about summary refs log tree commit diff stats
path: root/miasm2/ir/symbexec.py
blob: 2bb99e5dc720a625df826a7ef06e4f922a925940 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
import miasm2.expression.expression as m2_expr
from miasm2.expression.modint import int32
from miasm2.expression.simplifications import expr_simp
from miasm2.core import asmbloc
from miasm2.ir.ir import AssignBlock
from miasm2.core.interval import interval
from miasm2.core.utils import get_caller_name
import warnings

import logging


log = logging.getLogger("symbexec")
console_handler = logging.StreamHandler()
console_handler.setFormatter(logging.Formatter("%(levelname)-5s: %(message)s"))
log.addHandler(console_handler)
log.setLevel(logging.INFO)


class symbols(object):

    def __init__(self, init=None):
        if init is None:
            init = {}
        self.symbols_id = {}
        self.symbols_mem = {}
        for expr, value in init.items():
            self[expr] = value

    def __contains__(self, expr):
        if not isinstance(expr, m2_expr.ExprMem):
            return self.symbols_id.__contains__(expr)
        if not self.symbols_mem.__contains__(expr.arg):
            return False
        return self.symbols_mem[expr.arg][0].size == expr.size

    def __getitem__(self, expr):
        if not isinstance(expr, m2_expr.ExprMem):
            return self.symbols_id.__getitem__(expr)
        if not expr.arg in self.symbols_mem:
            raise KeyError(expr)
        mem, value = self.symbols_mem.__getitem__(expr.arg)
        if mem.size != expr.size:
            raise KeyError(expr)
        return value

    def get(self, expr, default=None):
        if not isinstance(expr, m2_expr.ExprMem):
            return self.symbols_id.get(expr, default)
        if not expr.arg in self.symbols_mem:
            return default
        mem, value = self.symbols_mem.__getitem__(expr.arg)
        if mem.size != expr.size:
            return default
        return value

    def __setitem__(self, expr, value):
        if not isinstance(expr, m2_expr.ExprMem):
            self.symbols_id.__setitem__(expr, value)
            return
        assert expr.size == value.size
        self.symbols_mem.__setitem__(expr.arg, (expr, value))

    def __iter__(self):
        for expr in self.symbols_id:
            yield expr
        for expr in self.symbols_mem:
            yield self.symbols_mem[expr][0]

    def __delitem__(self, expr):
        if not isinstance(expr, m2_expr.ExprMem):
            self.symbols_id.__delitem__(expr)
        else:
            self.symbols_mem.__delitem__(expr.arg)

    def items(self):
        return self.symbols_id.items() + [x for x in self.symbols_mem.values()]

    def keys(self):
        return (self.symbols_id.keys() +
                [x[0] for x in self.symbols_mem.values()])

    def copy(self):
        new_symbols = symbols()
        new_symbols.symbols_id = dict(self.symbols_id)
        new_symbols.symbols_mem = dict(self.symbols_mem)
        return new_symbols

    def inject_info(self, info):
        new_symbols = symbols()
        for expr, value in self.items():
            expr = expr_simp(expr.replace_expr(info))
            value = expr_simp(value.replace_expr(info))
            new_symbols[expr] = value
        return new_symbols


class symbexec(object):

    def __init__(self, ir_arch, known_symbols,
                 func_read=None,
                 func_write=None,
                 sb_expr_simp=expr_simp):
        self.symbols = symbols()
        for expr, value in known_symbols.items():
            self.symbols[expr] = value
        self.func_read = func_read
        self.func_write = func_write
        self.ir_arch = ir_arch
        self.expr_simp = sb_expr_simp

    def find_mem_by_addr(self, expr):
        """
        Return memory keys with pointer equal to @expr
        @expr: address of the searched memory variable
        """
        if expr in self.symbols.symbols_mem:
            return self.symbols.symbols_mem[expr][0]
        return None

    def get_mem_state(self, expr):
        """
        Evaluate the @expr memory in the current state using @cache
        @expr: the memory key
        """
        ptr, size = expr.arg, expr.size
        ret = self.find_mem_by_addr(ptr)
        if not ret:
            out = []
            overlaps = self.get_mem_overlapping(expr)
            off_base = 0
            for off, mem in overlaps:
                if off >= 0:
                    new_size = min(size - off * 8, mem.size)
                    tmp = self.expr_simp(self.symbols[mem][0:new_size])
                    out.append((tmp, off_base, off_base + new_size))
                    off_base += new_size
                else:
                    new_size = min(size - off * 8, mem.size)
                    tmp = self.expr_simp(self.symbols[mem][-off * 8:new_size])
                    new_off_base = off_base + new_size + off * 8
                    out.append((tmp, off_base, new_off_base))
                    off_base = new_off_base
            if out:
                missing_slice = self.rest_slice(out, 0, size)
                for slice_start, slice_stop in missing_slice:
                    ptr = self.expr_simp(ptr + m2_expr.ExprInt(slice_start / 8, ptr.size))
                    mem = m2_expr.ExprMem(ptr, slice_stop - slice_start)
                    out.append((mem, slice_start, slice_stop))
                out.sort(key=lambda x: x[1])
                args = [expr for (expr, _, _) in out]
                tmp = m2_expr.ExprSlice(m2_expr.ExprCompose(*args), 0, size)
                tmp = self.expr_simp(tmp)
                return tmp


            if self.func_read and isinstance(ptr, m2_expr.ExprInt):
                return self.func_read(expr)
            else:
                return expr
        # bigger lookup
        if size > ret.size:
            rest = size
            ptr = ptr
            out = []
            ptr_index = 0
            while rest:
                mem = self.find_mem_by_addr(ptr)
                if mem is None:
                    value = m2_expr.ExprMem(ptr, 8)
                    mem = value
                    diff_size = 8
                elif rest >= mem.size:
                    value = self.symbols[mem]
                    diff_size = mem.size
                else:
                    diff_size = rest
                    value = self.symbols[mem][0:diff_size]
                out.append((value, ptr_index, ptr_index + diff_size))
                ptr_index += diff_size
                rest -= diff_size
                ptr = self.expr_simp(ptr + m2_expr.ExprInt(mem.size / 8, ptr.size))
            out.sort(key=lambda x: x[1])
            args = [expr for (expr, _, _) in out]
            ret = self.expr_simp(m2_expr.ExprCompose(*args))
            return ret
        # part lookup
        ret = self.expr_simp(self.symbols[ret][:size])
        return ret


    def apply_expr_on_state_visit_cache(self, expr, state, cache, level=0):
        """
        Deep First evaluate nodes:
            1. evaluate node's sons
            2. simplify
        """

        #print '\t'*level, "Eval:", expr
        if expr in cache:
            ret = cache[expr]
            #print "In cache!", ret
        elif isinstance(expr, m2_expr.ExprInt):
            return expr
        elif isinstance(expr, m2_expr.ExprId):
            if isinstance(expr.name, asmbloc.asm_label) and expr.name.offset is not None:
                ret = m2_expr.ExprInt_from(expr, expr.name.offset)
            else:
                ret = state.get(expr, expr)
        elif isinstance(expr, m2_expr.ExprMem):
            ptr = self.apply_expr_on_state_visit_cache(expr.arg, state, cache, level+1)
            ret = m2_expr.ExprMem(ptr, expr.size)
            ret = self.get_mem_state(ret)
            assert expr.size == ret.size
        elif isinstance(expr, m2_expr.ExprCond):
            cond = self.apply_expr_on_state_visit_cache(expr.cond, state, cache, level+1)
            src1 = self.apply_expr_on_state_visit_cache(expr.src1, state, cache, level+1)
            src2 = self.apply_expr_on_state_visit_cache(expr.src2, state, cache, level+1)
            ret = m2_expr.ExprCond(cond, src1, src2)
        elif isinstance(expr, m2_expr.ExprSlice):
            arg = self.apply_expr_on_state_visit_cache(expr.arg, state, cache, level+1)
            ret = m2_expr.ExprSlice(arg, expr.start, expr.stop)
        elif isinstance(expr, m2_expr.ExprOp):
            args = []
            for oarg in expr.args:
                arg = self.apply_expr_on_state_visit_cache(oarg, state, cache, level+1)
                assert oarg.size == arg.size
                args.append(arg)
            ret = m2_expr.ExprOp(expr.op, *args)
        elif isinstance(expr, m2_expr.ExprCompose):
            args = []
            for arg in expr.args:
                args.append(self.apply_expr_on_state_visit_cache(arg, state, cache, level+1))
            ret = m2_expr.ExprCompose(*args)
        else:
            raise TypeError("Unknown expr type")
        #print '\t'*level, "Result", ret
        ret = self.expr_simp(ret)
        #print '\t'*level, "Result simpl", ret

        assert expr.size == ret.size
        cache[expr] = ret
        return ret

    def apply_expr_on_state(self, expr, cache):
        if cache is None:
            cache = {}
        ret = self.apply_expr_on_state_visit_cache(expr, self.symbols, cache)
        return ret

    def eval_expr(self, expr, eval_cache=None):
        return self.apply_expr_on_state(expr, eval_cache)

    def modified_regs(self, init_state=None):
        if init_state is None:
            init_state = self.ir_arch.arch.regs.regs_init
        ids = self.symbols.symbols_id.keys()
        ids.sort()
        for i in ids:
            if i in init_state and \
                    i in self.symbols.symbols_id and \
                    self.symbols.symbols_id[i] == init_state[i]:
                continue
            yield i

    def modified_mems(self, init_state=None):
        if init_state is None:
            init_state = self.ir_arch.arch.regs.regs_init
        mems = self.symbols.symbols_mem.values()
        mems.sort()
        for mem, _ in mems:
            if mem in init_state and \
                    mem in self.symbols.symbols_mem and \
                    self.symbols.symbols_mem[mem] == init_state[mem]:
                continue
            yield mem

    def modified(self, init_state=None):
        for reg in self.modified_regs(init_state):
            yield reg
        for mem in self.modified_mems(init_state):
            yield mem

    def dump_id(self):
        """
        Dump modififed registers symbols only
        """
        ids = self.symbols.symbols_id.keys()
        ids.sort()
        for expr in ids:
            if (expr in self.ir_arch.arch.regs.regs_init and
                expr in self.symbols.symbols_id and
                self.symbols.symbols_id[expr] == self.ir_arch.arch.regs.regs_init[expr]):
                continue
            print expr, "=", self.symbols.symbols_id[expr]

    def dump_mem(self):
        """
        Dump modififed memory symbols
        """
        mems = self.symbols.symbols_mem.values()
        mems.sort()
        for mem, value in mems:
            print mem, value

    def rest_slice(self, slices, start, stop):
        """
        Return the complementary slices of @slices in the range @start, @stop
        @slices: base slices
        @start, @stop: interval range
        """
        out = []
        last = start
        for _, slice_start, slice_stop in slices:
            if slice_start == last:
                last = slice_stop
                continue
            out.append((last, slice_start))
            last = slice_stop
        if last != stop:
            out.append((slice_stop, stop))
        return out

    def substract_mems(self, arg1, arg2):
        """
        Return the remaining memory areas of @arg1 - @arg2
        @arg1, @arg2: ExprMem
        """

        ptr_diff = self.expr_simp(arg2.arg - arg1.arg)
        ptr_diff = int(int32(ptr_diff.arg))

        zone1 = interval([(0, arg1.size/8-1)])
        zone2 = interval([(ptr_diff, ptr_diff + arg2.size/8-1)])
        zones = zone1 - zone2

        out = []
        for start, stop in zones:
            ptr = arg1.arg + m2_expr.ExprInt(start, arg1.arg.size)
            ptr = self.expr_simp(ptr)
            value = self.expr_simp(self.symbols[arg1][start*8:(stop+1)*8])
            mem = m2_expr.ExprMem(ptr, (stop - start + 1)*8)
            assert mem.size == value.size
            out.append((mem, value))

        return out

    def get_mem_overlapping(self, expr):
        """
        Gives mem stored overlapping memory in @expr
        Hypothesis: Max mem size is 64 bytes, compute all reachable addresses
        @expr: target memory
        """

        overlaps = []
        base_ptr = self.expr_simp(expr.arg)
        for i in xrange(-7, expr.size / 8):
            new_ptr = base_ptr + m2_expr.ExprInt(i, expr.arg.size)
            new_ptr = self.expr_simp(new_ptr)

            mem, origin = self.symbols.symbols_mem.get(new_ptr, (None, None))
            if mem is None:
                continue

            ptr_diff = -i
            if ptr_diff >= origin.size / 8:
                # access is too small to overlap the memory target
                continue
            overlaps.append((i, mem))

        return overlaps

    def eval_ir_expr(self, assignblk):
        """
        Evaluate AssignBlock on the current state
        @assignblk: AssignBlock instance
        """
        pool_out = {}
        eval_cache = {}
        for dst, src in assignblk.iteritems():
            src = self.eval_expr(src, eval_cache)
            if isinstance(dst, m2_expr.ExprMem):
                ptr = self.eval_expr(dst.arg, eval_cache)
                # test if mem lookup is known
                tmp = m2_expr.ExprMem(ptr, dst.size)
                pool_out[tmp] = src

            elif isinstance(dst, m2_expr.ExprId):
                pool_out[dst] = src
            else:
                raise ValueError("affected zarb", str(dst))

        return pool_out.iteritems()

    def apply_change(self, dst, src):
        """
        Apply @dst = @src on the current state WITHOUT evaluating both side
        @dst: Expr, destination
        @src: Expr, source
        """
        if isinstance(dst, m2_expr.ExprMem):
            mem_overlap = self.get_mem_overlapping(dst)
            for _, base in mem_overlap:
                diff_mem = self.substract_mems(base, dst)
                del self.symbols[base]
                for new_mem, new_val in diff_mem:
                    self.symbols[new_mem] = new_val
        src_o = self.expr_simp(src)
        self.symbols[dst] = src_o
        if dst == src_o:
            del self.symbols[dst]
        if isinstance(dst, m2_expr.ExprMem):
            if self.func_write and isinstance(dst.arg, m2_expr.ExprInt):
                self.func_write(self, dst, src_o)
                del self.symbols[dst]

    def eval_ir(self, assignblk):
        """
        Apply an AssignBlock on the current state
        @assignblk: AssignBlock instance
        """
        mem_dst = []
        src_dst = self.eval_ir_expr(assignblk)
        for dst, src in src_dst:
            self.apply_change(dst, src)
            if isinstance(dst, m2_expr.ExprMem):
                mem_dst.append(dst)
        return mem_dst

    def emulbloc(self, irb, step=False):
        """
        Symbolic execution of the @irb on the current state
        @irb: irbloc instance
        @step: display intermediate steps
        """
        for assignblk in irb.irs:
            if step:
                print 'Assignblk:'
                print assignblk
                print '_' * 80
            self.eval_ir(assignblk)
            if step:
                self.dump_id()
                self.dump_mem()
                print '_' * 80
        return self.eval_expr(self.ir_arch.IRDst)

    def emul_ir_bloc(self, myir, addr, step=False):
        warnings.warn('DEPRECATION WARNING: use "emul_ir_block(self, addr, step=False)" instead of emul_ir_bloc')
        return self.emul_ir_block(addr, step)

    def emul_ir_block(self, addr, step=False):
        irblock = self.ir_arch.get_bloc(addr)
        if irblock is not None:
            addr = self.emulbloc(irblock, step=step)
        return addr

    def emul_ir_blocs(self, myir, addr, lbl_stop=None, step=False):
        warnings.warn('DEPRECATION WARNING: use "emul_ir_blocks(self, addr, lbl_stop=None, step=False):" instead of emul_ir_blocs')
        return self.emul_ir_blocks(addr, lbl_stop, step)

    def emul_ir_blocks(self, addr, lbl_stop=None, step=False):
        while True:
            irblock = self.ir_arch.get_bloc(addr)
            if irblock is None:
                break
            if irblock.label == lbl_stop:
                break
            addr = self.emulbloc(irblock, step=step)
        return addr

    def del_mem_above_stack(self, stack_ptr):
        stack_ptr = self.eval_expr(stack_ptr)
        for mem_addr, (mem, _) in self.symbols.symbols_mem.items():
            diff = self.expr_simp(mem_addr - stack_ptr)
            if not isinstance(diff, m2_expr.ExprInt):
                continue
            sign_bit = self.expr_simp(diff.msb())
            if sign_bit.arg == 1:
                del self.symbols[mem]

    def apply_expr(self, expr):
        """Evaluate @expr and apply side effect if needed (ie. if expr is an
        assignment). Return the evaluated value"""

        # Update value if needed
        if isinstance(expr, m2_expr.ExprAff):
            ret = self.eval_expr(expr.src)
            self.eval_ir(AssignBlock([expr]))
        else:
            ret = self.eval_expr(expr)

        return ret