about summary refs log tree commit diff stats
path: root/miasm2/expression/simplifications_common.py
blob: b01b1d1d8239b54a730e5801234a2ec6a7bf7c5c (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
# ----------------------------- #
# Common simplifications passes #
# ----------------------------- #


from miasm2.expression.modint import mod_size2int, mod_size2uint
from miasm2.expression.expression import ExprInt, ExprSlice, ExprMem, ExprCond, ExprOp, ExprCompose
from miasm2.expression.expression_helper import parity, op_propag_cst, merge_sliceto_slice


def simp_cst_propagation(e_s, expr):
    """This passe includes:
     - Constant folding
     - Common logical identities
     - Common binary identities
     """

    # merge associatif op
    args = list(expr.args)
    op_name = expr.op
    # simpl integer manip
    # int OP int => int
    # TODO: <<< >>> << >> are architecture dependant
    if op_name in op_propag_cst:
        while (len(args) >= 2 and
            args[-1].is_int() and
            args[-2].is_int()):
            int2 = args.pop()
            int1 = args.pop()
            if op_name == '+':
                out = int1.arg + int2.arg
            elif op_name == '*':
                out = int1.arg * int2.arg
            elif op_name == '**':
                out =int1.arg ** int2.arg
            elif op_name == '^':
                out = int1.arg ^ int2.arg
            elif op_name == '&':
                out = int1.arg & int2.arg
            elif op_name == '|':
                out = int1.arg | int2.arg
            elif op_name == '>>':
                if int(int2) > int1.size:
                    out = 0
                else:
                    out = int1.arg >> int2.arg
            elif op_name == '<<':
                if int(int2) > int1.size:
                    out = 0
                else:
                    out = int1.arg << int2.arg
            elif op_name == 'a>>':
                tmp1 = mod_size2int[int1.arg.size](int1.arg)
                tmp2 = mod_size2uint[int2.arg.size](int2.arg)
                if tmp2 > int1.size:
                    is_signed = int(int1) & (1 << (int1.size - 1))
                    if is_signed:
                        out = -1
                    else:
                        out = 0
                else:
                    out = mod_size2uint[int1.arg.size](tmp1 >> tmp2)
            elif op_name == '>>>':
                shifter = int2.arg % int2.size
                out = (int1.arg >> shifter) | (int1.arg << (int2.size - shifter))
            elif op_name == '<<<':
                shifter = int2.arg % int2.size
                out = (int1.arg << shifter) | (int1.arg >> (int2.size - shifter))
            elif op_name == '/':
                out = int1.arg / int2.arg
            elif op_name == '%':
                out = int1.arg % int2.arg
            elif op_name == 'idiv':
                assert int2.arg.arg
                tmp1 = mod_size2int[int1.arg.size](int1.arg)
                tmp2 = mod_size2int[int2.arg.size](int2.arg)
                out = mod_size2uint[int1.arg.size](tmp1 / tmp2)
            elif op_name == 'imod':
                assert int2.arg.arg
                tmp1 = mod_size2int[int1.arg.size](int1.arg)
                tmp2 = mod_size2int[int2.arg.size](int2.arg)
                out = mod_size2uint[int1.arg.size](tmp1 % tmp2)
            elif op_name == 'umod':
                assert int2.arg.arg
                tmp1 = mod_size2uint[int1.arg.size](int1.arg)
                tmp2 = mod_size2uint[int2.arg.size](int2.arg)
                out = mod_size2uint[int1.arg.size](tmp1 % tmp2)
            elif op_name == 'udiv':
                assert int2.arg.arg
                tmp1 = mod_size2uint[int1.arg.size](int1.arg)
                tmp2 = mod_size2uint[int2.arg.size](int2.arg)
                out = mod_size2uint[int1.arg.size](tmp1 / tmp2)



            args.append(ExprInt(out, int1.size))

    # cnttrailzeros(int) => int
    if op_name == "cnttrailzeros" and args[0].is_int():
        i = 0
        while args[0].arg & (1 << i) == 0 and i < args[0].size:
            i += 1
        return ExprInt(i, args[0].size)

    # cntleadzeros(int) => int
    if op_name == "cntleadzeros" and args[0].is_int():
        if args[0].arg == 0:
            return ExprInt(args[0].size, args[0].size)
        i = args[0].size - 1
        while args[0].arg & (1 << i) == 0:
            i -= 1
        return ExprInt(expr.size - (i + 1), args[0].size)

    # -(-(A)) => A
    if (op_name == '-' and len(args) == 1 and args[0].is_op('-') and
        len(args[0].args) == 1):
        return args[0].args[0]

    # -(int) => -int
    if op_name == '-' and len(args) == 1 and args[0].is_int():
        return ExprInt(-int(args[0]), expr.size)
    # A op 0 =>A
    if op_name in ['+', '|', "^", "<<", ">>", "<<<", ">>>"] and len(args) > 1:
        if args[-1].is_int(0):
            args.pop()
    # A - 0 =>A
    if op_name == '-' and len(args) > 1 and args[-1].is_int(0):
        assert len(args) == 2 # Op '-' with more than 2 args: SantityCheckError
        return args[0]

    # A * 1 =>A
    if op_name == "*" and len(args) > 1 and args[-1].is_int(1):
        args.pop()

    # for cannon form
    # A * -1 => - A
    if op_name == "*" and len(args) > 1 and args[-1] == args[-1].mask:
        args.pop()
        args[-1] = - args[-1]

    # op A => A
    if op_name in ['+', '*', '^', '&', '|', '>>', '<<',
              'a>>', '<<<', '>>>', 'idiv', 'imod', 'umod', 'udiv'] and len(args) == 1:
        return args[0]

    # A-B => A + (-B)
    if op_name == '-' and len(args) > 1:
        if len(args) > 2:
            raise ValueError(
                'sanity check fail on expr -: should have one or 2 args ' +
                '%r %s' % (expr, expr))
        return ExprOp('+', args[0], -args[1])

    # A op 0 => 0
    if op_name in ['&', "*"] and args[-1].is_int(0):
        return ExprInt(0, expr.size)

    # - (A + B +...) => -A + -B + -C
    if op_name == '-' and len(args) == 1 and args[0].is_op('+'):
        args = [-a for a in args[0].args]
        return ExprOp('+', *args)

    # -(a?int1:int2) => (a?-int1:-int2)
    if (op_name == '-' and len(args) == 1 and
        args[0].is_cond() and
        args[0].src1.is_int() and args[0].src2.is_int()):
        int1 = args[0].src1
        int2 = args[0].src2
        int1 = ExprInt(-int1.arg, int1.size)
        int2 = ExprInt(-int2.arg, int2.size)
        return ExprCond(args[0].cond, int1, int2)

    i = 0
    while i < len(args) - 1:
        j = i + 1
        while j < len(args):
            # A ^ A => 0
            if op_name == '^' and args[i] == args[j]:
                args[i] = ExprInt(0, args[i].size)
                del args[j]
                continue
            # A + (- A) => 0
            if op_name == '+' and args[j].is_op("-"):
                if len(args[j].args) == 1 and args[i] == args[j].args[0]:
                    args[i] = ExprInt(0, args[i].size)
                    del args[j]
                    continue
            # (- A) + A => 0
            if op_name == '+' and args[i].is_op("-"):
                if len(args[i].args) == 1 and args[j] == args[i].args[0]:
                    args[i] = ExprInt(0, args[i].size)
                    del args[j]
                    continue
            # A | A => A
            if op_name == '|' and args[i] == args[j]:
                del args[j]
                continue
            # A & A => A
            if op_name == '&' and args[i] == args[j]:
                del args[j]
                continue
            j += 1
        i += 1

    if op_name in ['|', '&', '%', '/', '**'] and len(args) == 1:
        return args[0]

    # A <<< A.size => A
    if (op_name in ['<<<', '>>>'] and
        args[1].is_int() and
        args[1].arg == args[0].size):
        return args[0]

    # (A <<< X) <<< Y => A <<< (X+Y) (or <<< >>>) if X + Y does not overflow
    if (op_name in ['<<<', '>>>'] and
        args[0].is_op() and
        args[0].op in ['<<<', '>>>']):
        A = args[0].args[0]
        X = args[0].args[1]
        Y = args[1]
        if op_name != args[0].op and e_s(X - Y) == ExprInt(0, X.size):
            return args[0].args[0]
        elif X.is_int() and Y.is_int():
            new_X = int(X) % expr.size
            new_Y = int(Y) % expr.size
            if op_name == args[0].op:
                rot = (new_X + new_Y) % expr.size
                op = op_name
            else:
                rot = new_Y - new_X
                op = op_name
                if rot < 0:
                    rot = - rot
                    op = {">>>": "<<<", "<<<": ">>>"}[op_name]
            args = [A, ExprInt(rot, expr.size)]
            op_name = op

        else:
            # Do not consider this case, too tricky (overflow on addition /
            # substraction)
            pass

    # A >> X >> Y  =>  A >> (X+Y) if X + Y does not overflow
    # To be sure, only consider the simplification when X.msb and Y.msb are 0
    if (op_name in ['<<', '>>'] and
        args[0].is_op(op_name)):
        X = args[0].args[1]
        Y = args[1]
        if (e_s(X.msb()) == ExprInt(0, 1) and
            e_s(Y.msb()) == ExprInt(0, 1)):
            args = [args[0].args[0], X + Y]

    # ((var >> int1) << int1) => var & mask
    # ((var << int1) >> int1) => var & mask
    if (op_name in ['<<', '>>'] and
        args[0].is_op() and
        args[0].op in ['<<', '>>'] and
        op_name != args[0]):
        var = args[0].args[0]
        int1 = args[0].args[1]
        int2 = args[1]
        if int1 == int2 and int1.is_int() and int(int1) < expr.size:
            if op_name == '>>':
                mask = ExprInt((1 << (expr.size - int(int1))) - 1, expr.size)
            else:
                mask = ExprInt(
                    ((1 << int(int1)) - 1) ^ ((1 << expr.size) - 1),
                    expr.size
                )
            ret = var & mask
            return ret

    # ((A & A.mask)
    if op_name == "&" and args[-1] == expr.mask:
        return ExprOp('&', *args[:-1])

    # ((A | A.mask)
    if op_name == "|" and args[-1] == expr.mask:
        return args[-1]

    # ! (!X + int) => X - int
    # TODO

    # ((A & mask) >> shift) whith mask < 2**shift => 0
    if op_name == ">>" and args[1].is_int() and args[0].is_op("&"):
        if (args[0].args[1].is_int() and
            2 ** args[1].arg > args[0].args[1].arg):
            return ExprInt(0, args[0].size)

    # parity(int) => int
    if op_name == 'parity' and args[0].is_int():
        return ExprInt(parity(int(args[0])), 1)

    # (-a) * b * (-c) * (-d) => (-a) * b * c * d
    if op_name == "*" and len(args) > 1:
        new_args = []
        counter = 0
        for arg in args:
            if arg.is_op('-') and len(arg.args) == 1:
                new_args.append(arg.args[0])
                counter += 1
            else:
                new_args.append(arg)
        if counter % 2:
            return -ExprOp(op_name, *new_args)
        args = new_args

    # A << int with A ExprCompose => move index
    if (op_name == "<<" and args[0].is_compose() and
        args[1].is_int() and int(args[1]) != 0):
        final_size = args[0].size
        shift = int(args[1])
        new_args = []
        # shift indexes
        for index, arg in args[0].iter_args():
            new_args.append((arg, index+shift, index+shift+arg.size))
        # filter out expression
        filter_args = []
        min_index = final_size
        for tmp, start, stop in new_args:
            if start >= final_size:
                continue
            if stop > final_size:
                tmp = tmp[:tmp.size  - (stop - final_size)]
            filter_args.append(tmp)
            min_index = min(start, min_index)
        # create entry 0
        assert min_index != 0
        tmp = ExprInt(0, min_index)
        args = [tmp] + filter_args
        return ExprCompose(*args)

    # A >> int with A ExprCompose => move index
    if op_name == ">>" and args[0].is_compose() and args[1].is_int():
        final_size = args[0].size
        shift = int(args[1])
        new_args = []
        # shift indexes
        for index, arg in args[0].iter_args():
            new_args.append((arg, index-shift, index+arg.size-shift))
        # filter out expression
        filter_args = []
        max_index = 0
        for tmp, start, stop in new_args:
            if stop <= 0:
                continue
            if start < 0:
                tmp = tmp[-start:]
            filter_args.append(tmp)
            max_index = max(stop, max_index)
        # create entry 0
        tmp = ExprInt(0, final_size - max_index)
        args = filter_args + [tmp]
        return ExprCompose(*args)


    # Compose(a) OP Compose(b) with a/b same bounds => Compose(a OP b)
    if op_name in ['|', '&', '^'] and all([arg.is_compose() for arg in args]):
        bounds = set()
        for arg in args:
            bound = tuple([tmp.size for tmp in arg.args])
            bounds.add(bound)
        if len(bounds) == 1:
            new_args = [[tmp] for tmp in args[0].args]
            for sub_arg in args[1:]:
                for i, tmp in enumerate(sub_arg.args):
                    new_args[i].append(tmp)
            args = []
            for i, arg in enumerate(new_args):
                args.append(ExprOp(op_name, *arg))
            return ExprCompose(*args)

    return ExprOp(op_name, *args)


def simp_cond_op_int(e_s, expr):
    "Extract conditions from operations"


    # x?a:b + x?c:d + e => x?(a+c+e:b+d+e)
    if not expr.op in ["+", "|", "^", "&", "*", '<<', '>>', 'a>>']:
        return expr
    if len(expr.args) < 2:
        return expr
    conds = set()
    for arg in expr.args:
        if arg.is_cond():
            conds.add(arg)
    if len(conds) != 1:
        return expr
    cond = list(conds).pop()

    args1, args2 = [], []
    for arg in expr.args:
        if arg.is_cond():
            args1.append(arg.src1)
            args2.append(arg.src2)
        else:
            args1.append(arg)
            args2.append(arg)

    return ExprCond(cond.cond,
                    ExprOp(expr.op, *args1),
                    ExprOp(expr.op, *args2))


def simp_cond_factor(e_s, expr):
    "Merge similar conditions"
    if not expr.op in ["+", "|", "^", "&", "*", '<<', '>>', 'a>>']:
        return expr
    if len(expr.args) < 2:
        return expr

    if expr.op in ['>>', '<<', 'a>>']:
        assert len(expr.args) == 2

    # Note: the following code is correct for non-commutative operation only if
    # there is 2 arguments. Otherwise, the order is not conserved

    # Regroup sub-expression by similar conditions
    conds = {}
    not_conds = []
    multi_cond = False
    for arg in expr.args:
        if not arg.is_cond():
            not_conds.append(arg)
            continue
        cond = arg.cond
        if not cond in conds:
            conds[cond] = []
        else:
            multi_cond = True
        conds[cond].append(arg)
    if not multi_cond:
        return expr

    # Rebuild the new expression
    c_out = not_conds
    for cond, vals in conds.items():
        new_src1 = [x.src1 for x in vals]
        new_src2 = [x.src2 for x in vals]
        src1 = e_s.expr_simp_wrapper(ExprOp(expr.op, *new_src1))
        src2 = e_s.expr_simp_wrapper(ExprOp(expr.op, *new_src2))
        c_out.append(ExprCond(cond, src1, src2))

    if len(c_out) == 1:
        new_e = c_out[0]
    else:
        new_e = ExprOp(expr.op, *c_out)
    return new_e


def simp_slice(e_s, expr):
    "Slice optimization"

    # slice(A, 0, a.size) => A
    if expr.start == 0 and expr.stop == expr.arg.size:
        return expr.arg
    # Slice(int) => int
    if expr.arg.is_int():
        total_bit = expr.stop - expr.start
        mask = (1 << (expr.stop - expr.start)) - 1
        return ExprInt(int((expr.arg.arg >> expr.start) & mask), total_bit)
    # Slice(Slice(A, x), y) => Slice(A, z)
    if expr.arg.is_slice():
        if expr.stop - expr.start > expr.arg.stop - expr.arg.start:
            raise ValueError('slice in slice: getting more val', str(expr))

        return ExprSlice(expr.arg.arg, expr.start + expr.arg.start,
                         expr.start + expr.arg.start + (expr.stop - expr.start))
    if expr.arg.is_compose():
        # Slice(Compose(A), x) => Slice(A, y)
        for index, arg in expr.arg.iter_args():
            if index <= expr.start and index+arg.size >= expr.stop:
                return arg[expr.start - index:expr.stop - index]
        # Slice(Compose(A, B, C), x) => Compose(A, B, C) with truncated A/B/C
        out = []
        for index, arg in expr.arg.iter_args():
            # arg is before slice start
            if expr.start >= index + arg.size:
                continue
            # arg is after slice stop
            elif expr.stop <= index:
                continue
            # arg is fully included in slice
            elif expr.start <= index and index + arg.size <= expr.stop:
                out.append(arg)
                continue
            # arg is truncated at start
            if expr.start > index:
                slice_start = expr.start - index
            else:
                # arg is not truncated at start
                slice_start = 0
            # a is truncated at stop
            if expr.stop < index + arg.size:
                slice_stop = arg.size + expr.stop - (index + arg.size) - slice_start
            else:
                slice_stop = arg.size
            out.append(arg[slice_start:slice_stop])

        return ExprCompose(*out)

    # ExprMem(x, size)[:A] => ExprMem(x, a)
    # XXXX todo hum, is it safe?
    if (expr.arg.is_mem() and
          expr.start == 0 and
          expr.arg.size > expr.stop and expr.stop % 8 == 0):
        return ExprMem(expr.arg.arg, size=expr.stop)
    # distributivity of slice and &
    # (a & int)[x:y] => 0 if int[x:y] == 0
    if expr.arg.is_op("&") and expr.arg.args[-1].is_int():
        tmp = e_s.expr_simp_wrapper(expr.arg.args[-1][expr.start:expr.stop])
        if tmp.is_int(0):
            return tmp
    # distributivity of slice and exprcond
    # (a?int1:int2)[x:y] => (a?int1[x:y]:int2[x:y])
    # (a?compose1:compose2)[x:y] => (a?compose1[x:y]:compose2[x:y])
    if (expr.arg.is_cond() and
        (expr.arg.src1.is_int() or expr.arg.src1.is_compose()) and
        (expr.arg.src2.is_int() or expr.arg.src2.is_compose())):
        src1 = expr.arg.src1[expr.start:expr.stop]
        src2 = expr.arg.src2[expr.start:expr.stop]
        return ExprCond(expr.arg.cond, src1, src2)

    # (a * int)[0:y] => (a[0:y] * int[0:y])
    if expr.start == 0 and expr.arg.is_op("*") and expr.arg.args[-1].is_int():
        args = [e_s.expr_simp_wrapper(a[expr.start:expr.stop]) for a in expr.arg.args]
        return ExprOp(expr.arg.op, *args)

    # (a >> int)[x:y] => a[x+int:y+int] with int+y <= a.size
    # (a << int)[x:y] => a[x-int:y-int] with x-int >= 0
    if (expr.arg.is_op() and expr.arg.op in [">>", "<<"] and
          expr.arg.args[1].is_int()):
        arg, shift = expr.arg.args
        shift = int(shift)
        if expr.arg.op == ">>":
            if shift + expr.stop <= arg.size:
                return arg[expr.start + shift:expr.stop + shift]
        elif expr.arg.op == "<<":
            if expr.start - shift >= 0:
                return arg[expr.start - shift:expr.stop - shift]
        else:
            raise ValueError('Bad case')

    return expr


def simp_compose(e_s, expr):
    "Commons simplification on ExprCompose"
    args = merge_sliceto_slice(expr)
    out = []
    # compose of compose
    for arg in args:
        if arg.is_compose():
            out += arg.args
        else:
            out.append(arg)
    args = out
    # Compose(a) with a.size = compose.size => a
    if len(args) == 1 and args[0].size == expr.size:
        return args[0]

    # {(X[z:], 0, X.size-z), (0, X.size-z, X.size)} => (X >> z)
    if len(args) == 2 and args[1].is_int(0):
        if (args[0].is_slice() and
            args[0].stop == args[0].arg.size and
            args[0].size + args[1].size == args[0].arg.size):
            new_expr = args[0].arg >> ExprInt(args[0].start, args[0].arg.size)
            return new_expr

    # {@X[base + i] 0 X, @Y[base + i + X] X (X + Y)} => @(X+Y)[base + i]
    for i, arg in enumerate(args[:-1]):
        nxt = args[i + 1]
        if arg.is_mem() and nxt.is_mem():
            gap = e_s(nxt.arg - arg.arg)
            if gap.is_int() and arg.size % 8 == 0 and int(gap) == arg.size / 8:
                args = args[:i] + [ExprMem(arg.arg,
                                          arg.size + nxt.size)] + args[i + 2:]
                return ExprCompose(*args)

    # {a, x?b:d, x?c:e, f} => x?{a, b, c, f}:{a, d, e, f}
    conds = set(arg.cond for arg in expr.args if arg.is_cond())
    if len(conds) == 1:
        cond = list(conds)[0]
        args1, args2 = [], []
        for arg in expr.args:
            if arg.is_cond():
                args1.append(arg.src1)
                args2.append(arg.src2)
            else:
                args1.append(arg)
                args2.append(arg)
        arg1 = e_s(ExprCompose(*args1))
        arg2 = e_s(ExprCompose(*args2))
        return ExprCond(cond, arg1, arg2)
    return ExprCompose(*args)


def simp_cond(e_s, expr):
    "Common simplifications on ExprCond"
    # eval exprcond src1/src2 with satifiable/unsatisfiable condition
    # propagation
    if (not expr.cond.is_int()) and expr.cond.size == 1:
        src1 = expr.src1.replace_expr({expr.cond: ExprInt(1, 1)})
        src2 = expr.src2.replace_expr({expr.cond: ExprInt(0, 1)})
        if src1 != expr.src1 or src2 != expr.src2:
            return ExprCond(expr.cond, src1, src2)

    # -A ? B:C => A ? B:C
    if expr.cond.is_op('-') and len(expr.cond.args) == 1:
        expr = ExprCond(expr.cond.args[0], expr.src1, expr.src2)
    # a?x:x
    elif expr.src1 == expr.src2:
        expr = expr.src1
    # int ? A:B => A or B
    elif expr.cond.is_int():
        if expr.cond.arg == 0:
            expr = expr.src2
        else:
            expr = expr.src1
    # a?(a?b:c):x => a?b:x
    elif expr.src1.is_cond() and expr.cond == expr.src1.cond:
        expr = ExprCond(expr.cond, expr.src1.src1, expr.src2)
    # a?x:(a?b:c) => a?x:c
    elif expr.src2.is_cond() and expr.cond == expr.src2.cond:
        expr = ExprCond(expr.cond, expr.src1, expr.src2.src2)
    # a|int ? b:c => b with int != 0
    elif (expr.cond.is_op('|') and
          expr.cond.args[1].is_int() and
          expr.cond.args[1].arg != 0):
        return expr.src1

    # (C?int1:int2)?(A:B) =>
    elif (expr.cond.is_cond() and
          expr.cond.src1.is_int() and
          expr.cond.src2.is_int()):
        int1 = expr.cond.src1.arg.arg
        int2 = expr.cond.src2.arg.arg
        if int1 and int2:
            expr = expr.src1
        elif int1 == 0 and int2 == 0:
            expr = expr.src2
        elif int1 == 0 and int2:
            expr = ExprCond(expr.cond.cond, expr.src2, expr.src1)
        elif int1 and int2 == 0:
            expr = ExprCond(expr.cond.cond, expr.src1, expr.src2)

    elif expr.cond.is_compose():
        # {0, X, 0}?(A:B) => X?(A:B)
        args = [arg for arg in expr.cond.args if not arg.is_int(0)]
        if len(args) == 1:
            arg = args.pop()
            return ExprCond(arg, expr.src1, expr.src2)
        elif len(args) < len(expr.cond.args):
            return ExprCond(ExprCompose(*args), expr.src1, expr.src2)
    return expr


def simp_mem(e_s, expr):
    "Common simplifications on ExprMem"

    # @32[x?a:b] => x?@32[a]:@32[b]
    if expr.arg.is_cond():
        cond = expr.arg
        ret = ExprCond(cond.cond,
                       ExprMem(cond.src1, expr.size),
                       ExprMem(cond.src2, expr.size))
        return ret
    return expr




def test_cc_eq_args(expr, *sons_op):
    if not expr.is_op():
        return False
    if len(expr.args) != len(sons_op):
        return False
    all_args = set()
    for i, arg in enumerate(expr.args):
        if not arg.is_op(sons_op[i]):
            return False
        all_args.add(arg.args)
    return len(all_args) == 1


def simp_cc_conds(expr_simp, expr):
    if (expr.is_op("CC_U>=") and
          test_cc_eq_args(
              expr,
              "FLAG_SUB_CF"
          )):
        expr = ExprCond(
            ExprOp("<u", *expr.args[0].args),
            ExprInt(0, 1),
            ExprInt(1, 1))

    elif (expr.is_op("CC_U<") and
          test_cc_eq_args(
              expr,
              "FLAG_SUB_CF"
          )):
        expr = ExprOp("<u", *expr.args[0].args)

    elif (expr.is_op("CC_NEG") and
          test_cc_eq_args(
              expr,
              "FLAG_SIGN_SUB"
          )):
        expr = ExprOp("<s", *expr.args[0].args)

    elif (expr.is_op("CC_POS") and
          test_cc_eq_args(
              expr,
              "FLAG_SIGN_SUB"
          )):
        expr = ExprCond(
            ExprOp("<s", *expr.args[0].args),
            ExprInt(0, 1),
            ExprInt(1, 1)
        )

    elif (expr.is_op("CC_EQ") and
          test_cc_eq_args(
              expr,
              "FLAG_EQ"
          )):
        arg = expr.args[0].args[0]
        expr = ExprOp("==", arg, ExprInt(0, arg.size))

    elif (expr.is_op("CC_NE") and
          test_cc_eq_args(
              expr,
              "FLAG_EQ"
          )):
        arg = expr.args[0].args[0]
        expr = ExprCond(
            ExprOp("==",arg, ExprInt(0, arg.size)),
            ExprInt(0, 1),
            ExprInt(1, 1)
        )
    elif (expr.is_op("CC_NE") and
          test_cc_eq_args(
              expr,
              "FLAG_EQ_CMP"
          )):
        expr = ExprCond(
            ExprOp("==", *expr.args[0].args),
            ExprInt(0, 1),
            ExprInt(1, 1)
        )

    elif (expr.is_op("CC_EQ") and
          test_cc_eq_args(
              expr,
              "FLAG_EQ_CMP"
          )):
        expr = ExprOp("==", *expr.args[0].args)

    elif (expr.is_op("CC_NE") and
          test_cc_eq_args(
              expr,
              "FLAG_EQ_AND"
          )):
        expr = ExprOp("&", *expr.args[0].args)

    elif (expr.is_op("CC_EQ") and
          test_cc_eq_args(
              expr,
              "FLAG_EQ_AND"
          )):
        expr = ExprCond(
            ExprOp("&", *expr.args[0].args),
            ExprInt(0, 1),
            ExprInt(1, 1)
        )

    elif (expr.is_op("CC_S>") and
          test_cc_eq_args(
              expr,
              "FLAG_SIGN_SUB",
              "FLAG_SUB_OF",
              "FLAG_EQ_CMP",
          )):
        expr = ExprCond(
            ExprOp("<=s", *expr.args[0].args),
            ExprInt(0, 1),
            ExprInt(1, 1)
        )

    elif (expr.is_op("CC_S>") and
          len(expr.args) == 3 and
          expr.args[0].is_op("FLAG_SIGN_SUB") and
          expr.args[2].is_op("FLAG_EQ_CMP") and
          expr.args[0].args == expr.args[2].args and
          expr.args[1].is_int(0)):
        expr = ExprCond(
            ExprOp("<=s", *expr.args[0].args),
            ExprInt(0, 1),
            ExprInt(1, 1)
        )



    elif (expr.is_op("CC_S>=") and
          test_cc_eq_args(
              expr,
              "FLAG_SIGN_SUB",
              "FLAG_SUB_OF"
          )):
        expr = ExprCond(
            ExprOp("<s", *expr.args[0].args),
            ExprInt(0, 1),
            ExprInt(1, 1)
        )

    elif (expr.is_op("CC_S<") and
          test_cc_eq_args(
              expr,
              "FLAG_SIGN_SUB",
              "FLAG_SUB_OF"
          )):
        expr = ExprOp("<s", *expr.args[0].args)

    elif (expr.is_op("CC_S<=") and
          test_cc_eq_args(
              expr,
              "FLAG_SIGN_SUB",
              "FLAG_SUB_OF",
              "FLAG_EQ_CMP",
          )):
        expr = ExprOp("<=s", *expr.args[0].args)

    elif (expr.is_op("CC_S<=") and
          len(expr.args) == 3 and
          expr.args[0].is_op("FLAG_SIGN_SUB") and
          expr.args[2].is_op("FLAG_EQ_CMP") and
          expr.args[0].args == expr.args[2].args and
          expr.args[1].is_int(0)):
        expr = ExprOp("<=s", *expr.args[0].args)

    elif (expr.is_op("CC_U<=") and
          test_cc_eq_args(
              expr,
              "FLAG_SUB_CF",
              "FLAG_EQ_CMP",
          )):
        expr = ExprOp("<=u", *expr.args[0].args)

    elif (expr.is_op("CC_U>") and
          test_cc_eq_args(
              expr,
              "FLAG_SUB_CF",
              "FLAG_EQ_CMP",
          )):
        expr = ExprCond(
            ExprOp("<=u", *expr.args[0].args),
            ExprInt(0, 1),
            ExprInt(1, 1)
        )

    elif (expr.is_op("CC_S<") and
          test_cc_eq_args(
              expr,
              "FLAG_SIGN_ADD",
              "FLAG_ADD_OF"
          )):
        arg0, arg1 = expr.args[0].args
        expr = ExprOp("<s", arg0, -arg1)

    return expr



def simp_cond_flag(expr_simp, expr):
    # FLAG_EQ_CMP(X, Y)?A:B => (X == Y)?A:B
    cond = expr.cond
    if cond.is_op("FLAG_EQ_CMP"):
        return ExprCond(ExprOp("==", *cond.args), expr.src1, expr.src2)
    return expr


def simp_cond_int(expr_simp, expr):
    if (expr.cond.is_op('==') and
          expr.cond.args[1].is_int() and
          expr.cond.args[0].is_compose() and
          len(expr.cond.args[0].args) == 2 and
          expr.cond.args[0].args[1].is_int(0)):
        # ({X, 0} == int) => X == int[:]
        src = expr.cond.args[0].args[0]
        int_val = int(expr.cond.args[1])
        new_int = ExprInt(int_val, src.size)
        expr = expr_simp(ExprCond(ExprOp("==", src, new_int), expr.src1, expr.src2))
    elif (expr.cond.is_op() and
          expr.cond.op in ['==', '<s', '<=s', '<u', '<=u'] and
          expr.cond.args[1].is_int() and
          expr.cond.args[0].is_op("+") and
          expr.cond.args[0].args[-1].is_int()):
        # X + int1 == int2 => X == int2-int1
        left, right = expr.cond.args
        left, int_diff = left.args[:-1], left.args[-1]
        if len(left) == 1:
            left = left[0]
        else:
            left = ExprOp('+', *left)
        new_int = expr_simp(right - int_diff)
        expr = expr_simp(ExprCond(ExprOp(expr.cond.op, left, new_int), expr.src1, expr.src2))
    return expr



def simp_cmp_int_arg(expr_simp, expr):
    """
    (0x10 <= R0) ? A:B
    =>
    (R0 < 0x10) ? B:A
    """
    cond = expr.cond
    if not cond.is_op():
        return expr
    op = cond.op
    if op not in ['==', '<s', '<=s', '<u', '<=u']:
        return expr
    arg1, arg2 = cond.args
    if arg2.is_int():
        return expr
    if not arg1.is_int():
        return expr
    src1, src2 = expr.src1, expr.src2
    if op == "==":
        return ExprCond(ExprOp('==', arg2, arg1), src1, src2)

    arg1, arg2 = arg2, arg1
    src1, src2 = src2, src1
    if op == '<s':
        op = '<=s'
    elif op == '<=s':
        op = '<s'
    elif op == '<u':
        op = '<=u'
    elif op == '<=u':
        op = '<u'
    return ExprCond(ExprOp(op, arg1, arg2), src1, src2)




def simp_subwc_cf(expr_s, expr):
    # SUBWC_CF(A, B, SUB_CF(C, D)) => SUB_CF({A, C}, {B, D})
    if not expr.is_op('FLAG_SUBWC_CF'):
        return expr
    op3 = expr.args[2]
    if not op3.is_op("FLAG_SUB_CF"):
        return expr

    op1 = ExprCompose(expr.args[0], op3.args[0])
    op2 = ExprCompose(expr.args[1], op3.args[1])

    return ExprOp("FLAG_SUB_CF", op1, op2)


def simp_subwc_of(expr_s, expr):
    # SUBWC_OF(A, B, SUB_CF(C, D)) => SUB_OF({A, C}, {B, D})
    if not expr.is_op('FLAG_SUBWC_OF'):
        return expr
    op3 = expr.args[2]
    if not op3.is_op("FLAG_SUB_CF"):
        return expr

    op1 = ExprCompose(expr.args[0], op3.args[0])
    op2 = ExprCompose(expr.args[1], op3.args[1])

    return ExprOp("FLAG_SUB_OF", op1, op2)


def simp_sign_subwc_cf(expr_s, expr):
    # SIGN_SUBWC(A, B, SUB_CF(C, D)) => SIGN_SUB({A, C}, {B, D})
    if not expr.is_op('FLAG_SIGN_SUBWC'):
        return expr
    op3 = expr.args[2]
    if not op3.is_op("FLAG_SUB_CF"):
        return expr

    op1 = ExprCompose(expr.args[0], op3.args[0])
    op2 = ExprCompose(expr.args[1], op3.args[1])

    return ExprOp("FLAG_SIGN_SUB", op1, op2)

def simp_double_zeroext(expr_s, expr):
    # A.zeroExt(X).zeroExt(Y) => A.zeroExt(Y)
    if not (expr.is_op() and expr.op.startswith("zeroExt")):
        return expr
    arg1 = expr.args[0]
    if not (arg1.is_op() and arg1.op.startswith("zeroExt")):
        return expr
    arg2 = arg1.args[0]
    return ExprOp(expr.op, arg2)

def simp_double_signext(expr_s, expr):
    # A.signExt(X).signExt(Y) => A.signExt(Y)
    if not (expr.is_op() and expr.op.startswith("signExt")):
        return expr
    arg1 = expr.args[0]
    if not (arg1.is_op() and arg1.op.startswith("signExt")):
        return expr
    arg2 = arg1.args[0]
    return ExprOp(expr.op, arg2)

def simp_zeroext_eq_cst(expr_s, expr):
    # A.zeroExt(X) == int => A == int[:A.size]
    if not expr.is_op("=="):
        return expr
    arg1, arg2 = expr.args
    if not arg2.is_int():
        return expr
    if not (arg1.is_op() and arg1.op.startswith("zeroExt")):
        return expr
    src = arg1.args[0]
    if int(arg2) > (1 << src.size):
        # Always false
        return ExprInt(0, 1)
    return ExprOp("==", src, ExprInt(int(arg2), src.size))