1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
|
from miasm2.ir.translators.translator import Translator
from miasm2.core import asmbloc
from miasm2.expression.modint import size2mask
class TranslatorC(Translator):
"Translate a Miasm expression to an equivalent C code"
# Implemented language
__LANG__ = "C"
# Operations translation
dct_shift = {'a>>': "right_arith",
'>>': "right_logic",
'<<': "left_logic",
'a<<': "left_logic",
}
dct_rot = {'<<<': 'rot_left',
'>>>': 'rot_right',
}
dct_div = {'div8': "div_op",
'div16': "div_op",
'div32': "div_op",
'idiv32': "div_op", # XXX to test
'<<<c_rez': 'rcl_rez_op',
'<<<c_cf': 'rcl_cf_op',
'>>>c_rez': 'rcr_rez_op',
'>>>c_cf': 'rcr_cf_op',
}
@classmethod
def from_ExprId(cls, expr):
if isinstance(expr.name, asmbloc.asm_label):
return "0x%x" % expr.name.offset
return str(expr)
@classmethod
def from_ExprInt(cls, expr):
return "0x%x" % expr.arg.arg
@classmethod
def from_ExprAff(cls, expr):
return "%s = %s" % tuple(map(cls.from_expr, (expr.dst, expr.src)))
@classmethod
def from_ExprCond(cls, expr):
return "(%s?%s:%s)" % tuple(map(cls.from_expr,
(expr.cond, expr.src1, expr.src2)))
@classmethod
def from_ExprMem(cls, expr):
return "MEM_LOOKUP_%.2d(vm_mngr, %s)" % (expr.size,
cls.from_expr(expr.arg))
@classmethod
def from_ExprOp(cls, expr):
if len(expr.args) == 1:
if expr.op == 'parity':
return "parity(%s&0x%x)" % (cls.from_expr(expr.args[0]),
size2mask(expr.args[0].size))
elif expr.op in ['bsr', 'bsf']:
return "x86_%s(%s, 0x%x)" % (expr.op,
cls.from_expr(expr.args[0]),
expr.args[0].size)
elif expr.op == '!':
return "(~ %s)&0x%x" % (cls.from_expr(expr.args[0]),
size2mask(expr.args[0].size))
elif expr.op in ["hex2bcd", "bcd2hex"]:
return "%s_%d(%s)" % (expr.op, expr.args[0].size,
cls.from_expr(expr.args[0]))
elif (expr.op.startswith("double_to_") or
expr.op.endswith("_to_double") or
expr.op.startswith("access_") or
expr.op.startswith("load_") or
expr.op in ["-", "ftan", "frndint", "f2xm1",
"fsin", "fsqrt", "fabs", "fcos"]):
return "%s(%s)" % (expr.op, cls.from_expr(expr.args[0]))
else:
raise NotImplementedError('Unknown op: %r' % expr.op)
elif len(expr.args) == 2:
if expr.op == "==":
return '(((%s&0x%x) == (%s&0x%x))?1:0)' % (
cls.from_expr(expr.args[0]), size2mask(expr.args[0].size),
cls.from_expr(expr.args[1]), size2mask(expr.args[1].size))
elif expr.op in cls.dct_shift:
return 'shift_%s_%.2d(%s , %s)' % (cls.dct_shift[expr.op],
expr.args[0].size,
cls.from_expr(expr.args[0]),
cls.from_expr(expr.args[1]))
elif expr.is_associative() or expr.op in ["%", "/"]:
oper = ['(%s&0x%x)' % (cls.from_expr(arg), size2mask(arg.size))
for arg in expr.args]
oper = str(expr.op).join(oper)
return "((%s)&0x%x)" % (oper, size2mask(expr.args[0].size))
elif expr.op in ['-']:
return '(((%s&0x%x) %s (%s&0x%x))&0x%x)' % (
cls.from_expr(expr.args[0]), size2mask(expr.args[0].size),
str(expr.op),
cls.from_expr(expr.args[1]), size2mask(expr.args[1].size),
size2mask(expr.args[0].size))
elif expr.op in cls.dct_rot:
return '(%s(%s, %s, %s) &0x%x)' % (cls.dct_rot[expr.op],
expr.args[0].size,
cls.from_expr(expr.args[0]),
cls.from_expr(expr.args[1]),
size2mask(expr.args[0].size))
elif (expr.op.startswith('cpuid') or
expr.op.startswith("fcom") or
expr.op in ["fadd", "fsub", "fdiv", 'fmul', "fscale"]):
return "%s(%s, %s)" % (expr.op, cls.from_expr(expr.args[0]),
cls.from_expr(expr.args[1]))
elif expr.op == "segm":
return "segm2addr(vmcpu, %s, %s)" % (
cls.from_expr(expr.args[0]), cls.from_expr(expr.args[1]))
elif expr.op in ['udiv', 'umod', 'idiv', 'imod']:
return '%s%d(vmcpu, %s, %s)' % (expr.op,
expr.args[0].size,
cls.from_expr(expr.args[0]),
cls.from_expr(expr.args[1]))
elif expr.op in ["bcdadd", "bcdadd_cf"]:
return "%s_%d(%s, %s)" % (expr.op, expr.args[0].size,
cls.from_expr(expr.args[0]),
cls.from_expr(expr.args[1]))
else:
raise NotImplementedError('Unknown op: %r' % expr.op)
elif len(expr.args) == 3 and expr.op in cls.dct_div:
return '(%s(%s, %s, %s, %s) &0x%x)' % (cls.dct_div[expr.op],
expr.args[0].size,
cls.from_expr(expr.args[0]),
cls.from_expr(expr.args[1]),
cls.from_expr(expr.args[2]),
size2mask(expr.args[0].size))
elif len(expr.args) >= 3 and expr.is_associative(): # ?????
oper = ['(%s&0x%x)' % (cls.from_expr(arg), size2mask(arg.size))
for arg in expr.args]
oper = str(expr.op).join(oper)
return "((%s)&0x%x)" % (oper, size2mask(expr.args[0].size))
else:
raise NotImplementedError('Unknown op: %s' % expr.op)
@classmethod
def from_ExprSlice(cls, expr):
# XXX check mask for 64 bit & 32 bit compat
return "((%s>>%d) & 0x%X)" % (cls.from_expr(expr.arg),
expr.start,
(1 << (expr.stop - expr.start)) - 1)
@classmethod
def from_ExprCompose(cls, expr):
out = []
# XXX check mask for 64 bit & 32 bit compat
dst_cast = "uint%d_t" % expr.size
for x in expr.args:
out.append("(((%s)(%s & 0x%X)) << %d)" % (dst_cast,
cls.from_expr(x[0]),
(1 << (x[2] - x[1])) - 1,
x[1]))
out = ' | '.join(out)
return '(' + out + ')'
# Register the class
Translator.register(TranslatorC)
|