about summary refs log tree commit diff stats
path: root/miasm2/core/graph.py
blob: c490425269fd61eaf018bc1a34f9eabbe59a6d21 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
from collections import defaultdict

class DiGraph(object):
    """Implementation of directed graph"""

    def __init__(self):
        self._nodes = set()
        self._edges = []
        # N -> Nodes N2 with a edge (N -> N2)
        self._nodes_succ = {}
        # N -> Nodes N2 with a edge (N2 -> N)
        self._nodes_pred = {}

    def __repr__(self):
        out = []
        for n in self._nodes:
            out.append(str(n))
        for a, b in self._edges:
            out.append("%s -> %s" % (a, b))
        return '\n'.join(out)

    def nodes(self):
        return self._nodes

    def edges(self):
        return self._edges

    def add_node(self, n):
        if n in self._nodes:
            return
        self._nodes.add(n)
        self._nodes_succ[n] = []
        self._nodes_pred[n] = []

    def del_node(self, node):
        """Delete the @node of the graph; Also delete every edge to/from this
        @node"""

        if node in self._nodes:
            self._nodes.remove(node)
        for pred in self.predecessors(node):
            self.del_edge(pred, node)
        for succ in self.successors(node):
            self.del_edge(node, succ)

    def add_edge(self, a, b):
        if not a in self._nodes:
            self.add_node(a)
        if not b in self._nodes:
            self.add_node(b)
        self._edges.append((a, b))
        self._nodes_succ[a].append((a, b))
        self._nodes_pred[b].append((a, b))

    def add_uniq_edge(self, a, b):
        if (a, b) in self._edges:
            return
        else:
            self.add_edge(a, b)

    def del_edge(self, a, b):
        self._edges.remove((a, b))
        self._nodes_succ[a].remove((a, b))
        self._nodes_pred[b].remove((a, b))

    def predecessors_iter(self, n):
        if not n in self._nodes_pred:
            raise StopIteration
        for a, _ in self._nodes_pred[n]:
            yield a

    def predecessors(self, n):
        return [x for x in self.predecessors_iter(n)]

    def successors_iter(self, n):
        if not n in self._nodes_succ:
            raise StopIteration
        for _, b in self._nodes_succ[n]:
            yield b

    def successors(self, n):
        return [x for x in self.successors_iter(n)]

    def leaves_iter(self):
        for n in self._nodes:
            if len(self._nodes_succ[n]) == 0:
                yield n

    def leaves(self):
        return [x for x in self.leaves_iter()]

    def heads_iter(self):
        for node in self._nodes:
            if len(self._nodes_pred[node]) == 0:
                yield node

    def heads(self):
        return [node for node in self.heads_iter()]

    def roots_iter(self):
        for n in self._nodes:
            if len(self._nodes_pred[n]) == 0:
                yield n

    def roots(self):
        return [x for x in self.roots_iter()]

    def find_path(self, a, b, cycles_count=0, done=None):
        if done is None:
            done = {}
        if b in done and done[b] > cycles_count:
            return [[]]
        if a == b:
            return [[a]]
        out = []
        for n in self.predecessors(b):
            done_n = dict(done)
            done_n[b] = done_n.get(b, 0) + 1
            for path in self.find_path(a, n, cycles_count, done_n):
                if path and path[0] == a:
                    out.append(path + [b])
        return out

    def node2str(self, n):
        return str(n)

    def edge2str(self, a, b):
        return ""

    def dot(self):
        out = """
digraph asm_graph {
graph [
splines=polyline,
];
node [
fontsize = "16",
shape = "box"
];
"""
        for n in self.nodes():
            out += '%s [label="%s"];\n' % (
                hash(n) & 0xFFFFFFFFFFFFFFFF, self.node2str(n))

        for a, b in self.edges():
            out += '%s -> %s [label="%s"]\n' % (hash(a) & 0xFFFFFFFFFFFFFFFF,
                                                hash(b) & 0xFFFFFFFFFFFFFFFF,
                                                self.edge2str(a, b))
        out += "}"
        return out


    def _reachable_nodes(self, head, next_cb):
        """Generic algorithm to compute every nodes reachable from/to node
        @head"""

        todo = set([head])
        reachable = set()
        while todo:
            node = todo.pop()
            if node in reachable:
                continue
            reachable.add(node)
            yield node
            for next_node in next_cb(node):
                todo.add(next_node)

    def reachable_sons(self, head):
        """Compute every nodes reachable from node @head"""
        return self._reachable_nodes(head, self.successors_iter)

    def reachable_parents(self, leaf):
        """Compute every parents of node @leaf"""
        return self._reachable_nodes(leaf, self.predecessors_iter)

    def _compute_generic_dominators(self, head, reachable_cb, prev_cb, next_cb):
        """Generic algorithm to compute either the dominators or postdominators
        of the graph.
        @head: the head/leaf of the graph
        @reachable_cb: sons/parents of the head/leaf
        @prev_cb: return predecessors/succesors of a node
        @next_cb: return succesors/predecessors of a node
        """

        nodes = set(reachable_cb(head))
        dominators = {}
        for node in nodes:
            dominators[node] = set(nodes)

        dominators[head] = set([head])
        modified = True
        todo = set(nodes)

        while todo:
            node = todo.pop()

            # Heads state must not be changed
            if node == head:
                continue

            # Compute intersection of all predecessors'dominators
            new_dom = None
            for pred in prev_cb(node):
                if not pred in nodes:
                    continue
                if new_dom is None:
                    new_dom = set(dominators[pred])
                new_dom.intersection_update(dominators[pred])

            # We are not a head to we have at least one dominator
            assert(new_dom is not None)

            new_dom.update(set([node]))

            # If intersection has changed, add sons to the todo list
            if new_dom == dominators[node]:
                continue

            dominators[node] = new_dom
            for succ in next_cb(node):
                todo.add(succ)
        return dominators

    def compute_dominators(self, head):
        """Compute the dominators of the graph"""
        return self._compute_generic_dominators(head,
                                                self.reachable_sons,
                                                self.predecessors_iter,
                                                self.successors_iter)

    def compute_postdominators(self, leaf):
        """Compute the postdominators of the graph"""
        return self._compute_generic_dominators(leaf,
                                                self.reachable_parents,
                                                self.successors_iter,
                                                self.predecessors_iter)