1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
|
#!/usr/bin/env python
#-*- coding:utf-8 -*-
import logging
from miasm2.ir.symbexec import symbexec
from miasm2.core.graph import DiGraph
from miasm2.expression.expression \
import ExprAff, ExprCond, ExprId, ExprInt, ExprMem, ExprOp
log = logging.getLogger("analysis")
console_handler = logging.StreamHandler()
console_handler.setFormatter(logging.Formatter("%(levelname)-5s: %(message)s"))
log.addHandler(console_handler)
log.setLevel(logging.WARNING)
class ira:
def sort_dst(self, todo, done):
out = set()
while todo:
dst = todo.pop()
if self.ExprIsLabel(dst):
done.add(dst)
elif isinstance(dst, ExprMem) or isinstance(dst, ExprInt):
done.add(dst)
elif isinstance(dst, ExprCond):
todo.add(dst.src1)
todo.add(dst.src2)
elif isinstance(dst, ExprId):
out.add(dst)
else:
done.add(dst)
return out
def dst_trackback(self, b):
dst = b.dst
todo = set([dst])
out = set()
done = set()
for irs in reversed(b.irs):
if len(todo) == 0:
break
out = self.sort_dst(todo, done)
found = set()
follow = set()
for i in irs:
if not out:
break
for o in out:
if i.dst == o:
follow.add(i.src)
found.add(o)
for o in found:
out.remove(o)
for o in out:
if not o in found:
follow.add(o)
todo = follow
out = self.sort_dst(todo, done)
return done
def gen_graph(self, link_all = True):
"""
Gen irbloc digraph
@link_all: also gen edges to non present irblocs
"""
self.g = DiGraph()
for lbl, b in self.blocs.items():
# print 'add', lbl
self.g.add_node(lbl)
# dst = self.get_bloc_dst(b)
dst = self.dst_trackback(b)
# print "\tdst", dst
for d in dst:
if isinstance(d, ExprInt):
d = ExprId(
self.symbol_pool.getby_offset_create(int(d.arg)))
if self.ExprIsLabel(d):
if d.name in self.blocs or link_all is True:
self.g.add_edge(lbl, d.name)
def graph(self):
"""Output the graphviz script"""
out = """
digraph asm_graph {
size="80,50";
node [
fontsize = "16",
shape = "box"
];
"""
all_lbls = {}
for lbl in self.g.nodes():
if not lbl in self.blocs:
continue
irb = self.blocs[lbl]
ir_txt = [str(lbl)]
for irs in irb.irs:
for l in irs:
ir_txt.append(str(l))
ir_txt.append("")
ir_txt.append("")
all_lbls[hash(lbl)] = "\l\\\n".join(ir_txt)
for l, v in all_lbls.items():
# print l, v
out += '%s [label="%s"];\n' % (l, v)
for a, b in self.g.edges():
# print 'edge', a, b, hash(a), hash(b)
out += '%s -> %s;\n' % (hash(a), hash(b))
out += '}'
return out
def remove_dead(self, irb):
"""Remove dead affectations using previous liveness analysis
@irb: irbloc instance
Return True iff the bloc state has changed
PRE: compute_in_out(@irb)
"""
# print 'state1'
# self.dump_bloc_state(irb)
modified = False
for ir, _, c_out in zip(irb.irs, irb.c_in, irb.c_out):
j = 0
while j < len(ir):
i_cur = ir[j]
if not isinstance(i_cur.dst, ExprId):
pass
elif i_cur.dst == self.IRDst:
# never delete irdst
pass
elif (isinstance(i_cur.src, ExprOp) and
i_cur.src.op.startswith('call')):
# /!\ never remove ir calls
pass
elif not i_cur.dst in c_out:
del(ir[j])
modified = True
continue
j += 1
# print 'state2'
# self.dump_bloc_state(irb)
return modified
def remove_blocs_dead(self):
"""Call remove_dead on each irbloc
Return True iff one of the bloc state has changed
"""
modified = False
for b in self.blocs.values():
modified |= self.remove_dead(b)
return modified
# for test XXX TODO
def set_dead_regs(self, b):
pass
def add_unused_regs(self):
pass
def dump_bloc_state(self, irb):
print '*'*80
for i, (ir, c_in, c_out) in enumerate(zip(irb.irs, irb.c_in, irb.c_out)):
print 'ir'
for x in ir:
print '\t', x
print 'R', [str(x) for x in irb.r[i]]#c_in]
print 'W', [str(x) for x in irb.w[i]]#c_out]
print 'IN', [str(x) for x in c_in]
print 'OUT', [str(x) for x in c_out]
print 'OUT final', [str(x) for x in irb.c_out[-1]]
def compute_in_out(self, irb):
"""Liveness computation for a single bloc
@irb: irbloc instance
Return True iff bloc state has changed
"""
# get out/in from bloc sons
modified = False
# set b in
if irb.c_in[-1] != set(irb.r[-1].union(irb.c_out[-1].difference(irb.w[-1]))):
modified = True
irb.c_in[-1] = set(irb.r[-1].union(irb.c_out[-1].difference(irb.w[-1])))
# set b out
c_out = set()
has_son = False
for n_son in self.g.successors(irb.label):
has_son = True
if not n_son in self.blocs:
# If the son is not defined, we will propagate our current out
# nodes to the in nodes's son
son_c_in = irb.c_out_missing
else:
son_c_in = self.blocs[n_son].c_in[0]
c_out.update(son_c_in)
if not has_son:
# special case: leaf nodes architecture dependant
c_out = self.get_out_regs(irb)
if irb.c_out[-1] != set(c_out):
modified = True
irb.c_out[-1] = set(c_out)
# get out/in for bloc
for i in reversed(xrange(len(irb.irs))):
if irb.c_in[i] != set(irb.r[i].union(irb.c_out[i].difference(irb.w[i]))):
modified = True
irb.c_in[i] = set(irb.r[i].union(irb.c_out[i].difference(irb.w[i])))
if irb.c_out[i] != set(irb.c_in[i + 1]):
modified = True
irb.c_out[i] = set(irb.c_in[i + 1])
return modified
def test_in_out_fix(self):
"""Return True iff a fixed point has been reached during liveness
analysis"""
fixed = True
for node in self.g.nodes():
if not node in self.blocs:
# leaf has lost her son
continue
irb = self.blocs[node]
if irb.c_in != irb.l_in or irb.c_out != irb.l_out:
fixed = False
irb.l_in = [set(x) for x in irb.c_in]
irb.l_out = [set(x) for x in irb.c_out]
return fixed
def fill_missing_son_c_in(self):
"""Find nodes with missing sons in graph, and add virtual link to all
written variables of all parents.
PRE: gen_graph() and get_rw()"""
for node in self.g.nodes():
if not node in self.blocs:
continue
self.blocs[node].c_out_missing = set()
has_all_son = True
for node_son in self.g.successors(node):
if not node_son in self.blocs:
has_all_son = False
break
if has_all_son:
continue
parents = self.g.get_all_parents(node)
for parent in parents:
irb = self.blocs[parent]
for var_w in irb.w:
self.blocs[node].c_out_missing.update(var_w)
def compute_dead(self):
"""Iterate liveness analysis until a fixed point is reached.
PRE: gen_graph()
"""
it = 0
fixed_point = False
log.debug('iteration...')
while not fixed_point:
log.debug(it)
it += 1
for n in self.g.nodes():
if not n in self.blocs:
# leaf has lost her son
continue
irb = self.blocs[n]
self.compute_in_out(irb)
fixed_point = self.test_in_out_fix()
def dead_simp(self):
"""This function is used to analyse relation of a * complete function *
This mean the blocs under study represent a solid full function graph.
Ref: CS 5470 Compiler Techniques and Principles (Liveness
analysis/Dataflow equations)
PRE: call to gen_graph
"""
modified = True
while modified:
log.debug('dead_simp step')
# Update r/w variables for all irblocs
self.get_rw()
# Fill c_in for missing sons
self.fill_missing_son_c_in()
# Liveness step
self.compute_dead()
modified = self.remove_blocs_dead()
# Simplify expressions
self.simplify_blocs()
def gen_equations(self):
for irb in self.blocs.values():
symbols_init = {}
for r in self.arch.regs.all_regs_ids:
x = ExprId(r.name, r.size)
x.is_term = True
symbols_init[r] = x
sb = symbexec(self, dict(symbols_init))
sb.emulbloc(irb)
eqs = []
for n_w in sb.symbols:
v = sb.symbols[n_w]
if n_w in symbols_init and symbols_init[n_w] == v:
continue
eqs.append(ExprAff(n_w, v))
print '*' * 40
print irb
irb.irs = [eqs]
irb.lines = [None]
def sizeof_char(self):
"Return the size of a char in bits"
raise NotImplementedError("Abstract method")
def sizeof_short(self):
"Return the size of a short in bits"
raise NotImplementedError("Abstract method")
def sizeof_int(self):
"Return the size of an int in bits"
raise NotImplementedError("Abstract method")
def sizeof_long(self):
"Return the size of a long in bits"
raise NotImplementedError("Abstract method")
def sizeof_pointer(self):
"Return the size of a void* in bits"
raise NotImplementedError("Abstract method")
|