1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
|
#
# Copyright (C) 2011 EADS France, Fabrice Desclaux <fabrice.desclaux@eads.net>
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
#
# Expressions manipulation functions
import re
import itertools
import collections
import miasm2.expression.expression as m2_expr
def parity(a):
tmp = (a) & 0xFFL
cpt = 1
while tmp != 0:
cpt ^= tmp & 1
tmp >>= 1
return cpt
def merge_sliceto_slice(args):
sources = {}
non_slice = {}
sources_int = {}
for a in args:
if isinstance(a[0], m2_expr.ExprInt):
# sources_int[a.start] = a
# copy ExprInt because we will inplace modify arg just below
# /!\ TODO XXX never ever modify inplace args...
sources_int[a[1]] = (m2_expr.ExprInt_fromsize(a[2] - a[1],
a[0].arg.__class__(
a[0].arg)),
a[1],
a[2])
elif isinstance(a[0], m2_expr.ExprSlice):
if not a[0].arg in sources:
sources[a[0].arg] = []
sources[a[0].arg].append(a)
else:
non_slice[a[1]] = a
# find max stop to determine size
max_size = None
for a in args:
if max_size is None or max_size < a[2]:
max_size = a[2]
# first simplify all num slices
final_sources = []
sorted_s = []
for x in sources_int.values():
# mask int
v = x[0].arg & ((1 << (x[2] - x[1])) - 1)
x[0].arg = v
sorted_s.append((x[1], x))
sorted_s.sort()
while sorted_s:
start, v = sorted_s.pop()
out = [m2_expr.ExprInt(v[0].arg), v[1], v[2]]
size = v[2] - v[1]
while sorted_s:
if sorted_s[-1][1][2] != start:
break
s_start, s_stop = sorted_s[-1][1][1], sorted_s[-1][1][2]
size += s_stop - s_start
a = m2_expr.mod_size2uint[size](
(int(out[0].arg) << (out[1] - s_start)) +
int(sorted_s[-1][1][0].arg))
out[0].arg = a
sorted_s.pop()
out[1] = s_start
out[0] = m2_expr.ExprInt_fromsize(size, out[0].arg)
final_sources.append((start, out))
final_sources_int = final_sources
# check if same sources have corresponding start/stop
# is slice AND is sliceto
simp_sources = []
for args in sources.values():
final_sources = []
sorted_s = []
for x in args:
sorted_s.append((x[1], x))
sorted_s.sort()
while sorted_s:
start, v = sorted_s.pop()
ee = v[0].arg[v[0].start:v[0].stop]
out = ee, v[1], v[2]
while sorted_s:
if sorted_s[-1][1][2] != start:
break
if sorted_s[-1][1][0].stop != out[0].start:
break
start = sorted_s[-1][1][1]
# out[0].start = sorted_s[-1][1][0].start
o_e, _, o_stop = out
o1, o2 = sorted_s[-1][1][0].start, o_e.stop
o_e = o_e.arg[o1:o2]
out = o_e, start, o_stop
# update _size
# out[0]._size = out[0].stop-out[0].start
sorted_s.pop()
out = out[0], start, out[2]
final_sources.append((start, out))
simp_sources += final_sources
simp_sources += final_sources_int
for i, v in non_slice.items():
simp_sources.append((i, v))
simp_sources.sort()
simp_sources = [x[1] for x in simp_sources]
return simp_sources
op_propag_cst = ['+', '*', '^', '&', '|', '>>',
'<<', "a>>", ">>>", "<<<",
"/", "%", 'idiv', 'imod', 'umod', 'udiv']
def is_pure_int(e):
"""
return True if expr is only composed with integers
/!\ ExprCond returns True is src1 and src2 are integers
"""
def modify_cond(e):
if isinstance(e, m2_expr.ExprCond):
return e.src1 | e.src2
return e
def find_int(e, s):
if isinstance(e, m2_expr.ExprId) or isinstance(e, m2_expr.ExprMem):
s.add(e)
return e
s = set()
new_e = e.visit(modify_cond)
new_e.visit(lambda x: find_int(x, s))
if s:
return False
return True
def is_int_or_cond_src_int(e):
if isinstance(e, m2_expr.ExprInt):
return True
if isinstance(e, m2_expr.ExprCond):
return (isinstance(e.src1, m2_expr.ExprInt) and
isinstance(e.src2, m2_expr.ExprInt))
return False
def fast_unify(seq, idfun=None):
# order preserving unifying list function
if idfun is None:
idfun = lambda x: x
seen = {}
result = []
for item in seq:
marker = idfun(item)
if marker in seen:
continue
seen[marker] = 1
result.append(item)
return result
def get_missing_interval(all_intervals, i_min=0, i_max=32):
"""Return a list of missing interval in all_interval
@all_interval: list of (int, int)
@i_min: int, minimal missing interval bound
@i_max: int, maximal missing interval bound"""
my_intervals = all_intervals[:]
my_intervals.sort()
my_intervals.append((i_max, i_max))
missing_i = []
last_pos = i_min
for start, stop in my_intervals:
if last_pos != start:
missing_i.append((last_pos, start))
last_pos = stop
return missing_i
class Variables_Identifier(object):
"""Identify variables in an expression.
Returns:
- variables with their corresponding values
- original expression with variables translated
"""
var_identifier = re.compile("v\d+")
def __init__(self, expr):
"""Set the expression @expr to handle and launch variable identification
process"""
# Init
self.var_indice = itertools.count()
self.var_asked = set()
self._vars = {} # VarID -> Expr
# Launch recurrence
self.find_variables_rec(expr)
# Compute inter-variable dependencies
has_change = True
while has_change:
has_change = False
for var_id, var_value in self._vars.iteritems():
cur = var_value
# Do not replace with itself
to_replace = {v_val:v_id
for v_id, v_val in self._vars.iteritems()
if v_id != var_id}
var_value = var_value.replace_expr(to_replace)
if cur != var_value:
# Force @self._vars update
has_change = True
self._vars[var_id] = var_value
break
# Replace in the original equation
self._equation = expr.replace_expr({v_val: v_id for v_id, v_val
in self._vars.iteritems()})
# Compute variables dependencies
self._vars_ordered = collections.OrderedDict()
todo = set(self._vars.iterkeys())
needs = {}
## Build initial needs
for var_id, var_expr in self._vars.iteritems():
needs[var_id] = [var_name
for var_name in var_expr.get_r(mem_read=True)
if self.is_var_identifier(var_name)]
## Build order list
while todo:
done = set()
for var_id in todo:
all_met = True
for need in needs[var_id]:
if need not in self._vars_ordered:
# A dependency is not met
all_met = False
break
if not all_met:
continue
# All dependencies are already met, add current
self._vars_ordered[var_id] = self._vars[var_id]
done.add(var_id)
# Update the todo list
for element_done in done:
todo.remove(element_done)
@classmethod
def is_var_identifier(cls, expr):
"Return True iff expr seems to be a variable identifier"
if not isinstance(expr, m2_expr.ExprId):
return False
match = cls.var_identifier.match(expr.name)
return match is not None and match.group(0) == expr.name
def find_variables_rec(self, expr):
"""Recursive method called by find_variable to expand @expr.
Set @var_names and @var_values.
This implementation is faster than an expression visitor because
we do not rebuild each expression.
"""
if (expr in self.var_asked):
# Expr has already been asked
if (expr not in self._vars.values()):
# Create var
identifier = m2_expr.ExprId("v%s" % self.var_indice.next(),
size = expr.size)
self._vars[identifier] = expr
# Recursion stop case
return
else:
# First time for @expr
self.var_asked.add(expr)
if isinstance(expr, m2_expr.ExprOp):
for a in expr.args:
self.find_variables_rec(a)
elif isinstance(expr, m2_expr.ExprInt):
pass
elif isinstance(expr, m2_expr.ExprId):
pass
elif isinstance(expr, m2_expr.ExprMem):
self.find_variables_rec(expr.arg)
elif isinstance(expr, m2_expr.ExprCompose):
for a in expr.args:
self.find_variables_rec(list(a)[0])
elif isinstance(expr, m2_expr.ExprSlice):
self.find_variables_rec(expr.arg)
elif isinstance(expr, m2_expr.ExprCond):
self.find_variables_rec(expr.cond)
self.find_variables_rec(expr.src1)
self.find_variables_rec(expr.src2)
else:
raise NotImplementedError("Type not handled: %s" % expr)
@property
def vars(self):
return self._vars_ordered
@property
def equation(self):
return self._equation
def __str__(self):
"Display variables and final equation"
out = ""
for var_id, var_expr in self.vars.iteritems():
out += "%s = %s\n" % (var_id, var_expr)
out += "Final: %s" % self.equation
return out
|