1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
|
from collections import defaultdict
class DiGraph(object):
"""Implementation of directed graph"""
def __init__(self):
self._nodes = set()
self._edges = []
# N -> Nodes N2 with a edge (N -> N2)
self._nodes_succ = {}
# N -> Nodes N2 with a edge (N2 -> N)
self._nodes_pred = {}
def __repr__(self):
out = []
for node in self._nodes:
out.append(str(node))
for src, dst in self._edges:
out.append("%s -> %s" % (src, dst))
return '\n'.join(out)
def nodes(self):
return self._nodes
def edges(self):
return self._edges
def add_node(self, node):
if node in self._nodes:
return
self._nodes.add(node)
self._nodes_succ[node] = []
self._nodes_pred[node] = []
def del_node(self, node):
"""Delete the @node of the graph; Also delete every edge to/from this
@node"""
if node in self._nodes:
self._nodes.remove(node)
for pred in self.predecessors(node):
self.del_edge(pred, node)
for succ in self.successors(node):
self.del_edge(node, succ)
def add_edge(self, src, dst):
if not src in self._nodes:
self.add_node(src)
if not dst in self._nodes:
self.add_node(dst)
self._edges.append((src, dst))
self._nodes_succ[src].append(dst)
self._nodes_pred[dst].append(src)
def add_uniq_edge(self, src, dst):
"""Add an edge from @src to @dst if it doesn't already exist"""
if (src not in self._nodes_succ or
dst not in self._nodes_succ[src]):
self.add_edge(src, dst)
def del_edge(self, src, dst):
self._edges.remove((src, dst))
self._nodes_succ[src].remove(dst)
self._nodes_pred[dst].remove(src)
def predecessors_iter(self, node):
if not node in self._nodes_pred:
raise StopIteration
for n_pred in self._nodes_pred[node]:
yield n_pred
def predecessors(self, node):
return [x for x in self.predecessors_iter(node)]
def successors_iter(self, node):
if not node in self._nodes_succ:
raise StopIteration
for n_suc in self._nodes_succ[node]:
yield n_suc
def successors(self, node):
return [x for x in self.successors_iter(node)]
def leaves_iter(self):
for node in self._nodes:
if not self._nodes_succ[node]:
yield node
def leaves(self):
return [x for x in self.leaves_iter()]
def heads_iter(self):
for node in self._nodes:
if not self._nodes_pred[node]:
yield node
def heads(self):
return [x for x in self.heads_iter()]
def find_path(self, src, dst, cycles_count=0, done=None):
if done is None:
done = {}
if dst in done and done[dst] > cycles_count:
return [[]]
if src == dst:
return [[src]]
out = []
for node in self.predecessors(dst):
done_n = dict(done)
done_n[dst] = done_n.get(dst, 0) + 1
for path in self.find_path(src, node, cycles_count, done_n):
if path and path[0] == src:
out.append(path + [dst])
return out
@staticmethod
def node2str(node):
return str(node)
@staticmethod
def edge2str(src, dst):
return ""
def dot(self):
out = """
digraph asm_graph {
graph [
splines=polyline,
];
node [
fontsize = "16",
shape = "box"
];
"""
for node in self.nodes():
out += '%s [label="%s"];\n' % (
hash(node) & 0xFFFFFFFFFFFFFFFF, self.node2str(node))
for src, dst in self.edges():
out += '%s -> %s [label="%s"]\n' % (hash(src) & 0xFFFFFFFFFFFFFFFF,
hash(dst) & 0xFFFFFFFFFFFFFFFF,
self.edge2str(src, dst))
out += "}"
return out
@staticmethod
def _reachable_nodes(head, next_cb):
"""Generic algorithm to compute every nodes reachable from/to node
@head"""
todo = set([head])
reachable = set()
while todo:
node = todo.pop()
if node in reachable:
continue
reachable.add(node)
yield node
for next_node in next_cb(node):
todo.add(next_node)
def reachable_sons(self, head):
"""Compute every nodes reachable from node @head"""
return self._reachable_nodes(head, self.successors_iter)
def reachable_parents(self, leaf):
"""Compute every parents of node @leaf"""
return self._reachable_nodes(leaf, self.predecessors_iter)
@staticmethod
def _compute_generic_dominators(head, reachable_cb, prev_cb, next_cb):
"""Generic algorithm to compute either the dominators or postdominators
of the graph.
@head: the head/leaf of the graph
@reachable_cb: sons/parents of the head/leaf
@prev_cb: return predecessors/succesors of a node
@next_cb: return succesors/predecessors of a node
"""
nodes = set(reachable_cb(head))
dominators = {}
for node in nodes:
dominators[node] = set(nodes)
dominators[head] = set([head])
modified = True
todo = set(nodes)
while todo:
node = todo.pop()
# Heads state must not be changed
if node == head:
continue
# Compute intersection of all predecessors'dominators
new_dom = None
for pred in prev_cb(node):
if not pred in nodes:
continue
if new_dom is None:
new_dom = set(dominators[pred])
new_dom.intersection_update(dominators[pred])
# We are not a head to we have at least one dominator
assert(new_dom is not None)
new_dom.update(set([node]))
# If intersection has changed, add sons to the todo list
if new_dom == dominators[node]:
continue
dominators[node] = new_dom
for succ in next_cb(node):
todo.add(succ)
return dominators
def compute_dominators(self, head):
"""Compute the dominators of the graph"""
return self._compute_generic_dominators(head,
self.reachable_sons,
self.predecessors_iter,
self.successors_iter)
def compute_postdominators(self, leaf):
"""Compute the postdominators of the graph"""
return self._compute_generic_dominators(leaf,
self.reachable_parents,
self.successors_iter,
self.predecessors_iter)
@staticmethod
def _walk_generic_dominator(node, gen_dominators, succ_cb):
"""Generic algorithm to return an iterator of the ordered list of
@node's dominators/post_dominator.
The function doesn't return the self reference in dominators.
@node: The start node
@gen_dominators: The dictionnary containing at least node's
dominators/post_dominators
@succ_cb: return predecessors/succesors of a node
"""
# Init
done = set()
if node not in gen_dominators:
# We are in a branch which doesn't reach head
return
node_gen_dominators = set(gen_dominators[node])
todo = set([node])
# Avoid working on itself
node_gen_dominators.remove(node)
# For each level
while node_gen_dominators:
new_node = None
# Worklist pattern
while todo:
node = todo.pop()
if node in done:
continue
if node in node_gen_dominators:
new_node = node
break
# Avoid loops
done.add(node)
# Look for the next level
for pred in succ_cb(node):
todo.add(pred)
# Return the node; it's the next starting point
assert(new_node is not None)
yield new_node
node_gen_dominators.remove(new_node)
todo = set([new_node])
def walk_dominators(self, node, dominators):
"""Return an iterator of the ordered list of @node's dominators
The function doesn't return the self reference in dominators.
@node: The start node
@dominators: The dictionnary containing at least node's dominators
"""
return self._walk_generic_dominator(node,
dominators,
self.predecessors_iter)
def walk_postdominators(self, node, postdominators):
"""Return an iterator of the ordered list of @node's postdominators
The function doesn't return the self reference in postdominators.
@node: The start node
@postdominators: The dictionnary containing at least node's
postdominators
"""
return self._walk_generic_dominator(node,
postdominators,
self.successors_iter)
|