1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
|
class DiGraph:
def __init__(self):
self._nodes = set()
self._edges = []
self._nodes_to = {}
self._nodes_from = {}
def __repr__(self):
out = []
for n in self._nodes:
out.append(str(n))
for a, b in self._edges:
out.append("%s -> %s" % (a, b))
return '\n'.join(out)
def nodes(self):
return self._nodes
def edges(self):
return self._edges
def add_node(self, n):
if n in self._nodes:
return
self._nodes.add(n)
self._nodes_to[n] = []
self._nodes_from[n] = []
def del_node(self, n):
if n in self._nodes:
self._nodes.remove(n)
for pred in self.predecessors(n):
self.del_edge(pred, n)
for succ in self.successors(n):
self.del_edge(n, succ)
def add_edge(self, a, b):
if not a in self._nodes:
self.add_node(a)
if not b in self._nodes:
self.add_node(b)
self._edges.append((a, b))
self._nodes_to[a].append((a, b))
self._nodes_from[b].append((a, b))
def add_uniq_edge(self, a, b):
if (a, b) in self._edges:
return
else:
self.add_edge(a, b)
def del_edge(self, a, b):
self._edges.remove((a, b))
self._nodes_to[a].remove((a, b))
self._nodes_from[b].remove((a, b))
def predecessors_iter(self, n):
if not n in self._nodes_from:
raise StopIteration
for a, _ in self._nodes_from[n]:
yield a
def predecessors(self, n):
return [x for x in self.predecessors_iter(n)]
def successors_iter(self, n):
if not n in self._nodes_to:
raise StopIteration
for _, b in self._nodes_to[n]:
yield b
def successors(self, n):
return [x for x in self.successors_iter(n)]
def leaves_iter(self):
for n in self._nodes:
if len(self._nodes_to[n]) == 0:
yield n
def leaves(self):
return [x for x in self.leaves_iter()]
def roots_iter(self):
for n in self._nodes:
if len(self._nodes_from[n]) == 0:
yield n
def roots(self):
return [x for x in self.roots_iter()]
def find_path(self, a, b, cycles_count=0, done=None):
if done is None:
done = {}
if b in done and done[b] > cycles_count:
return [[]]
if a == b:
return [[a]]
out = []
for n in self.predecessors(b):
done_n = dict(done)
done_n[b] = done_n.get(b, 0) + 1
for path in self.find_path(a, n, cycles_count, done_n):
if path and path[0] == a:
out.append(path + [b])
return out
def get_all_parents(self, node):
"""Return every parents nodes for a given @node"""
todo = set([node])
done = set()
while todo:
node = todo.pop()
if node in done:
continue
done.add(node)
for parent in self.predecessors(node):
todo.add(parent)
return done
def node2str(self, n):
return str(n)
def edge2str(self, a, b):
return ""
def dot(self):
out = """
digraph asm_graph {
graph [
splines=polyline,
];
node [
fontsize = "16",
shape = "box"
];
"""
for n in self.nodes():
out += '%s [label="%s"];\n' % (
hash(n) & 0xFFFFFFFFFFFFFFFF, self.node2str(n))
for a, b in self.edges():
out += '%s -> %s [label="%s"]\n' % (hash(a) & 0xFFFFFFFFFFFFFFFF,
hash(b) & 0xFFFFFFFFFFFFFFFF,
self.edge2str(a, b))
out += "}"
return out
|