1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
|
"""Provide dependency graph"""
import itertools
from collections import deque
from UserDict import IterableUserDict
try:
import z3
except ImportError:
pass
import miasm2.expression.expression as m2_expr
from miasm2.core.graph import DiGraph
from miasm2.core.asmbloc import asm_label, expr_is_label
from miasm2.expression.simplifications import expr_simp
from miasm2.ir.symbexec import symbexec
from miasm2.ir.ir import irbloc
from miasm2.ir.translators import Translator
class DependencyNode(object):
"""Node elements of a DependencyGraph
A dependency node stands for the dependency on the @element at line number
@line_nb in the IRblock named @label, *before* the evaluation of this
line.
"""
def __init__(self, label, element, line_nb, step, modifier=False):
"""Create a dependency node with:
@label: asm_label instance
@element: Expr instance
@line_nb: int
@modifier: bool
"""
self._label = label
self._element = element
self._line_nb = line_nb
self._modifier = modifier
self._step = step
self._nostep_repr = (self._label, self._line_nb, self._element)
self._hash = hash(
(self._label, self._element, self._line_nb, self._step))
def __hash__(self):
"""Returns a hash of @self to uniquely identify @self"""
return self._hash
def __eq__(self, depnode):
"""Returns True if @self and @depnode are equals.
The attribute 'step' is not considered in the comparison.
"""
if not isinstance(depnode, self.__class__):
return False
return (self.label == depnode.label and
self.element == depnode.element and
self.line_nb == depnode.line_nb and
self.step == depnode.step)
def __cmp__(self, node):
"""Compares @self with @node. The step attribute is not taken into
account in the comparison.
"""
if not isinstance(node, self.__class__):
raise ValueError("Compare error between %s, %s" % (self.__class__,
node.__class__))
return cmp((self.label, self.element, self.line_nb),
(node.label, node.element, node.line_nb))
def __str__(self):
"""Returns a string representation of DependencyNode"""
return "<%s %s %s %s M:%s>" % (self.__class__.__name__,
self.label.name, self.element,
self.line_nb, self.modifier)
def __repr__(self):
"""Returns a string representation of DependencyNode"""
return self.__str__()
@property
def nostep_repr(self):
"""Returns a representation of @self ignoring the step attribute"""
return self._nostep_repr
@property
def label(self):
"Name of the current IRBlock"
return self._label
@property
def element(self):
"Current tracked Expr"
return self._element
@property
def line_nb(self):
"Line in the current IRBlock"
return self._line_nb
@property
def step(self):
"Step of the current node"
return self._step
@property
def modifier(self):
"""Evaluating the current line involves a modification of tracked
dependencies"""
return self._modifier
@modifier.setter
def modifier(self, value):
"""Evaluating the current line involves a modification of tracked
dependencies"""
if not isinstance(value, bool):
raise ValueError("Modifier must be a boolean")
self._modifier = value
class CacheWrapper(IterableUserDict):
"""Wrapper class for cache dictionnary"""
def __init__(self, dct=None):
"""Create a CacheWrapper with value @dct."""
IterableUserDict.__init__(self, dct)
self._nostep_cache = None
self._nostep_keys = None
def __eq__(self, cache):
"""Returns True if the nostep caches are equals"""
if self.nostep_keys != cache.nostep_keys:
return False
return self.nostep_cache == cache.nostep_cache
@property
def nostep_keys(self):
"""List of dictonnary keys without the step attribute.
The list is generated once when the method is called and not updated
afterward.
"""
if self._nostep_keys is None:
self._nostep_keys = set([key.nostep_repr for key in self.data])
return self._nostep_keys
@property
def nostep_cache(self):
"""Dictionnary of DependencyNode and their dependencies,
without the step attribute.
The dictionnary is generated once when the method is called for the
first time and not updated afterward.
"""
if self._nostep_cache is None:
self._nostep_cache = {}
for (node, values) in self.data.iteritems():
self._nostep_cache.setdefault(node.nostep_repr, set()).update(
set([val.nostep_repr for val in values]))
return self._nostep_cache
class DependencyDict(object):
"""Internal structure for the DependencyGraph algorithm"""
def __init__(self, label, history):
"""Create a DependencyDict
@label: asm_label, current IRblock label
@history: list of DependencyDict
"""
self._label = label
self._history = history
self._pending = set()
# DepNode -> set(DepNode)
self._cache = CacheWrapper()
def __eq__(self, depdict):
if not isinstance(depdict, self.__class__):
return False
return (self._label == depdict.label and
self.cache == depdict.cache)
def __cmp__(self, depdict):
if not isinstance(depdict, self.__class__):
raise ValueError("Compare error %s != %s" % (self.__class__,
depdict.__class__))
return cmp((self._label, self._cache, self._pending),
(depdict.label, depdict.cache, depdict.pending))
def is_head(self, depnode):
"""Return True iff @depnode is at the head of the current block
@depnode: DependencyNode instance"""
return (self.label == depnode.label and
depnode.line_nb == 0)
def copy(self):
"Return a copy of itself"
# Initialize
new_history = list(self.history)
depdict = DependencyDict(self.label, new_history)
# Copy values
for key, values in self.cache.iteritems():
depdict.cache[key] = set(values)
depdict.pending.update(self.pending)
return depdict
def extend(self, label):
"""Return a copy of itself, with itself in history and pending clean
@label: asm_label instance for the new DependencyDict's label
"""
depdict = DependencyDict(label, list(self.history) + [self])
for key, values in self.cache.iteritems():
depdict.cache[key] = set(values)
return depdict
def heads(self):
"""Return an iterator on the list of heads as defined in 'is_head'"""
for key in self.cache:
if self.is_head(key):
yield key
@property
def label(self):
"Label of the current block"
return self._label
@property
def history(self):
"""List of DependencyDict needed to reach the current DependencyDict
The first is the oldest"""
return self._history
@property
def cache(self):
"Dictionnary of DependencyNode and their dependencies"
return self._cache
@property
def pending(self):
"""Dictionnary of DependencyNode and their dependencies, waiting for
resolution"""
return self._pending
def _get_modifiers_in_cache(self, depnode, force=False):
"""Recursively find nodes in the path of @depnode which are modifiers.
Update the internal cache
If @depnode is already managed (ie. in @depnode_queued), abort"""
# Base case
if depnode not in self._cache:
# Constant does not have any dependencies
return [depnode] if depnode.modifier else []
if depnode.modifier and not force:
return [depnode]
# Recursion
dependencies = self._cache[depnode]
out = set()
# Launch on each depnodes
parallels = []
for depnode in dependencies:
parallels.append(self._get_modifiers_in_cache(depnode))
if parallels:
for parallel in itertools.product(*[p for p in parallels if p]):
out.update(parallel)
return out
def clean_modifiers_in_cache(self):
"""Remove intermediary states (non modifier depnodes) in the internal
cache values"""
cache_out = CacheWrapper()
for depnode in self._cache:
cache_out[depnode] = self._get_modifiers_in_cache(depnode,
force=True)
self._cache = cache_out
def _build_depgraph(self, depnode):
"""Recursively build the final list of DiGraph, and clean up unmodifier
nodes
@depnode: starting node
"""
if depnode not in self._cache or \
not self._cache[depnode]:
# There is no dependency
graph = DiGraph()
graph.add_node(depnode)
return graph
# Recursion
dependencies = list(self._cache[depnode])
graphs = []
for sub_depnode in dependencies:
graphs.append(self._build_depgraph(sub_depnode))
# head(graphs[i]) == dependencies[i]
graph = DiGraph()
graph.add_node(depnode)
for head in dependencies:
graph.add_uniq_edge(head, depnode)
for subgraphs in itertools.product(graphs):
for sourcegraph in subgraphs:
for node in sourcegraph.nodes():
graph.add_node(node)
for edge in sourcegraph.edges():
graph.add_uniq_edge(*edge)
# Update the running queue
return graph
def as_graph(self, starting_nodes):
"""Return a DiGraph corresponding to computed dependencies, with
@starting_nodes as leafs
@starting_nodes: set of DependencyNode instance
"""
# Build subgraph for each starting_node
subgraphs = []
for starting_node in starting_nodes:
subgraphs.append(self._build_depgraph(starting_node))
# Merge subgraphs into a final DiGraph
graph = DiGraph()
for sourcegraph in subgraphs:
for node in sourcegraph.nodes():
graph.add_node(node)
for edge in sourcegraph.edges():
graph.add_uniq_edge(*edge)
return graph
def filter_used_nodes(self, node_heads):
"""Keep only depnodes which are in the path of @node_heads in the
internal cache
@node_heads: set of DependencyNode instance
"""
# Init
todo = set(node_heads)
used_nodes = set()
# Map
while todo:
node = todo.pop()
if node in used_nodes:
continue
used_nodes.add(node)
if not node in self._cache:
continue
for sub_node in self._cache[node]:
todo.add(sub_node)
# Remove unused elements
for key in list(self._cache.keys()):
if key not in used_nodes:
del self._cache[key]
def filter_unmodifier_loops(self, implicit, irdst):
"""
Remove unmodifier node creating dependency loops over
pending elements in cache.
"""
previous_dict = None
# Get pending nodes of last time the label was handled
for hist_dict in reversed(self.history):
if hist_dict.label == self.label:
previous_dict = hist_dict
break
if not previous_dict:
return
nostep_pending = [node.nostep_repr for node in self.pending]
to_remove = set()
for depnode in previous_dict.pending:
if (depnode.nostep_repr not in nostep_pending or
implicit and depnode.element == irdst):
continue
to_remove.update(self._non_modifier_in_loop(depnode))
# Remove unused elements
for key in to_remove:
if depnode.nostep_repr == key.nostep_repr:
self._cache[depnode] = self._cache.get(key, set()).copy()
self.pending.discard(key)
self.pending.add(depnode)
if self._cache.has_key(key):
del self._cache[key]
def _non_modifier_in_loop(self, depnode):
"""
Walk from @depnode until a node with the same nostep_repr is
encountered.
Returns a set of unmodifier nodes met in the path if no modifier was
found.
Returns set() if there exist a modifier node on the path.
"""
if not self.cache.has_key(depnode):
return set()
# Init
todo = set(self.cache[depnode])
unmodifier_nodes = []
# Map
while todo:
node = todo.pop()
if node in unmodifier_nodes:
continue
if node.modifier:
return set()
unmodifier_nodes.append(node)
if not node in self._cache:
continue
if node.nostep_repr == depnode.nostep_repr:
unmodifier_nodes.append(node)
break
for sub_node in self._cache[node]:
todo.add(sub_node)
return unmodifier_nodes
class DependencyResult(object):
"""Container and methods for DependencyGraph results"""
def __init__(self, ira, final_depdict, input_depnodes):
"""Instance a DependencyResult
@ira: IRAnalysis instance
@final_depdict: DependencyDict instance
@input_depnodes: set of DependencyNode instance
"""
# Store arguments
self._ira = ira
self._depdict = final_depdict
self._input_depnodes = input_depnodes
# Init lazy elements
self._graph = None
self._has_loop = None
@property
def graph(self):
"""Returns a DiGraph instance representing the DependencyGraph"""
if self._graph is None:
self._graph = self._depdict.as_graph(self._input_depnodes)
return self._graph
@property
def history(self):
"""List of depdict corresponding to the blocks encountered in the
analysis"""
return list(self._depdict.history) + [self._depdict]
@property
def unresolved(self):
"""Set of nodes whose dependencies weren't found"""
return set([node.nostep_repr for node in self._depdict.pending
if node.element != self._ira.IRDst])
@property
def relevant_nodes(self):
"""Set of nodes directly and indirectly influencing
@self.input_depnodes"""
output = set()
for depnodes in self._depdict.cache.values():
output.update(depnodes)
return output
@property
def relevant_labels(self):
"""List of labels containing nodes influencing @self.input_depnodes.
The history order is preserved.
"""
# Get used labels
used_labels = set([depnode.label for depnode in self.relevant_nodes])
# Keep history order
output = []
for label in [depdict.label for depdict in self.history]:
if label in used_labels:
output.append(label)
return output
@property
def input(self):
"""Set of DependencyGraph start nodes"""
return self._input_depnodes
@property
def has_loop(self):
"""True if current dictionnary has a loop"""
if self._has_loop is None:
self._has_loop = (len(self.relevant_labels) !=
len(set(self.relevant_labels)))
return self._has_loop
def emul(self, ctx=None, step=False):
"""Symbolic execution of relevant nodes according to the history
Return the values of input nodes' elements
@ctx: (optional) Initial context as dictionnary
@step: (optional) Verbose execution
Warning: The emulation is not sound if the input nodes depend on loop
variant.
"""
# Init
ctx_init = self._ira.arch.regs.regs_init
if ctx is not None:
ctx_init.update(ctx)
depnodes = self.relevant_nodes
affects = []
# Build a single affectation block according to history
for label in self.relevant_labels[::-1]:
affected_lines = set(depnode.line_nb for depnode in depnodes
if depnode.label == label)
irs = self._ira.blocs[label].irs
for line_nb in sorted(affected_lines):
affects.append(irs[line_nb])
# Eval the block
temp_label = asm_label("Temp")
symb_exec = symbexec(self._ira, ctx_init)
symb_exec.emulbloc(irbloc(temp_label, affects), step=step)
# Return only inputs values (others could be wrongs)
return {depnode.element: symb_exec.symbols[depnode.element]
for depnode in self.input}
class DependencyResultImplicit(DependencyResult):
"""Stand for a result of a DependencyGraph with implicit option
Provide path constraints using the z3 solver"""
# Z3 Solver instance
_solver = None
def emul(self, ctx=None, step=False):
# Init
ctx_init = self._ira.arch.regs.regs_init
if ctx is not None:
ctx_init.update(ctx)
depnodes = self.relevant_nodes
solver = z3.Solver()
symb_exec = symbexec(self._ira, ctx_init)
temp_label = asm_label("Temp")
history = self.relevant_labels[::-1]
history_size = len(history)
for hist_nb, label in enumerate(history):
# Build block with relevant lines only
affected_lines = set(depnode.line_nb for depnode in depnodes
if depnode.label == label)
irs = self._ira.blocs[label].irs
affects = []
for line_nb in sorted(affected_lines):
affects.append(irs[line_nb])
# Emul the block and get back destination
dst = symb_exec.emulbloc(irbloc(temp_label, affects), step=step)
# Add constraint
if hist_nb + 1 < history_size:
next_label = history[hist_nb + 1]
expected = symb_exec.eval_expr(m2_expr.ExprId(next_label, 32))
constraint = m2_expr.ExprAff(dst, expected)
solver.add(Translator.to_language("z3").from_expr(constraint))
# Save the solver
self._solver = solver
# Return only inputs values (others could be wrongs)
return {depnode.element: symb_exec.symbols[depnode.element]
for depnode in self.input}
@property
def is_satisfiable(self):
"""Return True iff the solution path admits at least one solution
PRE: 'emul'
"""
return self._solver.check().r > 0
@property
def constraints(self):
"""If satisfiable, return a valid solution as a Z3 Model instance"""
if not self.is_satisfiable:
raise ValueError("Unsatisfiable")
return self._solver.model()
class FollowExpr(object):
"Stand for an element (expression, depnode, ...) to follow or not"
def __init__(self, follow, element):
self.follow = follow
self.element = element
@staticmethod
def to_depnodes(follow_exprs, label, line, modifier, counter):
"""Build a set of FollowExpr(DependencyNode) from the @follow_exprs set
of FollowExpr"""
dependencies = set()
for follow_expr in follow_exprs:
dependencies.add(FollowExpr(follow_expr.follow,
DependencyNode(label,
follow_expr.element,
line,
next(counter),
modifier=modifier)))
return dependencies
@staticmethod
def extract_depnodes(follow_exprs, only_follow=False):
"""Extract depnodes from a set of FollowExpr(Depnodes)
@only_follow: (optional) extract only elements to follow"""
return set(follow_expr.element
for follow_expr in follow_exprs
if not(only_follow) or follow_expr.follow)
class DependencyGraph(object):
"""Implementation of a dependency graph
A dependency graph contains DependencyNode as nodes. The oriented edges
stand for a dependency.
The dependency graph is made of the lines of a group of IRblock
*explicitely* or *implicitely* involved in the equation of given element.
"""
def __init__(self, ira, implicit=False, apply_simp=True, follow_mem=True,
follow_call=True):
"""Create a DependencyGraph linked to @ira
The IRA graph must have been computed
@ira: IRAnalysis instance
@implicit: (optional) Imply implicit dependencies
Following arguments define filters used to generate dependencies
@apply_simp: (optional) Apply expr_simp
@follow_mem: (optional) Track memory syntactically
@follow_call: (optional) Track through "call"
"""
# Init
self._ira = ira
self._implicit = implicit
self._step_counter = itertools.count()
# The IRA graph must be computed
assert hasattr(self._ira, 'g')
# Create callback filters. The order is relevant.
self._cb_follow = []
if apply_simp:
self._cb_follow.append(self._follow_simp_expr)
if follow_mem:
self._cb_follow.append(self._follow_mem)
else:
self._cb_follow.append(self._follow_nomem)
if not follow_call:
self._cb_follow.append(self._follow_nocall)
self._cb_follow.append(self._follow_label)
@property
def step_counter(self):
"Iteration counter"
return self._step_counter
@staticmethod
def _follow_simp_expr(exprs):
"""Simplify expression so avoid tracking useless elements,
as: XOR EAX, EAX
"""
follow = set()
for expr in exprs:
follow.add(expr_simp(expr))
return follow, set()
@staticmethod
def _follow_label(exprs):
"""Do not follow labels"""
follow = set()
for expr in exprs:
if not expr_is_label(expr):
follow.add(expr)
return follow, set()
@staticmethod
def _follow_mem_wrapper(exprs, mem_read):
"""Wrapper to follow or not expression from memory pointer"""
follow = set()
for expr in exprs:
follow.update(expr.get_r(mem_read=mem_read, cst_read=True))
return follow, set()
@staticmethod
def _follow_mem(exprs):
"""Follow expression from memory pointer"""
return DependencyGraph._follow_mem_wrapper(exprs, True)
@staticmethod
def _follow_nomem(exprs):
"""Don't follow expression from memory pointer"""
return DependencyGraph._follow_mem_wrapper(exprs, False)
@staticmethod
def _follow_nocall(exprs):
"""Don't follow expression from sub_call"""
follow = set()
nofollow = set()
for expr in exprs:
if expr.is_function_call():
nofollow.add(expr)
else:
follow.add(expr)
return follow, nofollow
def _follow_apply_cb(self, expr):
"""Apply callback functions to @expr
@expr : FollowExpr instance"""
follow = set([expr])
nofollow = set()
for callback in self._cb_follow:
follow, nofollow_tmp = callback(follow)
nofollow.update(nofollow_tmp)
out = set(FollowExpr(True, expr) for expr in follow)
out.update(set(FollowExpr(False, expr) for expr in nofollow))
return out
def _get_irs(self, label):
"Return the irs associated to @label"
return self._ira.blocs[label].irs
def _get_affblock(self, depnode):
"""Return the list of ExprAff associtiated to @depnode.
LINE_NB must be > 0"""
return self._get_irs(depnode.label)[depnode.line_nb - 1]
def _direct_depnode_dependencies(self, depnode):
"""Compute and return the dependencies involved by @depnode,
over the instruction @depnode.line_,.
Return a set of FollowExpr"""
if isinstance(depnode.element, m2_expr.ExprInt):
# A constant does not have any dependency
output = set()
elif depnode.line_nb == 0:
# Beginning of a block, inter-block resolving is not done here
output = set()
else:
# Intra-block resolving
# Get dependencies
read = set()
modifier = False
for affect in self._get_affblock(depnode):
if affect.dst == depnode.element:
elements = self._follow_apply_cb(affect.src)
read.update(elements)
modifier = True
# If it's not a modifier affblock, reinject current element
if not modifier:
read = set([FollowExpr(True, depnode.element)])
# Build output
output = FollowExpr.to_depnodes(read, depnode.label,
depnode.line_nb - 1, modifier,
self.step_counter)
return output
def _resolve_intrablock_dep(self, depdict):
"""Resolve the dependencies of nodes in @depdict.pending inside
@depdict.label until a fixed point is reached.
@depdict: DependencyDict to update"""
# Prepare the work list
todo = set(depdict.pending)
# Pending states will be handled
depdict.pending.clear()
while todo:
depnode = todo.pop()
if isinstance(depnode.element, m2_expr.ExprInt):
# A constant does not have any dependency
continue
if depdict.is_head(depnode):
depdict.pending.add(depnode)
# A head cannot have dependencies inside the current IRblock
continue
# Find dependency of the current depnode
sub_depnodes = self._direct_depnode_dependencies(depnode)
depdict.cache[depnode] = FollowExpr.extract_depnodes(sub_depnodes)
# Add to the worklist its dependencies
todo.update(FollowExpr.extract_depnodes(sub_depnodes,
only_follow=True))
# Pending states will be overriden in cache
for depnode in depdict.pending:
try:
del depdict.cache[depnode]
except KeyError:
continue
def _get_previousblocks(self, label):
"""Return an iterator on predecessors blocks of @label, with their
lengths"""
preds = self._ira.g.predecessors_iter(label)
for pred_label in preds:
length = len(self._get_irs(pred_label))
yield (pred_label, length)
def _compute_interblock_dep(self, depnodes, heads):
"""Create a DependencyDict from @depnodes, and propagate
DependencyDicts through all blocs
"""
# Create an DependencyDict which will only contain our depnodes
current_depdict = DependencyDict(list(depnodes)[0].label, [])
current_depdict.pending.update(depnodes)
# Init the work list
done = {}
todo = deque([current_depdict])
while todo:
depdict = todo.popleft()
# Update the dependencydict until fixed point is reached
self._resolve_intrablock_dep(depdict)
# Clean irrelevant path
depdict.filter_unmodifier_loops(self._implicit, self._ira.IRDst)
# Avoid infinite loops
label = depdict.label
if depdict in done.get(label, []):
continue
done.setdefault(label, []).append(depdict)
# No more dependencies
if len(depdict.pending) == 0:
yield depdict.copy()
continue
# Has a predecessor ?
is_final = True
# Propagate the DependencyDict to all parents
for label, irb_len in self._get_previousblocks(depdict.label):
is_final = False
# Duplicate the DependencyDict
new_depdict = depdict.extend(label)
if self._implicit:
# Implicit dependencies: IRDst will be link with heads
implicit_depnode = DependencyNode(label, self._ira.IRDst,
irb_len,
next(self.step_counter),
modifier=False)
# Create links between DependencyDict
for depnode_head in depdict.pending:
# Follow the head element in the parent
new_depnode = DependencyNode(label, depnode_head.element,
irb_len,
next(self.step_counter))
# The new node has to be analysed
new_depdict.cache[depnode_head] = set([new_depnode])
new_depdict.pending.add(new_depnode)
# Handle implicit dependencies
if self._implicit:
new_depdict.cache[depnode_head].add(implicit_depnode)
new_depdict.pending.add(implicit_depnode)
# Manage the new element
todo.append(new_depdict)
# Return the node if it's a final one, ie. it's a head (in graph
# or defined by caller)
if is_final or depdict.label in heads:
yield depdict.copy()
def get(self, label, elements, line_nb, heads):
"""Compute the dependencies of @elements at line number @line_nb in
the block named @label in the current IRA, before the execution of
this line. Dependency check stop if one of @heads is reached
@label: asm_label instance
@element: set of Expr instances
@line_nb: int
@heads: set of asm_label instances
Return an iterator on DiGraph(DependencyNode)
"""
# Init the algorithm
input_depnodes = set()
for element in elements:
input_depnodes.add(DependencyNode(label, element, line_nb,
next(self.step_counter)))
# Compute final depdicts
depdicts = self._compute_interblock_dep(input_depnodes, heads)
# Unify solutions
unified = []
cls_res = DependencyResultImplicit if self._implicit else \
DependencyResult
for final_depdict in depdicts:
# Keep only relevant nodes
final_depdict.clean_modifiers_in_cache()
final_depdict.filter_used_nodes(input_depnodes)
# Remove duplicate solutions
if final_depdict not in unified:
unified.append(final_depdict)
# Return solutions as DiGraph
yield cls_res(self._ira, final_depdict, input_depnodes)
def get_from_depnodes(self, depnodes, heads):
"""Alias for the get() method. Use the attributes of @depnodes as
argument.
PRE: Labels and lines of depnodes have to be equals
@depnodes: set of DependencyNode instances
@heads: set of asm_label instances
"""
lead = list(depnodes)[0]
elements = set([depnode.element for depnode in depnodes])
return self.get(lead.label, elements, lead.line_nb, heads)
def get_from_end(self, label, elements, heads):
"""Alias for the get() method. Consider that the dependency is asked at
the end of the block named @label.
@label: asm_label instance
@elements: set of Expr instances
@heads: set of asm_label instances
"""
return self.get(label, elements, len(self._get_irs(label)), heads)
|