1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
|
from collections import defaultdict
class DiGraph:
"""Implementation of directed graph"""
def __init__(self):
self._nodes = set()
self._edges = []
self._nodes_to = {}
self._nodes_from = {}
def __repr__(self):
out = []
for n in self._nodes:
out.append(str(n))
for a, b in self._edges:
out.append("%s -> %s" % (a, b))
return '\n'.join(out)
def nodes(self):
return self._nodes
def edges(self):
return self._edges
def add_node(self, n):
if n in self._nodes:
return
self._nodes.add(n)
self._nodes_to[n] = []
self._nodes_from[n] = []
def del_node(self, node):
"""Delete the @node of the graph; Also delete every edge to/from this
@node"""
if node in self._nodes:
self._nodes.remove(node)
for pred in self.predecessors(node):
self.del_edge(pred, node)
for succ in self.successors(node):
self.del_edge(node, succ)
def add_edge(self, a, b):
if not a in self._nodes:
self.add_node(a)
if not b in self._nodes:
self.add_node(b)
self._edges.append((a, b))
self._nodes_to[a].append((a, b))
self._nodes_from[b].append((a, b))
def add_uniq_edge(self, a, b):
if (a, b) in self._edges:
return
else:
self.add_edge(a, b)
def del_edge(self, a, b):
self._edges.remove((a, b))
self._nodes_to[a].remove((a, b))
self._nodes_from[b].remove((a, b))
def predecessors_iter(self, n):
if not n in self._nodes_from:
raise StopIteration
for a, _ in self._nodes_from[n]:
yield a
def predecessors(self, n):
return [x for x in self.predecessors_iter(n)]
def successors_iter(self, n):
if not n in self._nodes_to:
raise StopIteration
for _, b in self._nodes_to[n]:
yield b
def successors(self, n):
return [x for x in self.successors_iter(n)]
def leaves_iter(self):
for n in self._nodes:
if len(self._nodes_to[n]) == 0:
yield n
def leaves(self):
return [x for x in self.leaves_iter()]
def heads_iter(self):
for node in self._nodes:
if len(self._nodes_from[node]) == 0:
yield node
def heads(self):
return [node for node in self.heads_iter()]
def roots_iter(self):
for n in self._nodes:
if len(self._nodes_from[n]) == 0:
yield n
def roots(self):
return [x for x in self.roots_iter()]
def find_path(self, a, b, cycles_count=0, done=None):
if done is None:
done = {}
if b in done and done[b] > cycles_count:
return [[]]
if a == b:
return [[a]]
out = []
for n in self.predecessors(b):
done_n = dict(done)
done_n[b] = done_n.get(b, 0) + 1
for path in self.find_path(a, n, cycles_count, done_n):
if path and path[0] == a:
out.append(path + [b])
return out
def get_all_parents(self, node):
"""Return every parents nodes for a given @node"""
todo = set([node])
done = set()
while todo:
node = todo.pop()
if node in done:
continue
done.add(node)
for parent in self.predecessors(node):
todo.add(parent)
return done
def node2str(self, n):
return str(n)
def edge2str(self, a, b):
return ""
def dot(self):
out = """
digraph asm_graph {
graph [
splines=polyline,
];
node [
fontsize = "16",
shape = "box"
];
"""
for n in self.nodes():
out += '%s [label="%s"];\n' % (
hash(n) & 0xFFFFFFFFFFFFFFFF, self.node2str(n))
for a, b in self.edges():
out += '%s -> %s [label="%s"]\n' % (hash(a) & 0xFFFFFFFFFFFFFFFF,
hash(b) & 0xFFFFFFFFFFFFFFFF,
self.edge2str(a, b))
out += "}"
return out
def compute_dominators(self):
"""Compute dominators of the graph"""
nodes = self.nodes()
heads = self.heads()
dominators = defaultdict(set)
for node in self.nodes():
dominators[node].update(nodes)
for node in heads:
dominators[node] = set([node])
modified = True
todo = nodes.difference(heads)
while todo:
node = todo.pop()
# Heads state must not be changed
if node in heads:
continue
# Compute intersection of all predecessors'dominators
new_dom = None
for pred in self.predecessors(node):
if new_dom is None:
new_dom = set(dominators[pred])
new_dom.intersection_update(dominators[pred])
if new_dom is None:
new_dom = set()
new_dom.update(set([node]))
# If intersection has changed, add sons to the todo list
if new_dom == dominators[node]:
continue
dominators[node] = new_dom
for succ in self.successors(node):
todo.add(succ)
return dict(dominators)
|