---------
Giving a shellcode:
```
00000000 8d4904 lea ecx, [ecx+0x4]
00000003 8d5b01 lea ebx, [ebx+0x1]
00000006 80f901 cmp cl, 0x1
00000009 7405 jz 0x10
0000000b 8d5bff lea ebx, [ebx-1]
0000000e eb03 jmp 0x13
00000010 8d5b01 lea ebx, [ebx+0x1]
00000013 89d8 mov eax, ebx
00000015 c3 ret
>>> s = '\x8dI\x04\x8d[\x01\x80\xf9\x01t\x05\x8d[\xff\xeb\x03\x8d[\x01\x89\xd8\xc3'
```
Import the shellcode thanks to the `Container` abstraction:
```
>>> from miasm2.analysis.binary import Container
>>> c = Container.from_string(s)
>>> c
<miasm2.analysis.binary.ContainerUnknown object at 0x7f34cefe6090>
```
Disassembling the shellcode at address `0`:
```
>>> from miasm2.analysis.machine import Machine
>>> machine = Machine('x86_32')
>>> mdis = machine.dis_engine(c.bin_stream)
>>> blocs = mdis.dis_multibloc(0)
>>> for b in blocs:
... print b
...
loc_0000000000000000:0x00000000
LEA ECX, DWORD PTR [ECX+0x4]
LEA EBX, DWORD PTR [EBX+0x1]
CMP CL, 0x1
JZ loc_0000000000000010:0x00000010
-> c_next:loc_000000000000000B:0x0000000b c_to:loc_0000000000000010:0x00000010
loc_0000000000000010:0x00000010
LEA EBX, DWORD PTR [EBX+0x1]
-> c_next:loc_0000000000000013:0x00000013
loc_000000000000000B:0x0000000b
LEA EBX, DWORD PTR [EBX+0xFFFFFFFF]
JMP loc_0000000000000013:0x00000013
-> c_to:loc_0000000000000013:0x00000013
loc_0000000000000013:0x00000013
MOV EAX, EBX
RET
>>>
```
Initializing the Jit engine with a stack:
```
>>> jitter = machine.jitter(jit_type='python')
>>> jitter.init_stack()
```
Add the shellcode in an arbitrary memory location:
```
>>> run_addr = 0x40000000
>>> myjit.vm.add_memory_page(run_addr, PAGE_READ | PAGE_WRITE, s)
```
Create a sentinelle to catch the return of the shellcode:
```
def code_sentinelle(jitter):
jitter.run = False
jitter.pc = 0
return True
>>> jitter.add_breakpoint(0x1337beef, code_sentinelle)
>>> jitter.push_uint32_t(0x1337beef)
```
Active logs:
```
>>> jitter.jit.log_regs = True
>>> jitter.jit.log_mn = True
```
Run at arbitrary address:
```
>>> jitter.continue_run()
RAX 0000000000000000 RBX 0000000000000000 RCX 0000000000000000 RDX 0000000000000000
RSI 0000000000000000 RDI 0000000000000000 RSP 000000000123FFF8 RBP 0000000000000000
zf 0000000000000000 nf 0000000000000000 of 0000000000000000 cf 0000000000000000
RIP 0000000040000000
40000000 LEA ECX, DWORD PTR [ECX+0x4]
RAX 0000000000000000 RBX 0000000000000000 RCX 0000000000000004 RDX 0000000000000000
RSI 0000000000000000 RDI 0000000000000000 RSP 000000000123FFF8 RBP 0000000000000000
zf 0000000000000000 nf 0000000000000000 of 0000000000000000 cf 0000000000000000
....
4000000e JMP loc_0000000040000013:0x40000013
RAX 0000000000000000 RBX 0000000000000000 RCX 0000000000000004 RDX 0000000000000000
RSI 0000000000000000 RDI 0000000000000000 RSP 000000000123FFF8 RBP 0000000000000000
zf 0000000000000000 nf 0000000000000000 of 0000000000000000 cf 0000000000000000
RIP 0000000040000013
40000013 MOV EAX, EBX
RAX 0000000000000000 RBX 0000000000000000 RCX 0000000000000004 RDX 0000000000000000
RSI 0000000000000000 RDI 0000000000000000 RSP 000000000123FFF8 RBP 0000000000000000
zf 0000000000000000 nf 0000000000000000 of 0000000000000000 cf 0000000000000000
RIP 0000000040000013
40000015 RET
>>>
```
Interacting with the jitter:
```
>>> jitter.vm.dump_memory_page_pool()
ad 1230000 size 10000 RW_ hpad 0x2854b40
ad 40000000 size 16 RW_ hpad 0x25e0ed0
>>> hex(jitter.cpu.EAX)
'0x0L'
>>> jitter.cpu.ESI = 12
```
Symbolic execution
------------------
Initializing the IR pool:
```
>>> ira = machine.ira()
>>> for b in blocs:
... ira.add_bloc(b)
...
```
Initializing the engine with default symbolic values:
```
>>> from miasm2.ir.symbexec import symbexec
>>> sb = symbexec(ira, machine.mn.regs.regs_init)
```
Launching the execution:
```
>>> symbolic_pc = sb.emul_ir_blocs(ira, 0)
>>> print symbolic_pc
((ECX_init+0x4)[0:8]+0xFF)?(0xB,0x10)
```
Same, with step logs (only changes are displayed):
```
>>> sb = symbexec(ira, machine.mn.regs.regs_init)
>>> symbolic_pc = sb.emul_ir_blocs(ira, 0, step=True)
________________________________________________________________________________
ECX (ECX_init+0x4)
________________________________________________________________________________
ECX (ECX_init+0x4)
EBX (EBX_init+0x1)
________________________________________________________________________________
zf ((ECX_init+0x4)[0:8]+0xFF)?(0x0,0x1)
nf ((ECX_init+0x4)[0:8]+0xFF)[7:8]
pf (parity ((ECX_init+0x4)[0:8]+0xFF))
of ((((ECX_init+0x4)[0:8]+0xFF)^(ECX_init+0x4)[0:8])&((ECX_init+0x4)[0:8]^0x1))[7:8]
cf (((((ECX_init+0x4)[0:8]+0xFF)^(ECX_init+0x4)[0:8])&((ECX_init+0x4)[0:8]^0x1))^((ECX_init+0x4)[0:8]+0xFF)^(ECX_init+0x4)[0:8]^0x1)[7:8]
af (((ECX_init+0x4)[0:8]+0xFF)&0x10)?(0x1,0x0)
ECX (ECX_init+0x4)
EBX (EBX_init+0x1)
________________________________________________________________________________
IRDst ((ECX_init+0x4)[0:8]+0xFF)?(0xB,0x10)
zf ((ECX_init+0x4)[0:8]+0xFF)?(0x0,0x1)
nf ((ECX_init+0x4)[0:8]+0xFF)[7:8]
pf (parity ((ECX_init+0x4)[0:8]+0xFF))
of ((((ECX_init+0x4)[0:8]+0xFF)^(ECX_init+0x4)[0:8])&((ECX_init+0x4)[0:8]^0x1))[7:8]
cf (((((ECX_init+0x4)[0:8]+0xFF)^(ECX_init+0x4)[0:8])&((ECX_init+0x4)[0:8]^0x1))^((ECX_init+0x4)[0:8]+0xFF)^(ECX_init+0x4)[0:8]^0x1)[7:8]
af (((ECX_init+0x4)[0:8]+0xFF)&0x10)?(0x1,0x0)
EIP ((ECX_init+0x4)[0:8]+0xFF)?(0xB,0x10)
ECX (ECX_init+0x4)
EBX (EBX_init+0x1)
```
Retry execution with a concrete ECX. Here, the symbolic / concolic execution reach the shellcode's end:
```
>>> from miasm2.expression.expression import ExprInt32
>>> sb.symbols[machine.mn.regs.ECX] = ExprInt32(-3)
>>> symbolic_pc = sb.emul_ir_blocs(ira, 0, step=True)
________________________________________________________________________________
ECX 0x1
________________________________________________________________________________
ECX 0x1
EBX (EBX_init+0x1)
________________________________________________________________________________
zf 0x1
nf 0x0
pf 0x1
of 0x0
cf 0x0
af 0x0
ECX 0x1
EBX (EBX_init+0x1)
________________________________________________________________________________
IRDst 0x10
zf 0x1
nf 0x0
pf 0x1
of 0x0
cf 0x0
af 0x0
EIP 0x10
ECX 0x1
EBX (EBX_init+0x1)
________________________________________________________________________________
IRDst 0x10
zf 0x1
nf 0x0
pf 0x1
of 0x0
cf 0x0
af 0x0
EIP 0x10
ECX 0x1
EBX (EBX_init+0x2)
________________________________________________________________________________
IRDst 0x13
zf 0x1
nf 0x0
pf 0x1
of 0x0
cf 0x0
af 0x0
EIP 0x10
ECX 0x1
EBX (EBX_init+0x2)
________________________________________________________________________________
IRDst 0x13
zf 0x1
nf 0x0
pf 0x1
of 0x0
cf 0x0
af 0x0
EIP 0x10
EAX (EBX_init+0x2)
ECX 0x1
EBX (EBX_init+0x2)
________________________________________________________________________________
IRDst @32[ESP_init]
zf 0x1
nf 0x0
pf 0x1
of 0x0
cf 0x0
af 0x0
EIP @32[ESP_init]
EAX (EBX_init+0x2)
ECX 0x1
EBX (EBX_init+0x2)
ESP (ESP_init+0x4)
>>> print symbolic_pc
@32[ESP_init]
>>> sb.dump_id()
IRDst @32[ESP_init]
zf 0x1
nf 0x0
pf 0x1
of 0x0
cf 0x0
af 0x0
EIP @32[ESP_init]
EAX (EBX_init+0x2)
ECX 0x1
EBX (EBX_init+0x2)
ESP (ESP_init+0x4)
```
How does it work?
=================
Miasm embeds its own disassembler, intermediate language and
instruction semantic. It is written in Python.
To emulate code, it uses LibTCC, LLVM or Python to JIT the intermediate
representation. It can emulate shellcodes and all or parts of binaries. Python
callbacks can be executed to interact with the execution, for instance to
emulate library functions effects.
Documentation
=============
TODO
Obtaining Miasm
===============
* Clone the repository: [Miasm on GitHub](https://github.com/serpilliere/miasm)
* Get one of the Docker images at [Docker Hub](https://registry.hub.docker.com/u/miasm/)
Software requirements
---------------------
Miasm uses:
* LibTCC [tinycc](http://repo.or.cz/w/tinycc.git) to JIT code for emulation mode. See below
* or LLVM v3.2 with python-llvm, see below
* python-pyparsing
* python-dev
* elfesteem from [Elfesteem](http://code.google.com/p/elfesteem/)
Configuration
-------------
* Install elfesteem
```
hg clone https://code.google.com/p/elfesteem/
cd elfesteem_directory
python setup.py build
sudo python setup.py install
```
* To use the jitter, TCC or LLVM is recommended
* LibTCC needs a little fix in the `Makefile`:
* remove libtcc-dev from the system to avoid conflicts
* clone [tinycc release_0_9_26](http://repo.or.cz/w/tinycc.git/snapshot/d5e22108a0dc48899e44a158f91d5b3215eb7fe6.tar.gz)
* edit the `Makefile`
* add option `-fPIC` to the `CFLAGS` definition: `CFLAGS+= -fPIC`
```
#
# Tiny C Compiler Makefile
#
TOP ?= .
include $(TOP)/config.mak
VPATH = $(top_srcdir)
CPPFLAGS = -I$(TOP) # for config.h
# ADD NEXT LINE:
CFLAGS+= -fPIC
...
```
* `./configure && make && make install`
* LLVM
* Debian (testing/unstable): install python-llvm
* Debian stable/Ubuntu/Kali/whatever: install from [llvmpy](http://www.llvmpy.org/)
* Windows: python-llvm is not supported :/
* Build and install Miasm:
```
$ cd miasm_directory
$ python setup.py build
$ sudo python setup.py install
```
If something goes wrong during one of the jitter modules compilation, Miasm will
skip the error and disable the corresponding module (see the compilation
output).
Testing
=======
Miasm comes with a set of regression tests. To run all of them:
```
cd miasm_directory/test
python test_all.py
```
Some options can be specified:
* Mono threading: `-m`
* Code coverage instrumentation: `-c`
* Only fast tests: `-t long` (excludes the long tests)
Misc
====
* Man, does miasm has a link with rr0d?
* Yes! crappy code and uggly documentation.
|