about summary refs log tree commit diff stats
path: root/src/dynarec/arm64/arm64_emitter.h
blob: 9703ac95dff8e7173917532a5874385c975a13df (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
#ifndef __ARM64_EMITTER_H__
#define __ARM64_EMITTER_H__
/*
    ARM64 Emitter

*/

#include "arm64_mapping.h"

int convert_bitmask(uint64_t bitmask);
#define convert_bitmask_w(A)    convert_bitmask(((uint64_t)(A) << 32) + (uint32_t)(A))
#define convert_bitmask_x(A)    convert_bitmask((uint64_t)A)
#define convert_bitmask_xw(A)   convert_bitmask(rex.w?((uint64_t)(A)):(((uint64_t)(A) << 32) + (uint32_t)(A)))

#define invCond(cond)   ((cond)^0b0001)

// MOVZ
#define MOVZ_gen(sf, hw, imm16, Rd)         ((sf)<<31 | 0b10<<29 | 0b100101<<23 | (hw)<<21 | (imm16)<<5 | (Rd))
#define MOVZx(Rd, imm16)                    EMIT(MOVZ_gen(1, 0, ((uint16_t)(imm16))&0xffff, Rd))
#define MOVZx_LSL(Rd, imm16, shift)         EMIT(MOVZ_gen(1, (shift)/16, ((uint16_t)(imm16))&0xffff, Rd))
#define MOVZw(Rd, imm16)                    EMIT(MOVZ_gen(0, 0, ((uint16_t)(imm16))&0xffff, Rd))
#define MOVZw_LSL(Rd, imm16, shift)         EMIT(MOVZ_gen(0, (shift)/16, ((uint16_t)(imm16))&0xffff, Rd))

// MOVN
#define MOVN_gen(sf, hw, imm16, Rd)         ((sf)<<31 | 0b00<<29 | 0b100101<<23 | (hw)<<21 | (imm16)<<5 | (Rd))
#define MOVNx(Rd, imm16)                    EMIT(MOVN_gen(1, 0, ((uint16_t)(imm16))&0xffff, Rd))
#define MOVNx_LSL(Rd, imm16, shift)         EMIT(MOVN_gen(1, (shift)/16, ((uint16_t)(imm16))&0xffff, Rd))
#define MOVNw(Rd, imm16)                    EMIT(MOVN_gen(0, 0, ((uint16_t)(imm16))&0xffff, Rd))
#define MOVNw_LSL(Rd, imm16, shift)         EMIT(MOVN_gen(0, (shift)/16, ((uint16_t)(imm16))&0xffff, Rd))

// MOVK
#define MOVK_gen(sf, hw, imm16, Rd)         ((sf)<<31 | 0b11<<29 | 0b100101<<23 | (hw)<<21 | (imm16)<<5 | (Rd))
#define MOVKx(Rd, imm16)                    EMIT(MOVK_gen(1, 0, ((uint16_t)(imm16))&0xffff, Rd))
#define MOVKx_LSL(Rd, imm16, shift)         EMIT(MOVK_gen(1, (shift)/16, ((uint16_t)(imm16))&0xffff, Rd))
#define MOVKw(Rd, imm16)                    EMIT(MOVK_gen(0, 0, ((uint16_t)(imm16))&0xffff, Rd))
#define MOVKw_LSL(Rd, imm16, shift)         EMIT(MOVK_gen(0, (shift)/16, ((uint16_t)(imm16))&0xffff, Rd))

#define MOV32w(Rd, imm32) arm64_move32(dyn, ninst, Rd, imm32)
#define MOV64x(Rd, imm64) arm64_move64(dyn, ninst, Rd, imm64)

#define MOV64xw(Rd, imm64)   if(rex.w) {MOV64x(Rd, imm64);} else {MOV32w(Rd, imm64);}
#define MOV64z(Rd, imm64)    if(rex.is32bits) {MOV32w(Rd, imm64);} else {MOV64x(Rd, imm64);}


// ADD / SUB
#define ADDSUB_REG_gen(sf, op, S, shift, Rm, imm6, Rn, Rd) ((sf)<<31 | (op)<<30 | (S)<<29 | 0b01011<<24 | (shift)<<22 | (Rm)<<16 | (imm6)<<10 | (Rn)<<5 | (Rd))
#define ADDx_REG(Rd, Rn, Rm)                EMIT(ADDSUB_REG_gen(1, 0, 0, 0b00, Rm, 0, Rn, Rd))
#define ADDSx_REG(Rd, Rn, Rm)              FEMIT(ADDSUB_REG_gen(1, 0, 1, 0b00, Rm, 0, Rn, Rd))
#define ADDx_REG_LSL(Rd, Rn, Rm, lsl)       EMIT(ADDSUB_REG_gen(1, 0, 0, 0b00, Rm, lsl, Rn, Rd))
#define ADDx_REG_LSR(Rd, Rn, Rm, lsr)       EMIT(ADDSUB_REG_gen(1, 0, 0, 0b01, Rm, lsr, Rn, Rd))
#define ADDz_REG_LSL(Rd, Rn, Rm, lsl)       EMIT(ADDSUB_REG_gen(rex.is32bits?0:1, 0, 0, 0b00, Rm, lsl, Rn, Rd))
#define ADDw_REG(Rd, Rn, Rm)                EMIT(ADDSUB_REG_gen(0, 0, 0, 0b00, Rm, 0, Rn, Rd))
#define ADDSw_REG(Rd, Rn, Rm)              FEMIT(ADDSUB_REG_gen(0, 0, 1, 0b00, Rm, 0, Rn, Rd))
#define ADDw_REG_LSL(Rd, Rn, Rm, lsl)       EMIT(ADDSUB_REG_gen(0, 0, 0, 0b00, Rm, lsl, Rn, Rd))
#define ADDw_REG_LSR(Rd, Rn, Rm, lsr)       EMIT(ADDSUB_REG_gen(0, 0, 0, 0b01, Rm, lsr, Rn, Rd))
#define ADDSw_REG_LSL(Rd, Rn, Rm, lsl)     FEMIT(ADDSUB_REG_gen(0, 0, 1, 0b00, Rm, lsl, Rn, Rd))
#define ADDxw_REG(Rd, Rn, Rm)               EMIT(ADDSUB_REG_gen(rex.w, 0, 0, 0b00, Rm, 0, Rn, Rd))
#define ADDz_REG(Rd, Rn, Rm)                EMIT(ADDSUB_REG_gen(rex.is32bits?0:1, 0, 0, 0b00, Rm, 0, Rn, Rd))
#define ADDSxw_REG(Rd, Rn, Rm)             FEMIT(ADDSUB_REG_gen(rex.w, 0, 1, 0b00, Rm, 0, Rn, Rd))
#define ADDxw_REG_LSR(Rd, Rn, Rm, lsr)      EMIT(ADDSUB_REG_gen(rex.w, 0, 0, 0b01, Rm, lsr, Rn, Rd))

#define ADDSUB_IMM_gen(sf, op, S, shift, imm12, Rn, Rd)    ((sf)<<31 | (op)<<30 | (S)<<29 | 0b10001<<24 | (shift)<<22 | (imm12)<<10 | (Rn)<<5 | (Rd))
#define ADDx_U12(Rd, Rn, imm12)     EMIT(ADDSUB_IMM_gen(1, 0, 0, 0b00, (imm12)&0xfff, Rn, Rd))
#define ADDSx_U12(Rd, Rn, imm12)   FEMIT(ADDSUB_IMM_gen(1, 0, 1, 0b00, (imm12)&0xfff, Rn, Rd))
#define ADDw_U12(Rd, Rn, imm12)     EMIT(ADDSUB_IMM_gen(0, 0, 0, 0b00, (imm12)&0xfff, Rn, Rd))
#define ADDSw_U12(Rd, Rn, imm12)   FEMIT(ADDSUB_IMM_gen(0, 0, 1, 0b00, (imm12)&0xfff, Rn, Rd))
#define ADDxw_U12(Rd, Rn, imm12)    EMIT(ADDSUB_IMM_gen(rex.w, 0, 0, 0b00, (imm12)&0xfff, Rn, Rd))
#define ADDSxw_U12(Rd, Rn, imm12)  FEMIT(ADDSUB_IMM_gen(rex.w, 0, 1, 0b00, (imm12)&0xfff, Rn, Rd))
#define ADDz_U12(Rd, Rn, imm12)     EMIT(ADDSUB_IMM_gen(rex.is32bits?0:1, 0, 0, 0b00, (imm12)&0xfff, Rn, Rd))

#define SUBx_REG(Rd, Rn, Rm)                EMIT(ADDSUB_REG_gen(1, 1, 0, 0b00, Rm, 0, Rn, Rd))
#define SUBSx_REG(Rd, Rn, Rm)              FEMIT(ADDSUB_REG_gen(1, 1, 1, 0b00, Rm, 0, Rn, Rd))
#define SUBSx_REG_ASR(Rd, Rn, Rm, asr)     FEMIT(ADDSUB_REG_gen(1, 1, 1, 0b10, Rm, asr, Rn, Rd))
#define SUBx_REG_LSL(Rd, Rn, Rm, lsl)       EMIT(ADDSUB_REG_gen(1, 1, 0, 0b00, Rm, lsl, Rn, Rd))
#define SUBw_REG(Rd, Rn, Rm)                EMIT(ADDSUB_REG_gen(0, 1, 0, 0b00, Rm, 0, Rn, Rd))
#define SUBw_REG_LSL(Rd, Rn, Rm, lsl)       EMIT(ADDSUB_REG_gen(0, 1, 0, 0b00, Rm, lsl, Rn, Rd))
#define SUBw_REG_ASR(Rd, Rn, Rm, asr)       EMIT(ADDSUB_REG_gen(0, 1, 0, 0b10, Rm, asr, Rn, Rd))
#define SUBSw_REG(Rd, Rn, Rm)              FEMIT(ADDSUB_REG_gen(0, 1, 1, 0b00, Rm, 0, Rn, Rd))
#define SUBSw_REG_LSL(Rd, Rn, Rm, lsl)     FEMIT(ADDSUB_REG_gen(0, 1, 1, 0b00, Rm, lsl, Rn, Rd))
#define SUBSw_REG_LSR(Rd, Rn, Rm, lsr)     FEMIT(ADDSUB_REG_gen(0, 1, 1, 0b01, Rm, lsr, Rn, Rd))
#define SUBSw_REG_ASR(Rd, Rn, Rm, asr)     FEMIT(ADDSUB_REG_gen(0, 1, 1, 0b10, Rm, asr, Rn, Rd))
#define SUBxw_REG(Rd, Rn, Rm)               EMIT(ADDSUB_REG_gen(rex.w, 1, 0, 0b00, Rm, 0, Rn, Rd))
#define SUBz_REG(Rd, Rn, Rm)                EMIT(ADDSUB_REG_gen(rex.is32bits?0:1, 1, 0, 0b00, Rm, 0, Rn, Rd))
#define SUBSxw_REG(Rd, Rn, Rm)             FEMIT(ADDSUB_REG_gen(rex.w, 1, 1, 0b00, Rm, 0, Rn, Rd))
#define SUBSxw_REG_ASR(Rd, Rn, Rm, asr)    FEMIT(ADDSUB_REG_gen(rex.w, 1, 1, 0b10, Rm, asr, Rn, Rd))
#define CMPSx_REG(Rn, Rm)                   SUBSx_REG(xZR, Rn, Rm)
#define CMPSx_REG_ASR(Rn, Rm, asr)          SUBSx_REG_ASR(xZR, Rn, Rm, asr)
#define CMPSw_REG(Rn, Rm)                   SUBSw_REG(wZR, Rn, Rm)
#define CMPSw_REG_LSR(Rn, Rm, lsr)          SUBSw_REG_LSR(wZR, Rn, Rm, lsr)
#define CMPSw_REG_ASR(Rn, Rm, asr)          SUBSw_REG_ASR(wZR, Rn, Rm, asr)
#define CMPSxw_REG(Rn, Rm)                  SUBSxw_REG(xZR, Rn, Rm)
#define CMPSxw_REG_ASR(Rn, Rm, asr)         SUBSxw_REG_ASR(xZR, Rn, Rm, asr)
#define NEGx_REG(Rd, Rm)                    SUBx_REG(Rd, xZR, Rm);
#define NEGw_REG(Rd, Rm)                    SUBw_REG(Rd, wZR, Rm);
#define NEGxw_REG(Rd, Rm)                   SUBxw_REG(Rd, xZR, Rm);
#define NEGSx_REG(Rd, Rm)                   SUBSx_REG(Rd, xZR, Rm);
#define NEGSw_REG(Rd, Rm)                   SUBSw_REG(Rd, wZR, Rm);
#define NEGSxw_REG(Rd, Rm)                  SUBSxw_REG(Rd, xZR, Rm);

#define SUBx_U12(Rd, Rn, imm12)     EMIT(ADDSUB_IMM_gen(1, 1, 0, 0b00, (imm12)&0xfff, Rn, Rd))
#define SUBSx_U12(Rd, Rn, imm12)   FEMIT(ADDSUB_IMM_gen(1, 1, 1, 0b00, (imm12)&0xfff, Rn, Rd))
#define SUBw_U12(Rd, Rn, imm12)     EMIT(ADDSUB_IMM_gen(0, 1, 0, 0b00, (imm12)&0xfff, Rn, Rd))
#define SUBSw_U12(Rd, Rn, imm12)   FEMIT(ADDSUB_IMM_gen(0, 1, 1, 0b00, (imm12)&0xfff, Rn, Rd))
#define SUBxw_U12(Rd, Rn, imm12)    EMIT(ADDSUB_IMM_gen(rex.w, 1, 0, 0b00, (imm12)&0xfff, Rn, Rd))
#define SUBz_U12(Rd, Rn, imm12)     EMIT(ADDSUB_IMM_gen(rex.is32bits?0:1, 1, 0, 0b00, (imm12)&0xfff, Rn, Rd))
#define SUBSxw_U12(Rd, Rn, imm12)  FEMIT(ADDSUB_IMM_gen(rex.w, 1, 1, 0b00, (imm12)&0xfff, Rn, Rd))
#define CMPSx_U12(Rn, imm12)        SUBSx_U12(xZR, Rn, imm12)
#define CMPSw_U12(Rn, imm12)        SUBSw_U12(wZR, Rn, imm12)
#define CMPSxw_U12(Rn, imm12)       SUBSxw_U12(xZR, Rn, imm12)

#define ADDSUBC_gen(sf, op, S, Rm, Rn, Rd)  ((sf)<<31 | (op)<<30 | (S)<<29 | 0b11010000<<21 | (Rm)<<16 | (Rn)<<5 | (Rd))
#define ADCx_REG(Rd, Rn, Rm)        EMIT(ADDSUBC_gen(1, 0, 0, Rm, Rn, Rd))
#define ADCw_REG(Rd, Rn, Rm)        EMIT(ADDSUBC_gen(0, 0, 0, Rm, Rn, Rd))
#define ADCxw_REG(Rd, Rn, Rm)       EMIT(ADDSUBC_gen(rex.w, 0, 0, Rm, Rn, Rd))
#define SBCx_REG(Rd, Rn, Rm)        EMIT(ADDSUBC_gen(1, 1, 0, Rm, Rn, Rd))
#define SBCw_REG(Rd, Rn, Rm)        EMIT(ADDSUBC_gen(0, 1, 0, Rm, Rn, Rd))
#define SBCxw_REG(Rd, Rn, Rm)       EMIT(ADDSUBC_gen(rex.w, 1, 0, Rm, Rn, Rd))
#define ADCSx_REG(Rd, Rn, Rm)      FEMIT(ADDSUBC_gen(1, 0, 1, Rm, Rn, Rd))
#define ADCSw_REG(Rd, Rn, Rm)      FEMIT(ADDSUBC_gen(0, 0, 1, Rm, Rn, Rd))
#define ADCSxw_REG(Rd, Rn, Rm)     FEMIT(ADDSUBC_gen(rex.w, 0, 1, Rm, Rn, Rd))
#define SBCSx_REG(Rd, Rn, Rm)      FEMIT(ADDSUBC_gen(1, 1, 1, Rm, Rn, Rd))
#define SBCSw_REG(Rd, Rn, Rm)      FEMIT(ADDSUBC_gen(0, 1, 1, Rm, Rn, Rd))
#define SBCSxw_REG(Rd, Rn, Rm)     FEMIT(ADDSUBC_gen(rex.w, 1, 1, Rm, Rn, Rd))

#define ADDSUB_ext(sf, op, S, Rm, option, imm3, Rn, Rd)    ((sf)<<31 | (op)<<30 | (S)<<29 | 0b01011<<24 | 1<<21 | (Rm)<<16 | (option)<<13 | (imm3)<<10 | (Rn)<<5 | (Rd))
#define SUBxw_UXTB(Rd, Rn, Rm)      EMIT(ADDSUB_ext(rex.w, 1, 0, Rm, 0b000, 0, Rn, Rd))
#define SUBw_UXTB(Rd, Rn, Rm)       EMIT(ADDSUB_ext(0, 1, 0, Rm, 0b000, 0, Rn, Rd))
#define ADDw_UXTH(Rd, Rn, Rm)       EMIT(ADDSUB_ext(0, 0, 0, Rm, 0b001, 0, Rn, Rd))
#define ADDx_UXTW(Rd, Rn, Rm)       EMIT(ADDSUB_ext(1, 0, 0, Rm, 0b010, 0, Rn, Rd))

// CCMP compare if cond is true, set nzcv if false
#define CCMP_reg(sf, Rm, cond, Rn, nzcv)    ((sf)<<31 | 1<<30 | 1<<29 | 0b11010010<<21 | (Rm)<<16 | (cond)<<12 | (Rn)<<5 | (nzcv))
#define CCMPw(Wn, Wm, nzcv, cond)  FEMIT(CCMP_reg(0, Wm, cond, Wn, nzcv))
#define CCMPx(Xn, Xm, nzcv, cond)  FEMIT(CCMP_reg(1, Xm, cond, Xn, nzcv))
#define CCMPxw(Xn, Xm, nzcv, cond) FEMIT(CCMP_reg(rex.w, Xm, cond, Xn, nzcv))

// ADR
#define ADR_gen(immlo, immhi, Rd)   ((immlo)<<29 | 0b10000<<24 | (immhi)<<5 | (Rd))
#define ADR_S20(Rd, imm)            EMIT(ADR_gen((imm)&3, ((imm)>>2)&0x7ffff, (Rd)))

// LDR
#define LDR_gen(size, op1, imm9, op2, Rn, Rt)    ((size)<<30 | 0b111<<27 | (op1)<<24 | 0b01<<22 | (imm9)<<12 | (op2)<<10 | (Rn)<<5 | (Rt))
#define LDRx_S9_postindex(Rt, Rn, imm9)   EMIT(LDR_gen(0b11, 0b00, (imm9)&0x1ff, 0b01, Rn, Rt))
#define LDRx_S9_preindex(Rt, Rn, imm9)    EMIT(LDR_gen(0b11, 0b00, (imm9)&0x1ff, 0b11, Rn, Rt))
#define LDRw_S9_postindex(Rt, Rn, imm9)   EMIT(LDR_gen(0b10, 0b00, (imm9)&0x1ff, 0b01, Rn, Rt))
#define LDRw_S9_preindex(Rt, Rn, imm9)    EMIT(LDR_gen(0b10, 0b00, (imm9)&0x1ff, 0b11, Rn, Rt))
#define LDRB_S9_postindex(Rt, Rn, imm9)   EMIT(LDR_gen(0b00, 0b00, (imm9)&0x1ff, 0b01, Rn, Rt))
#define LDRB_S9_preindex(Rt, Rn, imm9)    EMIT(LDR_gen(0b00, 0b00, (imm9)&0x1ff, 0b11, Rn, Rt))
#define LDRH_S9_postindex(Rt, Rn, imm9)   EMIT(LDR_gen(0b01, 0b00, (imm9)&0x1ff, 0b01, Rn, Rt))
#define LDRH_S9_preindex(Rt, Rn, imm9)    EMIT(LDR_gen(0b01, 0b00, (imm9)&0x1ff, 0b11, Rn, Rt))
#define LDRxw_S9_postindex(Rt, Rn, imm9)  EMIT(LDR_gen(rex.w?0b11:0b10, 0b00, (imm9)&0x1ff, 0b01, Rn, Rt))

#define LDRS_gen(size, op1, imm9, op2, Rn, Rt)   ((size)<<30 | 0b111<<27 | (op1)<<24 | 0b10<<22 | (imm9)<<12 | (op2)<<10 | (Rn)<<5 | (Rt))
#define LDRSW_S9_postindex(Rt, Rn, imm9)  EMIT(LDRS_gen(0b10, 0b00, (imm9)&0x1ff, 0b01, Rn, Rt))
#define LDRSW_S9_preindex(Rt, Rn, imm9)   EMIT(LDRS_gen(0b10, 0b00, (imm9)&0x1ff, 0b11, Rn, Rt))

#define LD_gen(size, op1, imm12, Rn, Rt)        ((size)<<30 | 0b111<<27 | (op1)<<24 | 0b01<<22 | (imm12)<<10 | (Rn)<<5 | (Rt))
#define LDRx_U12(Rt, Rn, imm12)           EMIT(LD_gen(0b11, 0b01, ((uint32_t)((imm12)>>3))&0xfff, Rn, Rt))
#define LDRw_U12(Rt, Rn, imm12)           EMIT(LD_gen(0b10, 0b01, ((uint32_t)((imm12)>>2))&0xfff, Rn, Rt))
#define LDRB_U12(Rt, Rn, imm12)           EMIT(LD_gen(0b00, 0b01, ((uint32_t)((imm12)))&0xfff, Rn, Rt))
#define LDRH_U12(Rt, Rn, imm12)           EMIT(LD_gen(0b01, 0b01, ((uint32_t)((imm12)>>1))&0xfff, Rn, Rt))
#define LDRxw_U12(Rt, Rn, imm12)          EMIT(LD_gen((rex.w)?0b11:0b10, 0b01, ((uint32_t)((imm12)>>(2+rex.w)))&0xfff, Rn, Rt))
#define LDRz_U12(Rt, Rn, imm12)           EMIT(LD_gen((rex.is32bits)?0b10:0b11, 0b01, ((uint32_t)((imm12)>>(rex.is32bits?2:3)))&0xfff, Rn, Rt))

#define LDS_gen(size, op1, imm12, Rn, Rt)       ((size)<<30 | 0b111<<27 | (op1)<<24 | 0b10<<22 | (imm12)<<10 | (Rn)<<5 | (Rt))
#define LDRSW_U12(Rt, Rn, imm12)          EMIT(LDS_gen(0b10, 0b01, ((uint32_t)((imm12)>>2))&0xfff, Rn, Rt))
#define LDRSH_U12(Rt, Rn, imm12)          EMIT(LDS_gen(0b01, 0b01, ((uint32_t)((imm12)>>1))&0xfff, Rn, Rt))
#define LDRSB_U12(Rt, Rn, imm12)          EMIT(LDS_gen(0b00, 0b01, ((uint32_t)(imm12))&0xfff, Rn, Rt))

#define LDR_REG_gen(size, Rm, option, S, Rn, Rt)    ((size)<<30 | 0b111<<27 | 0b01<<22 | 1<<21 | (Rm)<<16 | (option)<<13 | (S)<<12 | (0b10)<<10 | (Rn)<<5 | (Rt))
#define LDRx_REG(Rt, Rn, Rm)            EMIT(LDR_REG_gen(0b11, Rm, 0b011, 0, Rn, Rt))
#define LDRx_REG_LSL3(Rt, Rn, Rm)       EMIT(LDR_REG_gen(0b11, Rm, 0b011, 1, Rn, Rt))
#define LDRx_REG_UXTW3(Rt, Rn, Rm)      EMIT(LDR_REG_gen(0b11, Rm, 0b010, 1, Rn, Rt))
#define LDRx_REG_SXTW(Rt, Rn, Rm)       EMIT(LDR_REG_gen(0b11, Rm, 0b110, 0, Rn, Rt))
#define LDRx_REGz(Rt, Rn, Rm)           EMIT(LDR_REG_gen(0b11, Rm, rex.is32bits?0b110:0b011, 0, Rn, Rt))
#define LDRw_REG(Rt, Rn, Rm)            EMIT(LDR_REG_gen(0b10, Rm, 0b011, 0, Rn, Rt))
#define LDRw_REG_LSL2(Rt, Rn, Rm)       EMIT(LDR_REG_gen(0b10, Rm, 0b011, 1, Rn, Rt))
#define LDRw_REG_SXTW(Rt, Rn, Rm)       EMIT(LDR_REG_gen(0b10, Rm, 0b110, 0, Rn, Rt))
#define LDRw_REGz(Rt, Rn, Rm)           EMIT(LDR_REG_gen(0b10, Rm, rex.is32bits?0b110:0b011, 0, Rn, Rt))
#define LDRxw_REG(Rt, Rn, Rm)           EMIT(LDR_REG_gen(0b10+rex.w, Rm, 0b011, 0, Rn, Rt))
#define LDRz_REG(Rt, Rn, Rm)            EMIT(LDR_REG_gen(rex.is32bits?0b10:0b11, Rm, 0b011, 0, Rn, Rt))
#define LDRxw_REG_SXTW(Rt, Rn, Rm)      EMIT(LDR_REG_gen(0b10+rex.w, Rm, 0b110, 0, Rn, Rt))
#define LDRxw_REGz(Rt, Rn, Rm)          EMIT(LDR_REG_gen(0b10+rex.w, Rm, rex.is32bits?0b110:0b011, 0, Rn, Rt))
#define LDRz_REG_SXTW(Rt, Rn, Rm)       EMIT(LDR_REG_gen(rex.is32bits?0b10:0b11, Rm, 0b110, 0, Rn, Rt))
#define LDRz_REGz(Rt, Rn, Rm)           EMIT(LDR_REG_gen(rex.is32bits?0b10:0b11, Rm, rex.is32bits?0b110:0b011, 0, Rn, Rt))
#define LDRB_REG(Rt, Rn, Rm)            EMIT(LDR_REG_gen(0b00, Rm, 0b011, 0, Rn, Rt))
#define LDRB_REG_UXTW(Rt, Rn, Rm)       EMIT(LDR_REG_gen(0b00, Rm, 0b010, 0, Rn, Rt))
#define LDRB_REG_SXTW(Rt, Rn, Rm)       EMIT(LDR_REG_gen(0b00, Rm, 0b110, 0, Rn, Rt))
#define LDRB_REGz(Rt, Rn, Rm)           EMIT(LDR_REG_gen(0b00, Rm, rex.is32bits?0b110:0b011, 0, Rn, Rt))
#define LDRH_REG(Rt, Rn, Rm)            EMIT(LDR_REG_gen(0b01, Rm, 0b011, 0, Rn, Rt))
#define LDRH_REG_SXTW(Rt, Rn, Rm)       EMIT(LDR_REG_gen(0b01, Rm, 0b110, 0, Rn, Rt))
#define LDRH_REGz(Rt, Rn, Rm)           EMIT(LDR_REG_gen(0b01, Rm, rex.is32bits?0b110:0b011, 0, Rn, Rt))

#define LDRS_U12_gen(size, op1, opc, imm12, Rn, Rt)    ((size)<<30 | 0b111<<27 | (op1)<<24 | (opc)<<22 | (imm12)<<10 | (Rn)<<5 | (Rt))
#define LDRSHx_U12(Rt, Rn, imm12)           EMIT(LDRS_U12_gen(0b01, 0b01, 0b10, ((uint32_t)(imm12>>1))&0xfff, Rn, Rt))
#define LDRSHw_U12(Rt, Rn, imm12)           EMIT(LDRS_U12_gen(0b01, 0b01, 0b11, ((uint32_t)(imm12>>1))&0xfff, Rn, Rt))
#define LDRSHxw_U12(Rt, Rn, imm12)          EMIT(LDRS_U12_gen(0b01, 0b01, rex.w?0b10:0b11, ((uint32_t)(imm12>>1))&0xfff, Rn, Rt))
#define LDRSBx_U12(Rt, Rn, imm12)           EMIT(LDRS_U12_gen(0b00, 0b01, 0b10, ((uint32_t)(imm12>>0))&0xfff, Rn, Rt))
#define LDRSBw_U12(Rt, Rn, imm12)           EMIT(LDRS_U12_gen(0b00, 0b01, 0b11, ((uint32_t)(imm12>>0))&0xfff, Rn, Rt))
#define LDRSBxw_U12(Rt, Rn, imm12)          EMIT(LDRS_U12_gen(0b00, 0b01, rex.w?0b10:0b11, ((uint32_t)(imm12>>0))&0xfff, Rn, Rt))

#define LDRS_REG_gen(size, Rm, option, S, Rn, Rt)    ((size)<<30 | 0b111<<27 | 0b10<<22 | 1<<21 | (Rm)<<16 | (option)<<13 | (S)<<12 | (0b10)<<10 | (Rn)<<5 | (Rt))
#define LDRSW_REG(Rt, Rn, Rm)           EMIT(LDRS_REG_gen(0b10, Rm, 0b011, 0, Rn, Rt))
#define LDRSW_REG_SXTW(Rt, Rn, Rm)      EMIT(LDRS_REG_gen(0b10, Rm, 0b110, 0, Rn, Rt))
#define LDRSW_REGz(Rt, Rn, Rm)          EMIT(LDRS_REG_gen(0b10, Rm, rex.is32bits?0b110:0b011, 0, Rn, Rt))
#define LDRSH_REGz(Rt, Rn, Rm)          EMIT(LDRS_REG_gen(0b01, Rm, rex.is32bits?0b110:0b011, 0, Rn, Rt))

#define LDR_PC_gen(opc, imm19, Rt)      ((opc)<<30 | 0b011<<27 | (imm19)<<5 | (Rt))
#define LDRx_literal(Rt, imm21)         EMIT(LDR_PC_gen(0b01, (((int64_t)(imm21))>>2)&0x7FFFF, Rt))

#define LDU_gen(size, opc, imm9, Rn, Rt)  ((size)<<30 | 0b111<<27 | (opc)<<22 | ((imm9)&0x1ff)<<12 | (Rn)<<5 | (Rt))
#define LDURx_I9(Rt, Rn, imm9)            EMIT(LDU_gen(0b11, 0b01, imm9, Rn, Rt))
#define LDURw_I9(Rt, Rn, imm9)            EMIT(LDU_gen(0b10, 0b01, imm9, Rn, Rt))
#define LDURxw_I9(Rt, Rn, imm9)           EMIT(LDU_gen((rex.w)?0b11:0b10, 0b01, imm9, Rn, Rt))
#define LDURz_I9(Rt, Rn, imm9)            EMIT(LDU_gen((rex.is32bits)?0b10:0b11, 0b01, imm9, Rn, Rt))
#define LDURH_I9(Rt, Rn, imm9)            EMIT(LDU_gen(0b01, 0b01, imm9, Rn, Rt))
#define LDURB_I9(Rt, Rn, imm9)            EMIT(LDU_gen(0b00, 0b01, imm9, Rn, Rt))
#define LDURSW_I9(Rt, Rn, imm9)           EMIT(LDU_gen(0b10, 0b10, imm9, Rn, Rt))
#define LDURSHw_I9(Rt, Rn, imm9)          EMIT(LDU_gen(0b01, 0b11, imm9, Rn, Rt))
#define LDURSHx_I9(Rt, Rn, imm9)          EMIT(LDU_gen(0b01, 0b10, imm9, Rn, Rt))
#define LDURSHxw_I9(Rt, Rn, imm9)         EMIT(LDU_gen(0b01, (rex.w)?0b10:0b11, imm9, Rn, Rt))
#define LDURSBw_I9(Rt, Rn, imm9)          EMIT(LDU_gen(0b00, 0b11, imm9, Rn, Rt))
#define LDURSBx_I9(Rt, Rn, imm9)          EMIT(LDU_gen(0b00, 0b10, imm9, Rn, Rt))
#define LDURSBxw_I9(Rt, Rn, imm9)         EMIT(LDU_gen(0b00, (rex.w)?0b10:0b11, imm9, Rn, Rt))

#define LDxw(A, B, C)   if(unscaled) {LDURxw_I9(A, B, C);} else {LDRxw_U12(A, B, C);}
#define LDz(A, B, C)    if(unscaled) {LDURz_I9(A, B, C);} else {LDRz_U12(A, B, C);}
#define LDx(A, B, C)    if(unscaled) {LDURx_I9(A, B, C);} else {LDRx_U12(A, B, C);}
#define LDW(A, B, C)    if(unscaled) {LDURw_I9(A, B, C);} else {LDRw_U12(A, B, C);}
#define LDH(A, B, C)    if(unscaled) {LDURH_I9(A, B, C);} else {LDRH_U12(A, B, C);}
#define LDB(A, B, C)    if(unscaled) {LDURB_I9(A, B, C);} else {LDRB_U12(A, B, C);}
#define LDSW(A, B, C)   if(unscaled) {LDURSW_I9(A, B, C);} else {LDRSW_U12(A, B, C);}
#define LDSHxw(A, B, C) if(unscaled) {LDURSHxw_I9(A, B, C);} else {LDRSHxw_U12(A, B, C);}
#define LDSHx(A, B, C)  if(unscaled) {LDURSHx_I9(A, B, C);} else {LDRSHx_U12(A, B, C);}
#define LDSHw(A, B, C)  if(unscaled) {LDURSHw_I9(A, B, C);} else {LDRSHw_U12(A, B, C);}
#define LDSBxw(A, B, C) if(unscaled) {LDURSBxw_I9(A, B, C);} else {LDRSBxw_U12(A, B, C);}
#define LDSBx(A, B, C)  if(unscaled) {LDURSBx_I9(A, B, C);} else {LDRSBx_U12(A, B, C);}
#define LDSBw(A, B, C)  if(unscaled) {LDURSBw_I9(A, B, C);} else {LDRSBw_U12(A, B, C);}
#define STxw(A, B, C)   if(unscaled) {STURxw_I9(A, B, C);} else {STRxw_U12(A, B, C);}
#define STz(A, B, C)    if(unscaled) {STURz_I9(A, B, C);} else {STRz_U12(A, B, C);}
#define STx(A, B, C)    if(unscaled) {STURx_I9(A, B, C);} else {STRx_U12(A, B, C);}
#define STW(A, B, C)    if(unscaled) {STURw_I9(A, B, C);} else {STRw_U12(A, B, C);}
#define STH(A, B, C)    if(unscaled) {STURH_I9(A, B, C);} else {STRH_U12(A, B, C);}
#define STB(A, B, C)    if(unscaled) {STURB_I9(A, B, C);} else {STRB_U12(A, B, C);}

// STR
#define STR_gen(size, op1, imm9, op2, Rn, Rt)    ((size)<<30 | 0b111<<27 | (op1)<<24 | 0b00<<22 | (imm9)<<12 | (op2)<<10 | (Rn)<<5 | (Rt))
#define STRx_S9_postindex(Rt, Rn, imm9)   EMIT(STR_gen(0b11, 0b00, (imm9)&0x1ff, 0b01, Rn, Rt))
#define STRx_S9_preindex(Rt, Rn, imm9)    EMIT(STR_gen(0b11, 0b00, (imm9)&0x1ff, 0b11, Rn, Rt))
#define STRw_S9_postindex(Rt, Rn, imm9)   EMIT(STR_gen(0b10, 0b00, (imm9)&0x1ff, 0b01, Rn, Rt))
#define STRw_S9_preindex(Rt, Rn, imm9)    EMIT(STR_gen(0b10, 0b00, (imm9)&0x1ff, 0b11, Rn, Rt))
#define STRxw_S9_postindex(Rt, Rn, imm9)  EMIT(STR_gen(rex.w?0b11:0b10, 0b00, (imm9)&0x1ff, 0b01, Rn, Rt))
#define STRB_S9_postindex(Rt, Rn, imm9)   EMIT(STR_gen(0b00, 0b00, (imm9)&0x1ff, 0b01, Rn, Rt))
#define STRH_S9_preindex(Rt, Rn, imm9)    EMIT(STR_gen(0b01, 0b00, (imm9)&0x1ff, 0b11, Rn, Rt))
#define STRH_S9_postindex(Rt, Rn, imm9)   EMIT(STR_gen(0b01, 0b00, (imm9)&0x1ff, 0b01, Rn, Rt))

#define ST_gen(size, op1, imm12, Rn, Rt)        ((size)<<30 | 0b111<<27 | (op1)<<24 | 0b00<<22 | (imm12)<<10 | (Rn)<<5 | (Rt))
#define STRx_U12(Rt, Rn, imm12)           EMIT(ST_gen(0b11, 0b01, ((uint32_t)((imm12)>>3))&0xfff, Rn, Rt))
#define STRw_U12(Rt, Rn, imm12)           EMIT(ST_gen(0b10, 0b01, ((uint32_t)((imm12)>>2))&0xfff, Rn, Rt))
#define STRB_U12(Rt, Rn, imm12)           EMIT(ST_gen(0b00, 0b01, ((uint32_t)((imm12)))&0xfff, Rn, Rt))
#define STRH_U12(Rt, Rn, imm12)           EMIT(ST_gen(0b01, 0b01, ((uint32_t)((imm12)>>1))&0xfff, Rn, Rt))
#define STRxw_U12(Rt, Rn, imm12)          EMIT(ST_gen((rex.w)?0b11:0b10, 0b01, ((uint32_t)((imm12)>>(2+rex.w)))&0xfff, Rn, Rt))
#define STRz_U12(Rt, Rn, imm12)           EMIT(ST_gen((rex.is32bits)?0b10:0b11, 0b01, ((uint32_t)((imm12)>>(rex.is32bits?2:3)))&0xfff, Rn, Rt))

#define STU_gen(size, opc, imm9, Rn, Rt)  ((size)<<30 | 0b111<<27 | (opc)<<22 | ((imm9)&0x1ff)<<12 | (Rn)<<5 | (Rt))
#define STURx_I9(Rt, Rn, imm9)            EMIT(STU_gen(0b11, 0b00, imm9, Rn, Rt))
#define STURw_I9(Rt, Rn, imm9)            EMIT(STU_gen(0b10, 0b00, imm9, Rn, Rt))
#define STURxw_I9(Rt, Rn, imm9)           EMIT(STU_gen((rex.w)?0b11:0b10, 0b00, imm9, Rn, Rt))
#define STURz_I9(Rt, Rn, imm9)            EMIT(STU_gen((rex.is32bits)?0b10:0b11, 0b00, imm9, Rn, Rt))
#define STURH_I9(Rt, Rn, imm9)            EMIT(STU_gen(0b01, 0b00, imm9, Rn, Rt))
#define STURB_I9(Rt, Rn, imm9)            EMIT(STU_gen(0b00, 0b00, imm9, Rn, Rt))

#define STR_REG_gen(size, Rm, option, S, Rn, Rt)    ((size)<<30 | 0b111<<27 | 0b00<<22 | 1<<21 | (Rm)<<16 | (option)<<13 | (S)<<12 | (0b10)<<10 | (Rn)<<5 | (Rt))
#define STRx_REG(Rt, Rn, Rm)            EMIT(STR_REG_gen(0b11, Rm, 0b011, 0, Rn, Rt))
#define STRx_REG_LSL3(Rt, Rn, Rm)       EMIT(STR_REG_gen(0b11, Rm, 0b011, 1, Rn, Rt))
#define STRx_REG_UXTW(Rt, Rn, Rm)       EMIT(STR_REG_gen(0b11, Rm, 0b010, 0, Rn, Rt))
#define STRx_REG_SXTW(Rt, Rn, Rm)       EMIT(STR_REG_gen(0b11, Rm, 0b110, 0, Rn, Rt))
#define STRw_REG(Rt, Rn, Rm)            EMIT(STR_REG_gen(0b10, Rm, 0b011, 0, Rn, Rt))
#define STRw_REG_LSL2(Rt, Rn, Rm)       EMIT(STR_REG_gen(0b10, Rm, 0b011, 1, Rn, Rt))
#define STRw_REG_SXTW(Rt, Rn, Rm)       EMIT(STR_REG_gen(0b10, Rm, 0b110, 0, Rn, Rt))
#define STRB_REG(Rt, Rn, Rm)            EMIT(STR_REG_gen(0b00, Rm, 0b011, 0, Rn, Rt))
#define STRB_REG_SXTW(Rt, Rn, Rm)       EMIT(STR_REG_gen(0b00, Rm, 0b110, 0, Rn, Rt))
#define STRB_REGz(Rt, Rn, Rm)           EMIT(STR_REG_gen(0b00, Rm, rex.is32bits?0b110:0b011, 0, Rn, Rt))
#define STRH_REG(Rt, Rn, Rm)            EMIT(STR_REG_gen(0b01, Rm, 0b011, 0, Rn, Rt))
#define STRH_REG_SXTW(Rt, Rn, Rm)       EMIT(STR_REG_gen(0b01, Rm, 0b110, 0, Rn, Rt))
#define STRxw_REG(Rt, Rn, Rm)           EMIT(STR_REG_gen(rex.w?0b11:0b10, Rm, 0b011, 0, Rn, Rt))
#define STRxw_REG_SXTW(Rt, Rn, Rm)      EMIT(STR_REG_gen(rex.w?0b11:0b10, Rm, 0b110, 0, Rn, Rt))
#define STRxw_REGz(Rt, Rn, Rm)          EMIT(STR_REG_gen(rex.w?0b11:0b10, Rm, rex.is32bits?0b110:0b011, 0, Rn, Rt))
#define STRz_REG(Rt, Rn, Rm)            EMIT(STR_REG_gen(rex.is32bits?0b10:0b11, Rm, 0b011, 0, Rn, Rt))
#define STRz_REG_SXTW(Rt, Rn, Rm)       EMIT(STR_REG_gen(rex.is32bits?0b10:0b11, Rm, 0b110, 0, Rn, Rt))
#define STRz_REGz(Rt, Rn, Rm)           EMIT(STR_REG_gen(rex.is32bits?0b10:0b11, Rm, rex.is32bits?0b110:0b011, 0, Rn, Rt))

// LOAD/STORE PAIR
#define MEMPAIR_gen(size, L, op2, imm7, Rt2, Rn, Rt)    ((size)<<31 | 0b101<<27 | (op2)<<23 | (L)<<22 | (imm7)<<15 | (Rt2)<<10 | (Rn)<<5 | (Rt))

#define LDPx_S7_postindex(Rt, Rt2, Rn, imm)             EMIT(MEMPAIR_gen(1, 1, 0b01, (((uint32_t)(imm))>>3)&0x7f, Rt2, Rn, Rt))
#define LDPw_S7_postindex(Rt, Rt2, Rn, imm)             EMIT(MEMPAIR_gen(0, 1, 0b01, (((uint32_t)(imm))>>2)&0x7f, Rt2, Rn, Rt))
#define LDPxw_S7_postindex(Rt, Rt2, Rn, imm)            EMIT(MEMPAIR_gen(rex.w, 1, 0b01, (((uint32_t)(imm))>>(2+rex.w))&0x7f, Rt2, Rn, Rt))
#define LDPx_S7_preindex(Rt, Rt2, Rn, imm)              EMIT(MEMPAIR_gen(1, 1, 0b11, (((uint32_t)(imm))>>3)&0x7f, Rt2, Rn, Rt))
#define LDPw_S7_preindex(Rt, Rt2, Rn, imm)              EMIT(MEMPAIR_gen(0, 1, 0b11, (((uint32_t)(imm))>>2)&0x7f, Rt2, Rn, Rt))
#define LDPxw_S7_preindex(Rt, Rt2, Rn, imm)             EMIT(MEMPAIR_gen(rex.w, 1, 0b11, (((uint32_t)(imm))>>(2+rex.w))&0x7f, Rt2, Rn, Rt))
#define LDPx_S7_offset(Rt, Rt2, Rn, imm)                EMIT(MEMPAIR_gen(1, 1, 0b10, (((uint32_t)(imm))>>3)&0x7f, Rt2, Rn, Rt))
#define LDPw_S7_offset(Rt, Rt2, Rn, imm)                EMIT(MEMPAIR_gen(0, 1, 0b10, (((uint32_t)(imm))>>2)&0x7f, Rt2, Rn, Rt))
#define LDPxw_S7_offset(Rt, Rt2, Rn, imm)               EMIT(MEMPAIR_gen(rex.w, 1, 0b10, (((uint32_t)(imm))>>(2+rex.w))&0x7f, Rt2, Rn, Rt))

#define STPx_S7_postindex(Rt, Rt2, Rn, imm)             EMIT(MEMPAIR_gen(1, 0, 0b01, (((uint32_t)(imm))>>3)&0x7f, Rt2, Rn, Rt))
#define STPw_S7_postindex(Rt, Rt2, Rn, imm)             EMIT(MEMPAIR_gen(0, 0, 0b01, (((uint32_t)(imm))>>2)&0x7f, Rt2, Rn, Rt))
#define STPxw_S7_postindex(Rt, Rt2, Rn, imm)            EMIT(MEMPAIR_gen(rex.w, 0, 0b01, (((uint32_t)(imm))>>(2+rex.w))&0x7f, Rt2, Rn, Rt))
#define STPx_S7_preindex(Rt, Rt2, Rn, imm)              EMIT(MEMPAIR_gen(1, 0, 0b11, (((uint32_t)(imm))>>3)&0x7f, Rt2, Rn, Rt))
#define STPw_S7_preindex(Rt, Rt2, Rn, imm)              EMIT(MEMPAIR_gen(0, 0, 0b11, (((uint32_t)(imm))>>2)&0x7f, Rt2, Rn, Rt))
#define STPxw_S7_preindex(Rt, Rt2, Rn, imm)             EMIT(MEMPAIR_gen(rex.w, 0, 0b11, (((uint32_t)(imm))>>(2+rex.w))&0x7f, Rt2, Rn, Rt))
#define STPx_S7_offset(Rt, Rt2, Rn, imm)                EMIT(MEMPAIR_gen(1, 0, 0b10, (((uint32_t)(imm))>>3)&0x7f, Rt2, Rn, Rt))
#define STPw_S7_offset(Rt, Rt2, Rn, imm)                EMIT(MEMPAIR_gen(0, 0, 0b10, (((uint32_t)(imm))>>2)&0x7f, Rt2, Rn, Rt))
#define STPxw_S7_offset(Rt, Rt2, Rn, imm)               EMIT(MEMPAIR_gen(rex.w, 0, 0b10, (((uint32_t)(imm))>>(2+rex.w))&0x7f, Rt2, Rn, Rt))

// PUSH / POP helper
#define POP1(reg)       LDRx_S9_postindex(reg, xRSP, 8)
#define PUSH1(reg)      STRx_S9_preindex(reg, xRSP, -8)
#define POP2(reg1, reg2)       LDPx_S7_postindex(reg1, reg2, xRSP, 16)
#define PUSH2(reg1, reg2)      STPx_S7_preindex(reg2, reg1, xRSP, -16)

#define POP1_32(reg)            LDRw_S9_postindex(reg, xRSP, 4)
#define PUSH1_32(reg)           STRw_S9_preindex(reg, xRSP, -4)
#define POP2_32(reg1, reg2)     LDPw_S7_postindex(reg1, reg2, xRSP, 8)
#define PUSH2_32(reg1, reg2)    STPw_S7_preindex(reg2, reg1, xRSP, -8)

#define POP1_16(reg)            LDRH_S9_postindex(reg, xRSP, 2)
#define PUSH1_16(reg)           STRH_S9_preindex(reg, xRSP, -2)

#define POP1z(reg)              if(rex.is32bits) {POP1_32(reg);} else {POP1(reg);}
#define PUSH1z(reg)             if(rex.is32bits) {PUSH1_32(reg);} else {PUSH1(reg);}
#define POP2z(reg1, reg2)       if(rex.is32bits) {POP2_32(reg1, reg2);} else {POP2(reg1, reg2);}
#define PUSH2z(reg1, reg2)      if(rex.is32bits) {PUSH2_32(reg1, reg2);} else {PUSH2(reg1, reg2);}

// LOAD/STORE Acquire Exclusive
#define MEMAX_gen(size, L, Rs, Rn, Rt)      ((size)<<30 | 0b001000<<24 | (L)<<22 | (Rs)<<16 | 1<<15 | 0b11111<<10 | (Rn)<<5 | (Rt))
#define LDAXRB(Rt, Rn)                  EMIT(MEMAX_gen(0b00, 1, 31, Rn, Rt))
#define STLXRB(Rs, Rt, Rn)              EMIT(MEMAX_gen(0b00, 0, Rs, Rn, Rt))
#define LDAXRH(Rt, Rn)                  EMIT(MEMAX_gen(0b01, 1, 31, Rn, Rt))
#define STLXRH(Rs, Rt, Rn)              EMIT(MEMAX_gen(0b01, 0, Rs, Rn, Rt))
#define LDAXRw(Rt, Rn)                  EMIT(MEMAX_gen(0b10, 1, 31, Rn, Rt))
#define STLXRw(Rs, Rt, Rn)              EMIT(MEMAX_gen(0b10, 0, Rs, Rn, Rt))
#define LDAXRx(Rt, Rn)                  EMIT(MEMAX_gen(0b11, 1, 31, Rn, Rt))
#define STLXRx(Rs, Rt, Rn)              EMIT(MEMAX_gen(0b11, 0, Rs, Rn, Rt))
#define LDAXRxw(Rt, Rn)                 EMIT(MEMAX_gen(2+rex.w, 1, 31, Rn, Rt))
#define STLXRxw(Rs, Rt, Rn)             EMIT(MEMAX_gen(2+rex.w, 0, Rs, Rn, Rt))

#define MEMAX_pair(size, L, Rs, Rt2, Rn, Rt)    (1<<31 | (size)<<30 | 0b001000<<24 | (L)<<22 | 1<<21 | (Rs)<<16 | 1<<15 | (Rt2)<<10 | (Rn)<<5 | (Rt))
#define LDAXPx(Rt, Rt2, Rn)             EMIT(MEMAX_pair(1, 1, 31, Rt2, Rn, Rt))
#define LDAXPw(Rt, Rt2, Rn)             EMIT(MEMAX_pair(0, 1, 31, Rt2, Rn, Rt))
#define LDAXPxw(Rt, Rt2, Rn)            EMIT(MEMAX_pair(rex.w, 1, 31, Rt2, Rn, Rt))
#define STLXPx(Rs, Rt, Rt2, Rn)         EMIT(MEMAX_pair(1, 0, Rs, Rt2, Rn, Rt))
#define STLXPw(Rs, Rt, Rt2, Rn)         EMIT(MEMAX_pair(0, 0, Rs, Rt2, Rn, Rt))
#define STLXPxw(Rs, Rt, Rt2, Rn)        EMIT(MEMAX_pair(rex.w, 0, Rs, Rt2, Rn, Rt))

// LOAD/STORE Exclusive
#define MEMX_gen(size, L, Rs, Rn, Rt)       ((size)<<30 | 0b001000<<24 | (L)<<22 | (Rs)<<16 | 0<<15 | 0b11111<<10 | (Rn)<<5 | (Rt))
#define LDXRB(Rt, Rn)                   EMIT(MEMX_gen(0b00, 1, 31, Rn, Rt))
#define STXRB(Rs, Rt, Rn)               EMIT(MEMX_gen(0b00, 0, Rs, Rn, Rt))
#define LDXRH(Rt, Rn)                   EMIT(MEMX_gen(0b01, 1, 31, Rn, Rt))
#define STXRH(Rs, Rt, Rn)               EMIT(MEMX_gen(0b01, 0, Rs, Rn, Rt))
#define LDXRw(Rt, Rn)                   EMIT(MEMX_gen(0b10, 1, 31, Rn, Rt))
#define STXRw(Rs, Rt, Rn)               EMIT(MEMX_gen(0b10, 0, Rs, Rn, Rt))
#define LDXRx(Rt, Rn)                   EMIT(MEMX_gen(0b11, 1, 31, Rn, Rt))
#define STXRx(Rs, Rt, Rn)               EMIT(MEMX_gen(0b11, 0, Rs, Rn, Rt))
#define LDXRxw(Rt, Rn)                  EMIT(MEMX_gen(2+rex.w, 1, 31, Rn, Rt))
#define STXRxw(Rs, Rt, Rn)              EMIT(MEMX_gen(2+rex.w, 0, Rs, Rn, Rt))

// Prefetch
#define PRFM_register(Rm, option, S, Rn, Rt)    (0b11<<30 | 0b111<<27 | 0b10<<22 | 1<<21 | (Rm)<<16 | (option)<<13 | (S)<<12 | 0b10<<10 | (Rn)<<5 | (Rt))
#define PLD_L1_KEEP(Rn, Rm)             EMIT(PRFM_register(Rm, 0b011, 0, Rn, 0b00000))
#define PLD_L2_KEEP(Rn, Rm)             EMIT(PRFM_register(Rm, 0b011, 0, Rn, 0b00010))
#define PLD_L3_KEEP(Rn, Rm)             EMIT(PRFM_register(Rm, 0b011, 0, Rn, 0b00100))
#define PLD_L1_STREAM(Rn, Rm)           EMIT(PRFM_register(Rm, 0b011, 0, Rn, 0b00001))
#define PLD_L2_STREAM(Rn, Rm)           EMIT(PRFM_register(Rm, 0b011, 0, Rn, 0b00011))
#define PLD_L3_STREAM(Rn, Rm)           EMIT(PRFM_register(Rm, 0b011, 0, Rn, 0b00101))

#define PRFM_imm(imm12, Rn, Rt)         (0b11<<30 | 0b111<<27 | 0b01<<24 | 0b10<<22 | (imm12)<<10 | (Rn)<<5 | (Rt))
#define PLD_L1_KEEP_U12(Rn, imm12)      EMIT(PRFM_imm(((imm12)>>3)&0xfff, Rn, 0b00000))
#define PLD_L2_KEEP_U12(Rn, imm12)      EMIT(PRFM_imm(((imm12)>>3)&0xfff, Rn, 0b00010))
#define PLD_L3_KEEP_U12(Rn, imm12)      EMIT(PRFM_imm(((imm12)>>3)&0xfff, Rn, 0b00100))
#define PLD_L1_STREAM_U12(Rn, imm12)    EMIT(PRFM_imm(((imm12)>>3)&0xfff, Rn, 0b00001))
#define PLD_L2_STREAM_U12(Rn, imm12)    EMIT(PRFM_imm(((imm12)>>3)&0xfff, Rn, 0b00011))
#define PLD_L3_STREAM_U12(Rn, imm12)    EMIT(PRFM_imm(((imm12)>>3)&0xfff, Rn, 0b00101))

#define PST_L1_STREAM_U12(Rn, imm12)    EMIT(PRFM_imm(((imm12)>>3)&0xfff, Rn, 0b01001))

// Data Memory Barrier
#define DMB_gen(CRm)                    (0b1101010100<<22 | 0b011<<16 | 0b0011<<12 | (CRm)<<8 | 1<<7 | 0b01<<5 | 0b11111)
#define DMB_ISH()                       EMIT(DMB_gen(0b1011))
#define DMB_ISHLD()                     EMIT(DMB_gen(0b1001))
#define DMB_ISHST()                     EMIT(DMB_gen(0b1010))
#define DMB_LD()                        EMIT(DMB_gen(0b1101))
#define DMB_ST()                        EMIT(DMB_gen(0b1110))
#define DMB_SY()                        EMIT(DMB_gen(0b1111))

// Data Synchronization Barrier
#define DSB_gen(CRm)                    (0b1101010100<<22 | 0b011<<16 | 0b0011<<12 | (CRm)<<8 | 1<<7 | 0b00<<5 | 0b11111)
#define DSB_ISH()                       EMIT(DSB_gen(0b1011))
#define DSB_ISHLD()                     EMIT(DSB_gen(0b1001))
#define DSB_ISHST()                     EMIT(DSB_gen(0b1010))
#define DSB_LD()                        EMIT(DSB_gen(0b1101))
#define DSB_ST()                        EMIT(DSB_gen(0b1110))
#define DSB_SY()                        EMIT(DSB_gen(0b1111))

// Break
#define BRK_gen(imm16)                  (0b11010100<<24 | 0b001<<21 | (((imm16)&0xffff)<<5))
#define BRK(imm16)                      EMIT(BRK_gen(imm16))

// BR and Branches
#define BR_gen(Z, op, A, M, Rn, Rm)       (0b1101011<<25 | (Z)<<24 | (op)<<21 | 0b11111<<16 | (A)<<11 | (M)<<10 | (Rn)<<5 | (Rm))
#define BR(Rn)                            EMIT(BR_gen(0, 0b00, 0, 0, Rn, 0))
#define BLR(Rn)                           EMIT(BR_gen(0, 0b01, 0, 0, Rn, 0))
#define RET(Rn)                           EMIT(BR_gen(0, 0b10, 0, 0, Rn, 0))

#define CB_gen(sf, op, imm19, Rt)       ((sf)<<31 | 0b011010<<25 | (op)<<24 | (imm19)<<5 | (Rt))
#define CBNZx(Rt, imm19)                EMIT(CB_gen(1, 1, ((imm19)>>2)&0x7FFFF, Rt))
#define CBNZw(Rt, imm19)                EMIT(CB_gen(0, 1, ((imm19)>>2)&0x7FFFF, Rt))
#define CBNZxw(Rt, imm19)               EMIT(CB_gen(rex.w, 1, ((imm19)>>2)&0x7FFFF, Rt))
#define CBNZz(Rt, imm19)                EMIT(CB_gen(rex.is32bits?0:1, 1, ((imm19)>>2)&0x7FFFF, Rt))
#define CBZx(Rt, imm19)                 EMIT(CB_gen(1, 0, ((imm19)>>2)&0x7FFFF, Rt))
#define CBZw(Rt, imm19)                 EMIT(CB_gen(0, 0, ((imm19)>>2)&0x7FFFF, Rt))
#define CBZxw(Rt, imm19)                EMIT(CB_gen(rex.w, 0, ((imm19)>>2)&0x7FFFF, Rt))
#define CBZz(Rt, imm19)                 EMIT(CB_gen(rex.is32bits?0:1, 0, ((imm19)>>2)&0x7FFFF, Rt))

#define TB_gen(b5, op, b40, imm14, Rt)  ((b5)<<31 | 0b011011<<25 | (op)<<24  | (b40)<<19 | (imm14)<<5 | (Rt))
#define TBZ(Rt, bit, imm16)             EMIT(TB_gen(((bit)>>5)&1, 0, (bit)&0x1f, ((imm16)>>2)&0x3FFF, Rt))
#define TBNZ(Rt, bit, imm16)            EMIT(TB_gen(((bit)>>5)&1, 1, (bit)&0x1f, ((imm16)>>2)&0x3FFF, Rt))

#define Bcond_gen(imm19, cond)          (0b0101010<<25 | (imm19)<<5 | (cond))
#define Bcond(cond, imm19)              EMIT(Bcond_gen(((imm19)>>2)&0x7FFFF, cond))

#define B_gen(imm26)                    (0b000101<<26 | (imm26))
#define B(imm26)                        EMIT(B_gen(((imm26)>>2)&0x3ffffff))

#define BL_gen(imm26)                   (0b100101<<26 | (imm26))
#define BL(imm26)                       EMIT(BL_gen(((imm26)>>2)&0x3ffffff))

#define NOP                             EMIT(0b11010101000000110010000000011111)
#define WFE                             EMIT(0b11010101000000110010000001011111)
#define WFI                             EMIT(0b11010101000000110010000001111111)
#define YIELD                           EMIT(0b11010101000000110010000000111111)
#define SEVL                            EMIT(0b11010101000000110010000010111111)

#define CSINC_gen(sf, Rm, cond, Rn, Rd)     ((sf)<<31 | 0b11010100<<21 | (Rm)<<16 | (cond)<<12 | 1<<10 | (Rn)<<5 | (Rd))
#define CSINCx(Rd, Rn, Rm, cond)            EMIT(CSINC_gen(1, Rm, cond, Rn, Rd))
#define CSINCw(Rd, Rn, Rm, cond)            EMIT(CSINC_gen(0, Rm, cond, Rn, Rd))
#define CSINCxw(Rd, Rn, Rm, cond)           EMIT(CSINC_gen(rex.w, Rm, cond, Rn, Rd))
#define CSETx(Rd, cond)                     CSINCx(Rd, xZR, xZR, invCond(cond))
#define CSETw(Rd, cond)                     CSINCw(Rd, xZR, xZR, invCond(cond))
#define CSETxw(Rd, cond)                    CSINCxw(Rd, xZR, xZR, invCond(cond))

#define CSINV_gen(sf, Rm, cond, Rn, Rd)     ((sf)<<31 | 1<<30 | 0b11010100<<21 | (Rm)<<16 | (cond)<<12 | (Rn)<<5 | (Rd))
#define CSINVx(Rd, Rn, Rm, cond)            EMIT(CSINV_gen(1, Rm, cond, Rn, Rd))
#define CSINVw(Rd, Rn, Rm, cond)            EMIT(CSINV_gen(0, Rm, cond, Rn, Rd))
#define CSINVxw(Rd, Rn, Rm, cond)           EMIT(CSINV_gen(rex.w, Rm, cond, Rn, Rd))
#define CINVx(Rd, Rn, cond)                 CSINVx(Rd, Rn, Rn, invertCond(cond))
#define CINVw(Rd, Rn, cond)                 CSINVw(Rd, Rn, Rn, invertCond(cond))
#define CINVxw(Rd, Rn, cond)                CSINVxw(Rd, Rn, Rn, invertCond(cond))
#define CSETMx(Rd, cond)                    CSINVx(Rd, xZR, xZR, invCond(cond))
#define CSETMw(Rd, cond)                    CSINVw(Rd, xZR, xZR, invCond(cond))
#define CSETMxw(Rd, cond)                   CSINVxw(Rd, xZR, xZR, invCond(cond))

#define CSEL_gen(sf, Rm, cond, Rn, Rd)      ((sf<<31) | 0b11010100<<21 | (Rm)<<16 | (cond)<<12 | (Rn)<<5 | Rd)
#define CSELx(Rd, Rn, Rm, cond)             EMIT(CSEL_gen(1, Rm, cond, Rn, Rd))
#define CSELw(Rd, Rn, Rm, cond)             EMIT(CSEL_gen(0, Rm, cond, Rn, Rd))
#define CSELxw(Rd, Rn, Rm, cond)            EMIT(CSEL_gen(rex.w, Rm, cond, Rn, Rd))

#define CSNEG_gen(sf, Rm, cond, Rn, Rd)     ((sf)<<31 | 1<<30 | 0b11010100<<21 | (Rm)<<16 | (cond)<<12 | 1<<10 | (Rn)<<5 | (Rd))
#define CSNEGx(Rd, Rn, Rm, cond)            EMIT(CSNEG_gen(1, Rm, cond, Rn, Rd))
#define CSNEGw(Rd, Rn, Rm, cond)            EMIT(CSNEG_gen(0, Rm, cond, Rn, Rd))
#define CSNEGxw(Rd, Rn, Rm, cond)           EMIT(CSNEG_gen(rex.w, Rm, cond, Rn, Rd))
#define CNEGx(Rd, Rn, cond)                 CSNEGx(Rn, Rn, Rd, invCond(cond))
#define CNEGw(Rd, Rn, cond)                 CSNEGw(Rn, Rn, Rd, invCond(cond))
#define CNEGxw(Rd, Rn, cond)                CSNEGxw(Rn, Rn, Rd, invCond(cond))

// AND / ORR
#define LOGIC_gen(sf, opc, N, immr, imms, Rn, Rd)  ((sf)<<31 | (opc)<<29 | 0b100100<<23 | (N)<<22 | (immr)<<16 | (imms)<<10 | (Rn)<<5 | Rd)
// logic to get the mask is ... convoluted... list of possible value there: https://gist.github.com/dinfuehr/51a01ac58c0b23e4de9aac313ed6a06a
#define ANDx_mask(Rd, Rn, N, immr, imms)    EMIT(LOGIC_gen(1, 0b00, N, immr, imms, Rn, Rd))
#define ANDw_mask(Rd, Rn, immr, imms)       EMIT(LOGIC_gen(0, 0b00, 0, immr, imms, Rn, Rd))
#define ANDxw_mask(Rd, Rn, N, immr, imms)   EMIT(LOGIC_gen(rex.w, 0b00, rex.w?(N):0, immr, imms, Rn, Rd))
#define ANDSx_mask(Rd, Rn, N, immr, imms)  FEMIT(LOGIC_gen(1, 0b11, N, immr, imms, Rn, Rd))
#define ANDSw_mask(Rd, Rn, immr, imms)     FEMIT(LOGIC_gen(0, 0b11, 0, immr, imms, Rn, Rd))
#define ANDSxw_mask(Rd, Rn, N, immr, imms) FEMIT(LOGIC_gen(rex.w, 0b11, rex.w?(N):0, immr, imms, Rn, Rd))
#define ORRx_mask(Rd, Rn, N, immr, imms)    EMIT(LOGIC_gen(1, 0b01, N, immr, imms, Rn, Rd))
#define ORRw_mask(Rd, Rn, immr, imms)       EMIT(LOGIC_gen(0, 0b01, 0, immr, imms, Rn, Rd))
#define ORRxw_mask(Rd, Rn, N, immr, imms)   EMIT(LOGIC_gen(rex.w, 0b01, rex.w?(N):0, immr, imms, Rn, Rd))
#define EORx_mask(Rd, Rn, N, immr, imms)    EMIT(LOGIC_gen(1, 0b10, N, immr, imms, Rn, Rd))
#define EORw_mask(Rd, Rn, immr, imms)       EMIT(LOGIC_gen(0, 0b10, 0, immr, imms, Rn, Rd))
#define EORxw_mask(Rd, Rn, N, immr, imms)   EMIT(LOGIC_gen(rex.w, 0b10, rex.w?(N):0, immr, imms, Rn, Rd))
#define TSTx_mask(Rn, N, immr, imms)        ANDSx_mask(xZR, Rn, N, immr, imms)
#define TSTw_mask(Rn, immr, imms)           ANDSw_mask(wZR, Rn, immr, imms)
#define TSTxw_mask(Rn, N, immr, imms)       ANDSxw_mask(xZR, Rn, N, immr, imms)

#define LOGIC_REG_gen(sf, opc, shift, N, Rm, imm6, Rn, Rd)    ((sf)<<31 | (opc)<<29 | 0b01010<<24 | (shift)<<22 | (N)<<21 | (Rm)<<16 | (imm6)<<10 | (Rn)<<5 | (Rd))
#define ANDx_REG(Rd, Rn, Rm)            EMIT(LOGIC_REG_gen(1, 0b00, 0b00, 0, Rm, 0, Rn, Rd))
#define ANDw_REG(Rd, Rn, Rm)            EMIT(LOGIC_REG_gen(0, 0b00, 0b00, 0, Rm, 0, Rn, Rd))
#define ANDw_REG_LSR(Rd, Rn, Rm, lsr)   EMIT(LOGIC_REG_gen(0, 0b00, 0b01, 0, Rm, lsr, Rn, Rd))
#define ANDxw_REG(Rd, Rn, Rm)           EMIT(LOGIC_REG_gen(rex.w, 0b00, 0b00, 0, Rm, 0, Rn, Rd))
#define ANDSx_REG(Rd, Rn, Rm)          FEMIT(LOGIC_REG_gen(1, 0b11, 0b00, 0, Rm, 0, Rn, Rd))
#define ANDSw_REG(Rd, Rn, Rm)          FEMIT(LOGIC_REG_gen(0, 0b11, 0b00, 0, Rm, 0, Rn, Rd))
#define ANDSxw_REG(Rd, Rn, Rm)         FEMIT(LOGIC_REG_gen(rex.w, 0b11, 0b00, 0, Rm, 0, Rn, Rd))
#define ANDSw_REG_LSL(Rd, Rn, Rm, lsl) FEMIT(LOGIC_REG_gen(0, 0b11, 0b00, 0, Rm, lsl, Rn, Rd))
#define ORRx_REG(Rd, Rn, Rm)            EMIT(LOGIC_REG_gen(1, 0b01, 0b00, 0, Rm, 0, Rn, Rd))
#define ORRx_REG_LSL(Rd, Rn, Rm, lsl)   EMIT(LOGIC_REG_gen(1, 0b01, 0b00, 0, Rm, lsl, Rn, Rd))
#define ORRw_REG_LSL(Rd, Rn, Rm, lsl)   EMIT(LOGIC_REG_gen(0, 0b01, 0b00, 0, Rm, lsl, Rn, Rd))
#define ORRxw_REG_LSL(Rd, Rn, Rm, lsl)  EMIT(LOGIC_REG_gen(rex.w, 0b01, 0b00, 0, Rm, lsl, Rn, Rd))
#define ORRx_REG_LSR(Rd, Rn, Rm, lsr)   EMIT(LOGIC_REG_gen(1, 0b01, 0b01, 0, Rm, lsr, Rn, Rd))
#define ORRw_REG_LSR(Rd, Rn, Rm, lsr)   EMIT(LOGIC_REG_gen(0, 0b01, 0b01, 0, Rm, lsr, Rn, Rd))
#define ORRxw_REG_LSR(Rd, Rn, Rm, lsr)  EMIT(LOGIC_REG_gen(rex.w, 0b01, 0b01, 0, Rm, lsr, Rn, Rd))
#define ORRxw_REG(Rd, Rn, Rm)           EMIT(LOGIC_REG_gen(rex.w, 0b01, 0b00, 0, Rm, 0, Rn, Rd))
#define ORRw_REG(Rd, Rn, Rm)            EMIT(LOGIC_REG_gen(0, 0b01, 0b00, 0, Rm, 0, Rn, Rd))
#define ORNx_REG(Rd, Rn, Rm)            EMIT(LOGIC_REG_gen(1, 0b01, 0b00, 1, Rm, 0, Rn, Rd))
#define ORNw_REG(Rd, Rn, Rm)            EMIT(LOGIC_REG_gen(0, 0b01, 0b00, 1, Rm, 0, Rn, Rd))
#define ORNxw_REG(Rd, Rn, Rm)           EMIT(LOGIC_REG_gen(rex.w, 0b01, 0b00, 1, Rm, 0, Rn, Rd))
#define ORNx_REG_LSL(Rd, Rn, Rm, lsl)   EMIT(LOGIC_REG_gen(1, 0b01, 0b00, 1, Rm, lsl, Rn, Rd))
#define EORx_REG(Rd, Rn, Rm)            EMIT(LOGIC_REG_gen(1, 0b10, 0b00, 0, Rm, 0, Rn, Rd))
#define EORw_REG(Rd, Rn, Rm)            EMIT(LOGIC_REG_gen(0, 0b10, 0b00, 0, Rm, 0, Rn, Rd))
#define EORxw_REG(Rd, Rn, Rm)           EMIT(LOGIC_REG_gen(rex.w, 0b10, 0b00, 0, Rm, 0, Rn, Rd))
#define EORx_REG_LSL(Rd, Rn, Rm, lsl)   EMIT(LOGIC_REG_gen(1, 0b10, 0b00, 0, Rm, lsl, Rn, Rd))
#define EORw_REG_LSL(Rd, Rn, Rm, lsl)   EMIT(LOGIC_REG_gen(0, 0b10, 0b00, 0, Rm, lsl, Rn, Rd))
#define EORxw_REG_LSL(Rd, Rn, Rm, lsl)  EMIT(LOGIC_REG_gen(rex.w, 0b10, 0b00, 0, Rm, lsl, Rn, Rd))
#define EORx_REG_LSR(Rd, Rn, Rm, lsr)   EMIT(LOGIC_REG_gen(1, 0b10, 0b01, 0, Rm, lsr, Rn, Rd))
#define EORw_REG_LSR(Rd, Rn, Rm, lsr)   EMIT(LOGIC_REG_gen(0, 0b10, 0b01, 0, Rm, lsr, Rn, Rd))
#define EORxw_REG_LSR(Rd, Rn, Rm, lsr)  EMIT(LOGIC_REG_gen(rex.w, 0b10, 0b01, 0, Rm, lsr, Rn, Rd))
#define EONx_REG(Rd, Rn, Rm)            EMIT(LOGIC_REG_gen(1, 0b10, 0b00, 1, Rm, 0, Rn, Rd))
#define EONw_REG(Rd, Rn, Rm)            EMIT(LOGIC_REG_gen(0, 0b10, 0b00, 1, Rm, 0, Rn, Rd))
#define EONxw_REG(Rd, Rn, Rm)           EMIT(LOGIC_REG_gen(rex.w, 0b10, 0b00, 1, Rm, 0, Rn, Rd))
#define EONx_REG_LSL(Rd, Rn, Rm, lsl)   EMIT(LOGIC_REG_gen(1, 0b10, 0b00, 1, Rm, lsl, Rn, Rd))
#define EONw_REG_LSL(Rd, Rn, Rm, lsl)   EMIT(LOGIC_REG_gen(0, 0b10, 0b00, 1, Rm, lsl, Rn, Rd))
#define EONxw_REG_LSL(Rd, Rn, Rm, lsl)  EMIT(LOGIC_REG_gen(rex.w, 0b10, 0b00, 1, Rm, lsl, Rn, Rd))
#define EONx_REG_LSR(Rd, Rn, Rm, lsr)   EMIT(LOGIC_REG_gen(1, 0b10, 0b01, 1, Rm, lsr, Rn, Rd))
#define EONw_REG_LSR(Rd, Rn, Rm, lsr)   EMIT(LOGIC_REG_gen(0, 0b10, 0b01, 1, Rm, lsr, Rn, Rd))
#define EONxw_REG_LSR(Rd, Rn, Rm, lsr)  EMIT(LOGIC_REG_gen(rex.w, 0b10, 0b01, 1, Rm, lsr, Rn, Rd))
#define MOVx_REG(Rd, Rm)                ORRx_REG(Rd, xZR, Rm)
#define MOVw_REG(Rd, Rm)                ORRw_REG(Rd, xZR, Rm)
#define MOVxw_REG(Rd, Rm)               ORRxw_REG(Rd, xZR, Rm)
#define MOVz_REG(Rd, Rm)                if(rex.is32bits) {MOVw_REG(Rd, Rm);} else {MOVx_REG(Rd, Rm);}
#define LSLw_IMM(Rd, Rm, lsl)           ORRw_REG_LSL(Rd, xZR, Rm, lsl)
#define LSLx_IMM(Rd, Rm, lsl)           ORRx_REG_LSL(Rd, xZR, Rm, lsl)
#define LSLxw_IMM(Rd, Rm, lsl)          ORRxw_REG_LSL(Rd, xZR, Rm, lsl)
#define LSRw_IMM(Rd, Rm, lsr)           ORRw_REG_LSR(Rd, xZR, Rm, lsr)
#define LSRx_IMM(Rd, Rm, lsr)           ORRx_REG_LSR(Rd, xZR, Rm, lsr)
#define LSRxw_IMM(Rd, Rm, lsr)          ORRxw_REG_LSR(Rd, xZR, Rm, lsr)
#define MVNx_REG(Rd, Rm)                ORNx_REG(Rd, xZR, Rm)
#define MVNx_REG_LSL(Rd, Rm, lsl)       ORNx_REG_LSL(Rd, xZR, Rm, lsl)
#define MVNw_REG(Rd, Rm)                ORNw_REG(Rd, xZR, Rm)
#define MVNxw_REG(Rd, Rm)               ORNxw_REG(Rd, xZR, Rm)
#define MOV_frmSP(Rd)                   ADDx_U12(Rd, xSP, 0)
#define MOV_toSP(Rm)                    ADDx_U12(xSP, Rm, 0)
#define BICx(Rd, Rn, Rm)                EMIT(LOGIC_REG_gen(1, 0b00, 0b00, 1, Rm, 0, Rn, Rd))
#define BICw(Rd, Rn, Rm)                EMIT(LOGIC_REG_gen(0, 0b00, 0b00, 1, Rm, 0, Rn, Rd))
#define BICw_LSL(Rd, Rn, Rm, lsl)       EMIT(LOGIC_REG_gen(0, 0b00, 0b00, 1, Rm, lsl, Rn, Rd))
#define BICSx(Rd, Rn, Rm)              FEMIT(LOGIC_REG_gen(1, 0b11, 0b00, 1, Rm, 0, Rn, Rd))
#define BICSw(Rd, Rn, Rm)              FEMIT(LOGIC_REG_gen(0, 0b11, 0b00, 1, Rm, 0, Rn, Rd))
#define BICxw(Rd, Rn, Rm)              FEMIT(LOGIC_REG_gen(rex.w, 0b00, 0b00, 1, Rm, 0, Rn, Rd))
#define BICSxw(Rd, Rn, Rm)             FEMIT(LOGIC_REG_gen(rex.w, 0b11, 0b00, 1, Rm, 0, Rn, Rd))
#define BICx_REG    BICx
#define BICw_REG    BICw
#define BICxw_REG   BICxw
#define BICx_REG_LSL(Rd, Rn, Rm, lsl)   EMIT(LOGIC_REG_gen(1, 0b00, 0b00, 1, Rm, lsl, Rn, Rd))
#define BICw_REG_LSL(Rd, Rn, Rm, lsl)   EMIT(LOGIC_REG_gen(0, 0b00, 0b00, 1, Rm, lsl, Rn, Rd))
#define BICxw_REG_LSL(Rd, Rn, Rm, lsl)  EMIT(LOGIC_REG_gen(rex.w, 0b00, 0b00, 1, Rm, lsl, Rn, Rd))
#define BICx_REG_LSR(Rd, Rn, Rm, lsl)   EMIT(LOGIC_REG_gen(1, 0b00, 0b01, 1, Rm, lsl, Rn, Rd))
#define BICw_REG_LSR(Rd, Rn, Rm, lsl)   EMIT(LOGIC_REG_gen(0, 0b00, 0b01, 1, Rm, lsl, Rn, Rd))
#define BICxw_REG_LSR(Rd, Rn, Rm, lsl)  EMIT(LOGIC_REG_gen(rex.w, 0b00, 0b01, 1, Rm, lsl, Rn, Rd))
#define TSTx_REG(Rn, Rm)                ANDSx_REG(xZR, Rn, Rm)
#define TSTw_REG(Rn, Rm)                ANDSw_REG(wZR, Rn, Rm)
#define TSTxw_REG(Rn, Rm)               ANDSxw_REG(xZR, Rn, Rm)

// ASRV
#define ASRV_gen(sf, Rm, Rn, Rd)        ((sf)<<31 | 0b11010110<<21 | (Rm)<<16 | 0b0010<<12 | 0b10<<10 | (Rn)<<5 | (Rd))
#define ASRx_REG(Rd, Rn, Rm)            EMIT(ASRV_gen(1, Rm, Rn, Rd))
#define ASRw_REG(Rd, Rn, Rm)            EMIT(ASRV_gen(0, Rm, Rn, Rd))
#define ASRxw_REG(Rd, Rn, Rm)           EMIT(ASRV_gen(rex.w, Rm, Rn, Rd))

// BFI
#define BFM_gen(sf, opc, N, immr, imms, Rn, Rd) ((sf)<<31 | (opc)<<29 | 0b100110<<23 | (N)<<22 | (immr)<<16 | (imms)<<10 | (Rn)<<5 | (Rd))
#define BFMx(Rd, Rn, immr, imms)        EMIT(BFM_gen(1, 0b01, 1, immr, imms, Rn, Rd))
#define BFMw(Rd, Rn, immr, imms)        EMIT(BFM_gen(0, 0b01, 0, immr, imms, Rn, Rd))
#define BFMxw(Rd, Rn, immr, imms)       EMIT(BFM_gen(rex.w, 0b01, rex.w, immr, imms, Rn, Rd))
#define BFIx(Rd, Rn, lsb, width)        BFMx(Rd, Rn, ((-(lsb))%64)&0x3f, (width)-1)
#define BFIw(Rd, Rn, lsb, width)        BFMw(Rd, Rn, ((-(lsb))%32)&0x1f, (width)-1)
#define BFIxw(Rd, Rn, lsb, width)       if(rex.w) {BFIx(Rd, Rn, lsb, width);} else {BFIw(Rd, Rn, lsb, width);}
#define BFIz(Rd, Rn, lsb, width)        if(rex.is32bits) {BFIw(Rd, Rn, lsb, width);} else {BFIx(Rd, Rn, lsb, width);}
#define BFCx(Rd, lsb, width)            BFMx(Rd, xZR, ((-(lsb))%64)&0x3f, (width)-1)
#define BFCw(Rd, lsb, width)            BFMw(Rd, xZR, ((-(lsb))%32)&0x1f, (width)-1)
#define BFCxw(Rd, lsb, width)           BFMxw(Rd, xZR, rex.w?(((-(lsb))%64)&0x3f):(((-(lsb))%32)&0x1f), (width)-1)
#define BFCz(Rd, lsb, width)            if(rex.is32bits) {BFCw(Rd, lsb, width);} else {BFCx(Rd, lsb, width);}
// Insert lsb:width part of Rn into low part of Rd (leaving rest of Rd untouched)
#define BFXILx(Rd, Rn, lsb, width)      EMIT(BFM_gen(1, 0b01, 1, (lsb), (lsb)+(width)-1, Rn, Rd))
// Insert lsb:width part of Rn into low part of Rd (leaving rest of Rd untouched)
#define BFXILw(Rd, Rn, lsb, width)      EMIT(BFM_gen(0, 0b01, 0, (lsb), (lsb)+(width)-1, Rn, Rd))
// Insert lsb:width part of Rn into low part of Rd (leaving rest of Rd untouched)
#define BFXILxw(Rd, Rn, lsb, width)     EMIT(BFM_gen(rex.w, 0b01, rex.w, (lsb), (lsb)+(width)-1, Rn, Rd))

// UBFX
#define UBFM_gen(sf, N, immr, imms, Rn, Rd)    ((sf)<<31 | 0b10<<29 | 0b100110<<23 | (N)<<22 | (immr)<<16 | (imms)<<10 | (Rn)<<5 | (Rd))
#define UBFMx(Rd, Rn, immr, imms)       EMIT(UBFM_gen(1, 1, immr, imms, Rn, Rd))
#define UBFMw(Rd, Rn, immr, imms)       EMIT(UBFM_gen(0, 0, immr, imms, Rn, Rd))
#define UBFMxw(Rd, Rn, immr, imms)      EMIT(UBFM_gen(rex.w, rex.w, immr, imms, Rn, Rd))
#define UBFXx(Rd, Rn, lsb, width)       EMIT(UBFM_gen(1, 1, (lsb), (lsb)+(width)-1, Rn, Rd))
#define UBFXw(Rd, Rn, lsb, width)       EMIT(UBFM_gen(0, 0, (lsb), (lsb)+(width)-1, Rn, Rd))
#define UBFXxw(Rd, Rn, lsb, width)      EMIT(UBFM_gen(rex.w, rex.w, (lsb), (lsb)+(width)-1, Rn, Rd))
#define UXTBx(Rd, Rn)                   EMIT(UBFM_gen(1, 1, 0, 7, Rn, Rd))
#define UXTBw(Rd, Rn)                   EMIT(UBFM_gen(0, 0, 0, 7, Rn, Rd))
#define UXTBxw(Rd, Rn)                  EMIT(UBFM_gen(rex.w, rex.w, 0, 7, Rn, Rd))
#define UXTHx(Rd, Rn)                   EMIT(UBFM_gen(1, 1, 0, 15, Rn, Rd))
#define UXTHw(Rd, Rn)                   EMIT(UBFM_gen(0, 0, 0, 15, Rn, Rd))
#define LSRx(Rd, Rn, shift)             EMIT(UBFM_gen(1, 1, shift, 63, Rn, Rd))
#define LSRw(Rd, Rn, shift)             EMIT(UBFM_gen(0, 0, shift, 31, Rn, Rd))
#define LSRxw(Rd, Rn, shift)            EMIT(UBFM_gen(rex.w, rex.w, shift, (rex.w)?63:31, Rn, Rd))
#define LSLx(Rd, Rn, lsl)               UBFMx(Rd, Rn, ((-(lsl))%64)&63, 63-(lsl))
#define LSLw(Rd, Rn, lsl)               UBFMw(Rd, Rn, ((-(lsl))%32)&31, 31-(lsl))
#define LSLxw(Rd, Rn, lsl)              UBFMxw(Rd, Rn, rex.w?(((-(lsl))%64)&63):(((-(lsl))%32)&31), (rex.w?63:31)-(lsl))
// Take width first bits from Rn, LSL lsb and create Rd
#define UBFIZx(Rd, Rn, lsb, width)      UBFMx(Rd, Rn, ((-(lsb))%64)&63, width-1)
// Take width first bits from Rn, LSL lsb and create Rd
#define UBFIZw(Rd, Rn, lsb, width)      UBFMw(Rd, Rn, ((-(lsb))%32)&31, width-1)
// Take width first bits from Rn, LSL lsb and create Rd
#define UBFIZxw(Rd, Rn, lsb, width)     UBFMxw(Rd, Rn, rex.w?(((-(lsb))%64)&63):(((-(lsb))%32)&31), width-1)

// SBFM
#define SBFM_gen(sf, N, immr, imms, Rn, Rd)    ((sf)<<31 | 0b00<<29 | 0b100110<<23 | (N)<<22 | (immr)<<16 | (imms)<<10 | (Rn)<<5 | (Rd))
#define SBFMx(Rd, Rn, immr, imms)       EMIT(SBFM_gen(1, 1, immr, imms, Rn, Rd))
#define SBFMw(Rd, Rn, immr, imms)       EMIT(SBFM_gen(0, 0, immr, imms, Rn, Rd))
#define SBFMxw(Rd, Rn, immr, imms)      EMIT(SBFM_gen(rex.w, rex.w, immr, imms, Rn, Rd))
#define SBFXx(Rd, Rn, lsb, width)       SBFMx(Rd, Rn, lsb, (lsb)+(width)-1)
#define SBFXw(Rd, Rn, lsb, width)       SBFMw(Rd, Rn, lsb, (lsb)+(width)-1)
#define SBFXxw(Rd, Rn, lsb, width)      SBFMxw(Rd, Rn, lsb, (lsb)+(width)-1)
#define SXTBx(Rd, Rn)                   SBFMx(Rd, Rn, 0, 7)
#define SXTBw(Rd, Rn)                   SBFMw(Rd, Rn, 0, 7)
#define SXTHx(Rd, Rn)                   SBFMx(Rd, Rn, 0, 15)
#define SXTHw(Rd, Rn)                   SBFMw(Rd, Rn, 0, 15)
#define SXTHxw(Rd, Rn)                  SBFMxw(Rd, Rn, 0, 15)
#define SXTWx(Rd, Rn)                   SBFMx(Rd, Rn, 0, 31)
#define ASRx(Rd, Rn, shift)             SBFMx(Rd, Rn, shift, 63)
#define ASRw(Rd, Rn, shift)             SBFMw(Rd, Rn, shift, 31)
#define ASRxw(Rd, Rn, shift)            SBFMxw(Rd, Rn, shift, rex.w?63:31)
#define SBFIZx(Rd, Rn, lsb, width)      SFBFMx(Rd, Rn, ((-(lsb))%64), (width)-1)
#define SBFIZw(Rd, Rn, lsb, width)      SFBFMw(Rd, Rn, ((-(lsb))%32), (width)-1)
#define SBFIZxw(Rd, Rn, lsb, width)     SFBFMxw(Rd, Rn, ((-(lsb))%(rex.w?64:32)), (width)-1)

// EXTR
#define EXTR_gen(sf, N, Rm, imms, Rn, Rd)   ((sf)<<31 | 0b00<<29 | 0b100111<<23 | (N)<<22 | (Rm)<<16 | (imms)<<10 | (Rn)<<5 | (Rd))
#define EXTRx(Rd, Rn, Rm, lsb)          EMIT(EXTR_gen(1, 1, Rm, lsb, Rn, Rd))
#define EXTRw(Rd, Rn, Rm, lsb)          EMIT(EXTR_gen(0, 0, Rm, lsb, Rn, Rd))
#define EXTRxw(Rd, Rn, Rm, lsb)         EMIT(EXTR_gen(rex.w, rex.w, Rm, lsb, Rn, Rd))
#define RORx(Rd, Rn, lsb)               EMIT(EXTR_gen(1, 1, Rn, lsb, Rn, Rd))
#define RORw(Rd, Rn, lsb)               EMIT(EXTR_gen(0, 0, Rn, lsb, Rn, Rd))
#define RORxw(Rd, Rn, lsb)              EMIT(EXTR_gen(rex.w, rex.w, Rn, lsb, Rn, Rd))

// RORV
#define RORV_gen(sf, Rm, Rn, Rd)        ((sf)<<31 | 0b11010110<<21 | (Rm)<<16 | 0b0010<<12 | 0b11<<10 | (Rn)<<5 | (Rd))
#define RORx_REG(Rd, Rn, Rm)            EMIT(RORV_gen(1, Rm, Rn, Rd))
#define RORw_REG(Rd, Rn, Rm)            EMIT(RORV_gen(0, Rm, Rn, Rd))
#define RORxw_REG(Rd, Rn, Rm)           EMIT(RORV_gen(rex.w, Rm, Rn, Rd))


// LSRV / LSLV
#define LS_V_gen(sf, Rm, op2, Rn, Rd)   ((sf)<<31 | 0b11010110<<21 | (Rm)<<16 | 0b0010<<12 | (op2)<<10 | (Rn)<<5 | (Rd))
#define LSRx_REG(Rd, Rn, Rm)            EMIT(LS_V_gen(1, Rm, 0b01, Rn, Rd))
#define LSRw_REG(Rd, Rn, Rm)            EMIT(LS_V_gen(0, Rm, 0b01, Rn, Rd))
#define LSRxw_REG(Rd, Rn, Rm)           EMIT(LS_V_gen(rex.w, Rm, 0b01, Rn, Rd))

#define LSLx_REG(Rd, Rn, Rm)            EMIT(LS_V_gen(1, Rm, 0b00, Rn, Rd))
#define LSLw_REG(Rd, Rn, Rm)            EMIT(LS_V_gen(0, Rm, 0b00, Rn, Rd))
#define LSLxw_REG(Rd, Rn, Rm)           EMIT(LS_V_gen(rex.w, Rm, 0b00, Rn, Rd))

// UMULL / SMULL
#define MADDL_gen(U, Rm, o0, Ra, Rn, Rd)    (1<<31 | 0b11011<<24 | (U)<<23 | 0b01<<21 | (Rm)<<16 | (o0)<<15 | (Ra)<<10 | (Rn)<<5 | (Rd))
#define UMADDL(Xd, Wn, Wm, Xa)          EMIT(MADDL_gen(1, Wm, 0, Xa, Wn, Xd))
#define UMULL(Xd, Wn, Wm)               UMADDL(Xd, Wn, Wm, xZR)
#define SMADDL(Xd, Wn, Wm, Xa)          EMIT(MADDL_gen(0, Wm, 0, Xa, Wn, Xd))
#define SMULL(Xd, Wn, Wm)               SMADDL(Xd, Wn, Wm, xZR)

#define MULH_gen(U, Rm, Rn, Rd)         (1<<31 | 0b11011<<24 | (U)<<23 | 0b10<<21 | (Rm)<<16 | 0b11111<<10 | (Rn)<<5 | (Rd))
#define UMULH(Xd, Xn, Xm)               EMIT(MULH_gen(1, Xm, Xn, Xd))
#define SMULH(Xd, Xn, Xm)               EMIT(MULH_gen(0, Xm, Xn, Xd))

#define MADD_gen(sf, Rm, o0, Ra, Rn, Rd)    ((sf)<<31 | 0b11011<<24 | (Rm)<<16 | (o0)<<15 | (Ra)<<10 | (Rn)<<5 | (Rd))
#define MADDx(Rd, Rn, Rm, Ra)           EMIT(MADD_gen(1, Rm, 0, Ra, Rn, Rd))
#define MADDw(Rd, Rn, Rm, Ra)           EMIT(MADD_gen(0, Rm, 0, Ra, Rn, Rd))
#define MADDxw(Rd, Rn, Rm, Ra)          EMIT(MADD_gen(rex.w, Rm, 0, Ra, Rn, Rd))
#define MULx(Rd, Rn, Rm)                MADDx(Rd, Rn, Rm, xZR)
#define MULw(Rd, Rn, Rm)                MADDw(Rd, Rn, Rm, xZR)
#define MULxw(Rd, Rn, Rm)               MADDxw(Rd, Rn, Rm, xZR)
#define MSUBx(Rd, Rn, Rm, Ra)           EMIT(MADD_gen(1, Rm, 1, Ra, Rn, Rd))
#define MSUBw(Rd, Rn, Rm, Ra)           EMIT(MADD_gen(0, Rm, 1, Ra, Rn, Rd))
#define MSUBxw(Rd, Rn, Rm, Ra)          EMIT(MADD_gen(rex.w, Rm, 1, Ra, Rn, Rd))
#define MNEGx(Rd, Rn, Rm)               EMIT(MADD_gen(1, Rm, 1, xZR, Rn, Rd))
#define MNEGw(Rd, Rn, Rm)               EMIT(MADD_gen(0, Rm, 1, xZR, Rn, Rd))
#define MNEGxw(Rd, Rn, Rm)              EMIT(MADD_gen(rex.w, Rm, 1, xZR, Rn, Rd))


// DIV
#define DIV_gen(sf, Rm, o1, Rn, Rd)     ((sf)<<31 | 0b11010110<<21 | (Rm)<<16 | 0b00001<<11 | (o1)<<10 | (Rn)<<5 | (Rd))
#define UDIVw(Wd, Wn, Wm)               EMIT(DIV_gen(0, Wm, 0, Wn, Wd))
#define UDIVx(Xd, Xn, Xm)               EMIT(DIV_gen(1, Xm, 0, Xn, Xd))
#define SDIVw(Wd, Wn, Wm)               EMIT(DIV_gen(0, Wm, 1, Wn, Wd))
#define SDIVx(Xd, Xn, Xm)               EMIT(DIV_gen(1, Xm, 1, Xn, Xd))

// CLZ
#define CL_gen(sf, op, Rn, Rd)          ((sf)<<31 | 1<<30 | 0b11010110<<21 | 0b00010<<11 | (op)<<10 | (Rn)<<5 | (Rd))
#define CLZx(Rd, Rn)                    EMIT(CL_gen(1, 0, Rn, Rd))
#define CLZw(Rd, Rn)                    EMIT(CL_gen(0, 0, Rn, Rd))
#define CLZxw(Rd, Rn)                   EMIT(CL_gen(rex.w, 0, Rn, Rd))
#define CLSx(Rd, Rn)                    EMIT(CL_gen(1, 1, Rn, Rd))
#define CLSw(Rd, Rn)                    EMIT(CL_gen(0, 1, Rn, Rd))
#define CLSxw(Rd, Rn)                   EMIT(CL_gen(rex.w, 1, Rn, Rd))

// RBIT
#define RBIT_gen(sf, Rn, Rd)            ((sf)<<31 | 1<<30 | 0b11010110<<21 | (Rn)<<5 | (Rd))
#define RBITx(Rd, Rn)                   EMIT(RBIT_gen(1, Rn, Rd))
#define RBITw(Rd, Rn)                   EMIT(RBIT_gen(0, Rn, Rd))
#define RBITxw(Rd, Rn)                  EMIT(RBIT_gen(rex.w, Rn, Rd))

// REV
#define REV_gen(sf, opc, Rn, Rd)        ((sf)<<31 | 1<<30 | 0b11010110<<21 | (opc)<<10 | (Rn)<<5 | (Rd))
#define REV64x(Rd, Rn)                  EMIT(REV_gen(1, 0b11, Rn, Rd))
#define REV32w(Rd, Rn)                  EMIT(REV_gen(0, 0b10, Rn, Rd))
#define REVxw(Rd, Rn)                   EMIT(REV_gen(rex.w, 0b10|rex.w, Rn, Rd))
#define REV16w(Rd, Rn)                  EMIT(REV_gen(0, 0b01, Rn, Rd))
#define REV16x(Rd, Rn)                  EMIT(REV_gen(1, 0b01, Rn, Rd))

// UDF
#define UDF_gen(imm16)                  ((imm16)&0xffff)
#define UDF(imm16)                      EMIT(UDF_gen(imm16))

// MRS
#define MRS_gen(L, o0, op1, CRn, CRm, op2, Rt)  (0b1101010100<<22 | (L)<<21 | 1<<20 | (o0)<<19 | (op1)<<16 | (CRn)<<12 | (CRm)<<8 | (op2)<<5 | (Rt))
// mrs    x0, nzcv : 1101010100 1 1 1 011 0100 0010 000 00000    o0=1(op0=3), op1=0b011(3) CRn=0b0100(4) CRm=0b0010(2) op2=0
// MRS : from System register
#define MRS_nzcv(Rt)                    EMIT(MRS_gen(1, 1, 3, 4, 2, 0, Rt))
// MSR : to System register
#define MSR_nzcv(Rt)                   FEMIT(MRS_gen(0, 1, 3, 4, 2, 0, Rt))
// mrs    x0, fpcr : 1101010100 1 1 1 011 0100 0100 000 00000    o0=1(op0=3), op1=0b011(3) CRn=0b0100(4) CRm=0b0100(4) op2=0
#define MRS_fpcr(Rt)                    EMIT(MRS_gen(1, 1, 3, 4, 4, 0, Rt))
#define MSR_fpcr(Rt)                    EMIT(MRS_gen(0, 1, 3, 4, 4, 0, Rt))
// mrs    x0, fpsr : 1101010100 1 1 1 011 0100 0100 001 00000    o0=1(op0=3), op1=0b011(3) CRn=0b0100(4) CRm=0b0100(4) op2=1
#define MRS_fpsr(Rt)                    EMIT(MRS_gen(1, 1, 3, 4, 4, 1, Rt))
#define MSR_fpsr(Rt)                    EMIT(MRS_gen(0, 1, 3, 4, 4, 1, Rt))
// mrs   x0, cntvct_el0     op0=0b11 op1=0b011 CRn=0b1110 CRm=0b0000 op2=0b010
#define MRS_cntvct_el0(Rt)              EMIT(MRS_gen(1, 1, 0b011, 0b1110, 0b0000, 0b010, Rt))
// mrs   x0, cntpctss_el0   op0=0b11 op1=0b011 CRn=0b1110 CRm=0b0000 op2=0b101
#define MRS_cntpctss_el0(Rt)            EMIT(MRS_gen(1, 1, 0b011, 0b1110, 0b0000, 0b101, Rt))
// mrs   rt, rndr           op0=0b11 op1=0b011 CRn=0b0010 CRm=0b0100 op2=0b000
#define MRS_rndr(Rt)                    EMIT(MRS_gen(1, 1, 0b011, 0b0010, 0b0100, 0b000, Rt))
// NEON Saturation Bit
#define FPSR_QC 27
// NEON Input Denormal Cumulative
#define FPSR_IDC    7
// NEON IneXact Cumulative
#define FPSR_IXC    4
// NEON Underflow Cumulative
#define FPSR_UFC    3
// NEON Overflow Cumulative
#define FPSR_OFC    2
// NEON Divide by 0 Cumulative
#define FPSR_DZC    1
// NEON Invalid Operation Cumulative
#define FPSR_IOC    0
// NZCV N
#define NZCV_N      31
// NZCV Z
#define NZCV_Z      30
// NZCV C
#define NZCV_C      29
// NZCV V
#define NZCV_V      28
                     
// FCSEL
#define FCSEL_scalar(type, Rm, cond, Rn, Rd)    (0b11110<<24 | (type)<<22 | 1<<21 | (Rm)<<16 | (cond)<<12 | 0b11<<10 | (Rn)<<5 | (Rd))
#define FCSELS(Sd, Sn, Sm, cond)        EMIT(FCSEL_scalar(0b00, Sm, cond, Sn, Sd))
#define FCSELD(Dd, Dn, Dm, cond)        EMIT(FCSEL_scalar(0b01, Dm, cond, Dn, Dd))
 
// VLDR/VSTR
#define VMEM_gen(size, opc, imm12, Rn, Rt)  ((size)<<30 | 0b111<<27 | 1<<26 | 0b01<<24 | (opc)<<22 | (imm12)<<10 | (Rn)<<5 | (Rt))
// imm13 must be 1-aligned
#define VLDR16_U12(Ht, Rn, imm13)           EMIT(VMEM_gen(0b01, 0b01, ((uint32_t)((imm13)>>1))&0xfff, Rn, Ht))
// imm14 must be 2-aligned
#define VLDR32_U12(Dt, Rn, imm14)           EMIT(VMEM_gen(0b10, 0b01, ((uint32_t)((imm14)>>2))&0xfff, Rn, Dt))
// imm15 must be 3-aligned
#define VLDR64_U12(Dt, Rn, imm15)           EMIT(VMEM_gen(0b11, 0b01, ((uint32_t)((imm15)>>3))&0xfff, Rn, Dt))
// imm16 must be 4-aligned
#define VLDR128_U12(Qt, Rn, imm16)          EMIT(VMEM_gen(0b00, 0b11, ((uint32_t)((imm16)>>4))&0xfff, Rn, Qt))
// (imm14) must be 3-aligned
#define VSTR32_U12(Dt, Rn, imm14)           EMIT(VMEM_gen(0b10, 0b00, ((uint32_t)((imm14)>>2))&0xfff, Rn, Dt))
// (imm15) must be 3-aligned
#define VSTR64_U12(Dt, Rn, imm15)           EMIT(VMEM_gen(0b11, 0b00, ((uint32_t)((imm15)>>3))&0xfff, Rn, Dt))
// imm16 must be 4-aligned
#define VSTR128_U12(Qt, Rn, imm16)          EMIT(VMEM_gen(0b00, 0b10, ((uint32_t)((imm16)>>4))&0xfff, Rn, Qt))
// (imm13) must be 1-aligned
#define VSTR16_U12(Ht, Rn, imm13)           EMIT(VMEM_gen(0b01, 0b00, ((uint32_t)((imm13)>>1))&0xfff, Rn, Ht))

//VLDP/VSTP
#define VMEMP_vector(opc, L, imm7, Rt2, Rn, Rt) ((opc)<<30 | 0b101<<27 | 1<<26 | 0b010<<23 | (L)<<22 | (imm7)<<15 | (Rt2)<<10 | (Rn)<<5 | (Rt))
#define VLDP32_I7(Rt1, Rt2, Rn, imm9)       EMIT(VMEMP_vector(0b00, 1, (((int64_t)(imm9))>>2)&0x7f, Rt2, Rn, Rt1))
#define VLDP64_I7(Rt1, Rt2, Rn, imm10)      EMIT(VMEMP_vector(0b01, 1, (((int64_t)(imm10))>>3)&0x7f, Rt2, Rn, Rt1))
#define VLDP128_I7(Rt1, Rt2, Rn, imm11)     EMIT(VMEMP_vector(0b10, 1, (((int64_t)(imm11))>>4)&0x7f, Rt2, Rn, Rt1))
#define VSTP32_I7(Rt1, Rt2, Rn, imm9)       EMIT(VMEMP_vector(0b00, 0, (((int64_t)(imm9))>>2)&0x7f, Rt2, Rn, Rt1))
#define VSTP64_I7(Rt1, Rt2, Rn, imm10)      EMIT(VMEMP_vector(0b01, 0, (((int64_t)(imm10))>>3)&0x7f, Rt2, Rn, Rt1))
#define VSTP128_I7(Rt1, Rt2, Rn, imm11)     EMIT(VMEMP_vector(0b10, 0, (((int64_t)(imm11))>>4)&0x7f, Rt2, Rn, Rt1))

#define VMEMUR_vector(size, opc, imm9, Rn, Rt)  ((size)<<30 | 0b111<<27 | 1<<26 | (opc)<<22 | (imm9)<<12 | (Rn)<<5 | (Rt))
// signed offset, no alignement!
#define VLDR8_I9(Vt, Rn, imm9)              EMIT(VMEMUR_vector(0b00, 0b01, (imm9)&0b111111111, Rn, Vt))
#define VLDR16_I9(Vt, Rn, imm9)             EMIT(VMEMUR_vector(0b01, 0b01, (imm9)&0b111111111, Rn, Vt))
#define VLDR32_I9(Vt, Rn, imm9)             EMIT(VMEMUR_vector(0b10, 0b01, (imm9)&0b111111111, Rn, Vt))
#define VLDR64_I9(Vt, Rn, imm9)             EMIT(VMEMUR_vector(0b11, 0b01, (imm9)&0b111111111, Rn, Vt))
#define VLDR128_I9(Vt, Rn, imm9)            EMIT(VMEMUR_vector(0b00, 0b11, (imm9)&0b111111111, Rn, Vt))
// signed offset, no alignement!
#define VSTR8_I9(Vt, Rn, imm9)              EMIT(VMEMUR_vector(0b00, 0b00, (imm9)&0b111111111, Rn, Vt))
#define VSTR16_I9(Vt, Rn, imm9)             EMIT(VMEMUR_vector(0b01, 0b00, (imm9)&0b111111111, Rn, Vt))
#define VSTR32_I9(Vt, Rn, imm9)             EMIT(VMEMUR_vector(0b10, 0b00, (imm9)&0b111111111, Rn, Vt))
#define VSTR64_I9(Vt, Rn, imm9)             EMIT(VMEMUR_vector(0b11, 0b00, (imm9)&0b111111111, Rn, Vt))
#define VSTR128_I9(Vt, Rn, imm9)            EMIT(VMEMUR_vector(0b00, 0b10, (imm9)&0b111111111, Rn, Vt))

#define VLD128(A, B, C)     if(unscaled) {VLDR128_I9(A, B, C);} else {VLDR128_U12(A, B, C);}
#define VLD64(A, B, C)      if(unscaled) {VLDR64_I9(A, B, C);} else {VLDR64_U12(A, B, C);}
#define VLD32(A, B, C)      if(unscaled) {VLDR32_I9(A, B, C);} else {VLDR32_U12(A, B, C);}
#define VLD16(A, B, C)      if(unscaled) {VLDR16_I9(A, B, C);} else {VLDR16_U12(A, B, C);}
#define VLD8(A, B, C)       if(unscaled) {VLDR8_I9(A, B, C);} else {VLDR8_U12(A, B, C);}
#define VST128(A, B, C)     if(unscaled) {VSTR128_I9(A, B, C);} else {VSTR128_U12(A, B, C);}
#define VST64(A, B, C)      if(unscaled) {VSTR64_I9(A, B, C);} else {VSTR64_U12(A, B, C);}
#define VST32(A, B, C)      if(unscaled) {VSTR32_I9(A, B, C);} else {VSTR32_U12(A, B, C);}
#define VST16(A, B, C)      if(unscaled) {VSTR16_I9(A, B, C);} else {VSTR16_U12(A, B, C);}
#define VST8(A, B, C)       if(unscaled) {VSTR8_I9(A, B, C);} else {VSTR8_U12(A, B, C);}

#define VMEMW_gen(size, opc, imm9, op2, Rn, Rt)  ((size)<<30 | 0b111<<27 | 1<<26 | (opc)<<22 | (imm9)<<12 | (op2)<<10 | 0b01<<10 | (Rn)<<5 | (Rt))
#define VLDR64_S9_postindex(Rt, Rn, imm9)   EMIT(VMEMW_gen(0b11, 0b01, (imm9)&0x1ff, 0b01, Rn, Rt))
#define VLDR64_S9_preindex(Rt, Rn, imm9)    EMIT(VMEMW_gen(0b11, 0b01, (imm9)&0x1ff, 0b11, Rn, Rt))
#define VLDR128_S9_postindex(Rt, Rn, imm9)  EMIT(VMEMW_gen(0b11, 0b11, (imm9)&0x1ff, 0b01, Rn, Rt))
#define VLDR128_S9_preindex(Rt, Rn, imm9)   EMIT(VMEMW_gen(0b11, 0b11, (imm9)&0x1ff, 0b11, Rn, Rt))
#define VSTR64_S9_postindex(Rt, Rn, imm9)   EMIT(VMEMW_gen(0b11, 0b00, (imm9)&0x1ff, 0b01, Rn, Rt))
#define VSTR64_S9_preindex(Rt, Rn, imm9)    EMIT(VMEMW_gen(0b11, 0b00, (imm9)&0x1ff, 0b11, Rn, Rt))
#define VSTR128_S9_postindex(Rt, Rn, imm9)  EMIT(VMEMW_gen(0b11, 0b10, (imm9)&0x1ff, 0b01, Rn, Rt))
#define VSTR128_S9_preindex(Rt, Rn, imm9)   EMIT(VMEMW_gen(0b11, 0b10, (imm9)&0x1ff, 0b11, Rn, Rt))

#define VMEM_REG_gen(size, opc, Rm, option, S, Rn, Rt)  ((size)<<30 | 0b111<<27 | 1<<26 | (opc)<<22 | 1<<21 | (Rm)<<16 | (option)<<13 | (S)<<12 | 0b10<<10 | (Rn)<<5 | (Rt))

#define VLDR32_REG(Dt, Rn, Rm)              EMIT(VMEM_REG_gen(0b10, 0b01, Rm, 0b011, 0, Rn, Dt))
#define VLDR32_REG_SXTW(Dt, Rn, Rm)         EMIT(VMEM_REG_gen(0b10, 0b01, Rm, 0b110, 0, Rn, Dt))
#define VLDR32_REG_LSL2(Dt, Rn, Rm)         EMIT(VMEM_REG_gen(0b10, 0b01, Rm, 0b011, 1, Rn, Dt))
#define VLDR64_REG(Dt, Rn, Rm)              EMIT(VMEM_REG_gen(0b11, 0b01, Rm, 0b011, 0, Rn, Dt))
#define VLDR64_REG_SXTW(Dt, Rn, Rm)         EMIT(VMEM_REG_gen(0b11, 0b01, Rm, 0b110, 0, Rn, Dt))
#define VLDR64_REG_LSL3(Dt, Rn, Rm)         EMIT(VMEM_REG_gen(0b11, 0b01, Rm, 0b011, 1, Rn, Dt))
#define VLDR128_REG(Qt, Rn, Rm)             EMIT(VMEM_REG_gen(0b00, 0b11, Rm, 0b011, 0, Rn, Qt))
#define VLDR128_REG_LSL4(Qt, Rn, Rm)        EMIT(VMEM_REG_gen(0b00, 0b11, Rm, 0b011, 1, Rn, Qt))
#define VLDR128_REG_SXTW(Qt, Rn, Rm)        EMIT(VMEM_REG_gen(0b00, 0b11, Rm, 0b110, 0, Rn, Qt))

#define VSTR32_REG(Dt, Rn, Rm)              EMIT(VMEM_REG_gen(0b10, 0b00, Rm, 0b011, 0, Rn, Dt))
#define VSTR32_REG_LSL2(Dt, Rn, Rm)         EMIT(VMEM_REG_gen(0b10, 0b00, Rm, 0b011, 1, Rn, Dt))
#define VSTR32_REG_SXTW(Dt, Rn, Rm)         EMIT(VMEM_REG_gen(0b10, 0b00, Rm, 0b110, 0, Rn, Dt))
#define VSTR64_REG(Dt, Rn, Rm)              EMIT(VMEM_REG_gen(0b11, 0b00, Rm, 0b011, 0, Rn, Dt))
#define VSTR64_REG_LSL3(Dt, Rn, Rm)         EMIT(VMEM_REG_gen(0b11, 0b00, Rm, 0b011, 1, Rn, Dt))
#define VSTR64_REG_SXTW(Dt, Rn, Rm)         EMIT(VMEM_REG_gen(0b11, 0b00, Rm, 0b110, 0, Rn, Dt))
#define VSTR128_REG(Qt, Rn, Rm)             EMIT(VMEM_REG_gen(0b00, 0b10, Rm, 0b011, 0, Rn, Qt))
#define VSTR128_REG_LSL4(Qt, Rn, Rm)        EMIT(VMEM_REG_gen(0b00, 0b10, Rm, 0b011, 1, Rn, Qt))
#define VSTR128_REG_SXTW(Qt, Rn, Rm)        EMIT(VMEM_REG_gen(0b00, 0b10, Rm, 0b110, 0, Rn, Qt))

#define VLDR_PC_gen(opc, imm19, Rt)         ((opc)<<30 | 0b011<<27 | 1<<26 | (imm19)<<5 | (Rt))
#define VLDR32_literal(Vt, imm19)           EMIT(VLDR_PC_gen(0b00, ((imm19)>>2)&0x7FFFF, Vt))
#define VLDR64_literal(Vt, imm19)           EMIT(VLDR_PC_gen(0b01, ((imm19)>>2)&0x7FFFF, Vt))
#define VLDR128_literal(Vt, imm19)          EMIT(VLDR_PC_gen(0b10, ((imm19)>>2)&0x7FFFF, Vt))


#define LD1R_gen(Q, size, Rn, Rt)           ((Q)<<30 | 0b0011010<<23 | 1<<22 | 0<<21 | 0b110<<13 | (size)<<10 | (Rn)<<5 | (Rt))
#define VLDQ1R_8(Vt, Rn)                    EMIT(LD1R_gen(1, 0b00, Rn, Vt))
#define VLDQ1R_16(Vt, Rn)                   EMIT(LD1R_gen(1, 0b01, Rn, Vt))
#define VLDQ1R_32(Vt, Rn)                   EMIT(LD1R_gen(1, 0b10, Rn, Vt))
#define VLDQ1R_64(Vt, Rn)                   EMIT(LD1R_gen(1, 0b11, Rn, Vt))
#define VLD1R_8(Vt, Rn)                     EMIT(LD1R_gen(0, 0b00, Rn, Vt))
#define VLD1R_16(Vt, Rn)                    EMIT(LD1R_gen(0, 0b01, Rn, Vt))
#define VLD1R_32(Vt, Rn)                    EMIT(LD1R_gen(0, 0b10, Rn, Vt))

#define LD1_single(Q, opcode, S, size, Rn, Rt)  ((Q)<<30 | 0b0011010<<23 | 1<<22 | 0<<21 | (opcode)<<13 | (S)<<12 | (size)<<10 | (Rn)<<5 | (Rt))
#define VLD1_8(Vt, index, Rn)               EMIT(LD1_single(((index)>>3)&1, 0b000, ((index)>>2)&1, (index)&3, Rn, Vt))
#define VLD1_16(Vt, index, Rn)              EMIT(LD1_single(((index)>>2)&1, 0b010, ((index)>>1)&1, ((index)&1)<<1, Rn, Vt))
#define VLD1_32(Vt, index, Rn)              EMIT(LD1_single(((index)>>1)&1, 0b100, ((index))&1, 0b00, Rn, Vt))
#define VLD1_64(Vt, index, Rn)              EMIT(LD1_single(((index))&1, 0b100, 0, 0b01, Rn, Vt))

#define ST1_single(Q, opcode, S, size, Rn, Rt)  ((Q)<<30 | 0b0011010<<23 | 0<<22 | 0<<21 | (opcode)<<13 | (S)<<12 | (size)<<10 | (Rn)<<5 | (Rt))
#define VST1_8(Vt, index, Rn)               EMIT(ST1_single(((index)>>3)&1, 0b000, ((index)>>2)&1, (index)&3, Rn, Vt))
#define VST1_16(Vt, index, Rn)              EMIT(ST1_single(((index)>>2)&1, 0b010, ((index)>>1)&1, ((index)&1)<<1, Rn, Vt))
#define VST1_32(Vt, index, Rn)              EMIT(ST1_single(((index)>>1)&1, 0b100, ((index))&1, 0b00, Rn, Vt))
#define VST1_64(Vt, index, Rn)              EMIT(ST1_single(((index))&1, 0b100, 0, 0b01, Rn, Vt))

// LOGIC
#define VLOGIC_gen(Q, opc2, Rm, Rn, Rd)     ((Q)<<30 | 1<<29 | 0b01110<<24 | (opc2)<<22 | 1<<21 | (Rm)<<16 | 0b00011<<11 | 1<<10 | (Rn)<<5 | (Rd))
#define VEORQ(Vd, Vn, Vm)                   EMIT(VLOGIC_gen(1, 0b00, Vm, Vn, Vd))
#define VEOR(Vd, Vn, Vm)                    EMIT(VLOGIC_gen(0, 0b00, Vm, Vn, Vd))

#define VLOGIC_immediate(Q, op, abc, cmade, defgh, Rd)  ((Q)<<30 | (op)<<29 | 0b0111100000<<19 | (abc)<<16 | (cmode)<<12 | 1<<10 | (defgh)<<5 | (Rd))
//#define V

#define SHL_vector(Q, immh, immb, Rn, Rd)   ((Q)<<30 | 0b011110<<23 | (immh)<<19 | (immb)<<16 | 0b01010<<11 | 1<<10 | (Rn)<<5 | (Rd))
#define VSHLQ_8(Vd, Vn, shift)              EMIT(SHL_vector(1, 0b0001, (shift)&7, Vn, Vd))
#define VSHLQ_16(Vd, Vn, shift)             EMIT(SHL_vector(1, 0b0010 | (((shift)>>3)&1), (shift)&7, Vn, Vd))
#define VSHLQ_32(Vd, Vn, shift)             EMIT(SHL_vector(1, 0b0100 | (((shift)>>3)&3), (shift)&7, Vn, Vd))
#define VSHLQ_64(Vd, Vn, shift)             EMIT(SHL_vector(1, 0b1000 | (((shift)>>3)&7), (shift)&7, Vn, Vd))
#define VSHL_8(Vd, Vn, shift)               EMIT(SHL_vector(0, 0b0001, (shift)&7, Vn, Vd))
#define VSHL_16(Vd, Vn, shift)              EMIT(SHL_vector(0, 0b0010 | (((shift)>>3)&1), (shift)&7, Vn, Vd))
#define VSHL_32(Vd, Vn, shift)              EMIT(SHL_vector(0, 0b0100 | (((shift)>>3)&3), (shift)&7, Vn, Vd))

#define SHL_scalar(U, size, Rm, R, S, Rn, Rd)   (0b01<<30 | (U)<<29 | 0b11110<<24 | (size)<<22 | 1<<21 | (Rm)<<16 | 0b010<<13 | (R)<<12 | (S)<<11 | 1<<10 | (Rn)<<5 | (Rd))
#define SSHL_R_64(Vd, Vn, Vm)               EMIT(SHL_scalar(0, 0b11, Vm, 0, 0, Vn, Vd))
#define USHL_R_64(Vd, Vn, Vm)               EMIT(SHL_scalar(1, 0b11, Vm, 0, 0, Vn, Vd))

#define SHL_scalar_imm(U, immh, immb, Rn, Rd)   (0b01<<30 | 0b111110<<23 | (immh)<<19 | (immb)<<16 | 0b01010<<11 | 1<<10 | (Rn)<<5 | (Rd))
#define SHL_64(Vd, Vn, shift)               EMIT(SHL_scalar_imm(0, 0b1000 | (((shift)>>3)&7), (shift)&7, Vn, Vd))

#define SHL_vector_vector(Q, U, size, Rm, R, S, Rn, Rd) ((Q)<<30 | (U)<<29 | 0b01110<<24 | (size)<<22 | 1<<21 | (Rm)<<16 | 0b010<<13 | (R)<<12 | (S)<<11 | 1<<10 | (Rn)<<5 | (Rd))
#define SSHL_8(Vd, Vn, Vm)                  EMIT(SHL_vector_vector(0, 0, 0b00, Vm, 0, 0, Vn, Vd))
#define SSHL_16(Vd, Vn, Vm)                 EMIT(SHL_vector_vector(0, 0, 0b01, Vm, 0, 0, Vn, Vd))
#define SSHL_32(Vd, Vn, Vm)                 EMIT(SHL_vector_vector(0, 0, 0b10, Vm, 0, 0, Vn, Vd))
#define SSHLQ_8(Vd, Vn, Vm)                 EMIT(SHL_vector_vector(1, 0, 0b00, Vm, 0, 0, Vn, Vd))
#define SSHLQ_16(Vd, Vn, Vm)                EMIT(SHL_vector_vector(1, 0, 0b01, Vm, 0, 0, Vn, Vd))
#define SSHLQ_32(Vd, Vn, Vm)                EMIT(SHL_vector_vector(1, 0, 0b10, Vm, 0, 0, Vn, Vd))
#define SSHLQ_64(Vd, Vn, Vm)                EMIT(SHL_vector_vector(1, 0, 0b11, Vm, 0, 0, Vn, Vd))
#define USHL_8(Vd, Vn, Vm)                  EMIT(SHL_vector_vector(0, 1, 0b00, Vm, 0, 0, Vn, Vd))
#define USHL_16(Vd, Vn, Vm)                 EMIT(SHL_vector_vector(0, 1, 0b01, Vm, 0, 0, Vn, Vd))
#define USHL_32(Vd, Vn, Vm)                 EMIT(SHL_vector_vector(0, 1, 0b10, Vm, 0, 0, Vn, Vd))
#define USHLQ_8(Vd, Vn, Vm)                 EMIT(SHL_vector_vector(1, 1, 0b00, Vm, 0, 0, Vn, Vd))
#define USHLQ_16(Vd, Vn, Vm)                EMIT(SHL_vector_vector(1, 1, 0b01, Vm, 0, 0, Vn, Vd))
#define USHLQ_32(Vd, Vn, Vm)                EMIT(SHL_vector_vector(1, 1, 0b10, Vm, 0, 0, Vn, Vd))
#define USHLQ_64(Vd, Vn, Vm)                EMIT(SHL_vector_vector(1, 1, 0b11, Vm, 0, 0, Vn, Vd))

#define SHR_vector(Q, U, immh, immb, Rn, Rd)  ((Q)<<30 | (U)<<29 | 0b011110<<23 | (immh)<<19 | (immb)<<16 | 0b00000<<11 | 1<<10 | (Rn)<<5 | (Rd))
#define VSHRQ_8(Vd, Vn, shift)              EMIT(SHR_vector(1, 1, 0b0001, (8-(shift))&7, Vn, Vd))
#define VSHRQ_16(Vd, Vn, shift)             EMIT(SHR_vector(1, 1, 0b0010 | (((16-(shift))>>3)&1), (16-(shift))&7, Vn, Vd))
#define VSHRQ_32(Vd, Vn, shift)             EMIT(SHR_vector(1, 1, 0b0100 | (((32-(shift))>>3)&3), (32-(shift))&7, Vn, Vd))
#define VSHRQ_64(Vd, Vn, shift)             EMIT(SHR_vector(1, 1, 0b1000 | (((64-(shift))>>3)&7), (64-(shift))&7, Vn, Vd))
#define VSHR_8(Vd, Vn, shift)               EMIT(SHR_vector(0, 1, 0b0001, (8-(shift))&7, Vn, Vd))
#define VSHR_16(Vd, Vn, shift)              EMIT(SHR_vector(0, 1, 0b0010 | (((16-(shift))>>3)&1), (16-(shift))&7, Vn, Vd))
#define VSHR_32(Vd, Vn, shift)              EMIT(SHR_vector(0, 1, 0b0100 | (((32-(shift))>>3)&3), (32-(shift))&7, Vn, Vd))
#define VSSHRQ_8(Vd, Vn, shift)             EMIT(SHR_vector(1, 0, 0b0001, (8-(shift))&7, Vn, Vd))
#define VSSHRQ_16(Vd, Vn, shift)            EMIT(SHR_vector(1, 0, 0b0010 | (((16-(shift))>>3)&1), (16-(shift))&7, Vn, Vd))
#define VSSHRQ_32(Vd, Vn, shift)            EMIT(SHR_vector(1, 0, 0b0100 | (((32-(shift))>>3)&3), (32-(shift))&7, Vn, Vd))
#define VSSHRQ_64(Vd, Vn, shift)            EMIT(SHR_vector(1, 0, 0b1000 | (((64-(shift))>>3)&7), (64-(shift))&7, Vn, Vd))
#define VSSHR_8(Vd, Vn, shift)              EMIT(SHR_vector(0, 0, 0b0001, (8-(shift))&7, Vn, Vd))
#define VSSHR_16(Vd, Vn, shift)             EMIT(SHR_vector(0, 0, 0b0010 | (((16-(shift))>>3)&1), (16-(shift))&7, Vn, Vd))
#define VSSHR_32(Vd, Vn, shift)             EMIT(SHR_vector(0, 0, 0b0100 | (((32-(shift))>>3)&3), (32-(shift))&7, Vn, Vd))

#define SHR_scalar_imm(U, immh, immb, o1, o0, Rn, Rd)   (0b01<<30 | (U)<<29 | 0b111110<<23 | (immh)<<19 | (immb)<<16 | (o1)<<13 | (o0)<<12 | 1<<10 | (Rn)<<5 | (Rd))
#define SSHR_64(Vd, Vn, shift)              EMIT(SHR_scalar_imm(0, 0b1000 | (((64-(shift))>>3)&7), (64-(shift))&7, 0, 0, Vn, Vd))
#define USHR_64(Vd, Vn, shift)              EMIT(SHR_scalar_imm(1, 0b1000 | (((64-(shift))>>3)&7), (64-(shift))&7, 0, 0, Vn, Vd))

#define EXT_vector(Q, Rm, imm4, Rn, Rd)     ((Q)<<30 | 0b101110<<24 | (Rm)<<16 | (imm4)<<11 | (Rn)<<5 | (Rd))
#define VEXT_8(Rd, Rn, Rm, index)           EMIT(EXT_vector(0, Rm, index, Rn, Rd))
#define VEXTQ_8(Rd, Rn, Rm, index)          EMIT(EXT_vector(1, Rm, index, Rn, Rd))

// Shift Left and Insert (not touching lower part of dest)
#define SLI_vector(Q, immh, immb, Rn, Rd)   ((Q)<<30 | 1<<29 | 0b011110<<23 | (immh)<<19 | (immb)<<16 | 0b01010<<1 | 1<<10 | (Rn)<<5 | (Rd))
#define VSLIQ_8(Vd, Vn, shift)              EMIT(VSLI_vector(1, 0b0001, (shift)&7, Vn, Vd))
#define VSLIQ_16(Vd, Vn, shift)             EMIT(VSLI_vector(1, 0b0010 | ((shift)>>3)&1, (shift)&7, Vn, Vd))
#define VSLIQ_32(Vd, Vn, shift)             EMIT(VSLI_vector(1, 0b0100 | (((shift)>>3)&3), (shift)&7, Vn, Vd))
#define VSLIQ_64(Vd, Vn, shift)             EMIT(VSLI_vector(1, 0b1000 | (((shift)>>3)&7), (shift)&7, Vn, Vd))
#define VSLI_8(Vd, Vn, shift)               EMIT(VSLI_vector(0, 0b0001, (shift)&7, Vn, Vd))
#define VSLI_16(Vd, Vn, shift)              EMIT(VSLI_vector(0, 0b0010 | ((shift)>>3)&1, (shift)&7, Vn, Vd))
#define VSLI_32(Vd, Vn, shift)              EMIT(VSLI_vector(0, 0b0100 | (((shift)>>3)&3), (shift)&7, Vn, Vd))

// Shift Right and Insert (not touching higher part of dest)
#define SRI_vector(Q, immh, immb, Rn, Rd)   ((Q)<<30 | 1<<29 | 0b011110<<23 | (immh)<<19 | (immb)<<16 | 0b01000<<1 | 1<<10 | (Rn)<<5 | (Rd))
#define VSRIQ_8(Vd, Vn, shift)              EMIT(VSRI_vector(1, 0b0001, (shift)&7, Vn, Vd))
#define VSRIQ_16(Vd, Vn, shift)             EMIT(VSRI_vector(1, 0b0010 | ((shift)>>3)&1, (shift)&7, Vn, Vd))
#define VSRIQ_32(Vd, Vn, shift)             EMIT(VSRI_vector(1, 0b0100 | (((shift)>>3)&3), (shift)&7, Vn, Vd))
#define VSRIQ_64(Vd, Vn, shift)             EMIT(VSRI_vector(1, 0b1000 | (((shift)>>3)&7), (shift)&7, Vn, Vd))
#define VSRI_8(Vd, Vn, shift)               EMIT(VSRI_vector(0, 0b0001, (shift)&7, Vn, Vd))
#define VSRI_16(Vd, Vn, shift)              EMIT(VSRI_vector(0, 0b0010 | ((shift)>>3)&1, (shift)&7, Vn, Vd))
#define VSRI_32(Vd, Vn, shift)              EMIT(VSRI_vector(0, 0b0100 | (((shift)>>3)&3), (shift)&7, Vn, Vd))

// Reverse elements in 64-bit doublewords (vector). This instruction reverses the order of 8-bit, 16-bit, or 32-bit elements in each doubleword
#define VREVx_vector(Q, U, size, o0, Rn, Rd)    ((Q)<<30 | (U)<<29 | 0b01110<<24 | (size)<<22 | 0b10000<<17 | (o0)<<12 | 0b10<<10 | (Rn)<<5 | (Rd))
#define VREV64_32(Vd, Vn)                   EMIT(VREVx_vector(0, 0, 0b10, 0, Vn, Vd))
#define VREV64_16(Vd, Vn)                   EMIT(VREVx_vector(0, 0, 0b01, 0, Vn, Vd))
#define VREV64_8(Vd, Vn)                    EMIT(VREVx_vector(0, 0, 0b00, 0, Vn, Vd))
#define VREV64Q_32(Vd, Vn)                  EMIT(VREVx_vector(1, 0, 0b10, 0, Vn, Vd))
#define VREV64Q_16(Vd, Vn)                  EMIT(VREVx_vector(1, 0, 0b01, 0, Vn, Vd))
#define VREV64Q_8(Vd, Vn)                   EMIT(VREVx_vector(1, 0, 0b00, 0, Vn, Vd))

// Integer MATH
#define ADDSUB_vector(Q, U, size, Rm, Rn, Rd)   ((Q)<<30 | (U)<<29 | 0b01110<<24 | (size)<<22 | 1<<21 | (Rm)<<16 | 0b10000<<11 | 1<<10 | (Rn)<<5 | (Rd))
#define VADDQ_8(Vd, Vn, Vm)                 EMIT(ADDSUB_vector(1, 0, 0b00, Vm, Vn, Vd))
#define VADDQ_16(Vd, Vn, Vm)                EMIT(ADDSUB_vector(1, 0, 0b01, Vm, Vn, Vd))
#define VADDQ_32(Vd, Vn, Vm)                EMIT(ADDSUB_vector(1, 0, 0b10, Vm, Vn, Vd))
#define VADDQ_64(Vd, Vn, Vm)                EMIT(ADDSUB_vector(1, 0, 0b11, Vm, Vn, Vd))
#define VADD_8(Vd, Vn, Vm)                  EMIT(ADDSUB_vector(0, 0, 0b00, Vm, Vn, Vd))
#define VADD_16(Vd, Vn, Vm)                 EMIT(ADDSUB_vector(0, 0, 0b01, Vm, Vn, Vd))
#define VADD_32(Vd, Vn, Vm)                 EMIT(ADDSUB_vector(0, 0, 0b10, Vm, Vn, Vd))
#define VSUBQ_8(Vd, Vn, Vm)                 EMIT(ADDSUB_vector(1, 1, 0b00, Vm, Vn, Vd))
#define VSUBQ_16(Vd, Vn, Vm)                EMIT(ADDSUB_vector(1, 1, 0b01, Vm, Vn, Vd))
#define VSUBQ_32(Vd, Vn, Vm)                EMIT(ADDSUB_vector(1, 1, 0b10, Vm, Vn, Vd))
#define VSUBQ_64(Vd, Vn, Vm)                EMIT(ADDSUB_vector(1, 1, 0b11, Vm, Vn, Vd))
#define VSUB_8(Vd, Vn, Vm)                  EMIT(ADDSUB_vector(0, 1, 0b00, Vm, Vn, Vd))
#define VSUB_16(Vd, Vn, Vm)                 EMIT(ADDSUB_vector(0, 1, 0b01, Vm, Vn, Vd))
#define VSUB_32(Vd, Vn, Vm)                 EMIT(ADDSUB_vector(0, 1, 0b10, Vm, Vn, Vd))

#define ADDSUB_scalar(U, size, Rm, Rn, Rd)  (01<<30 | (U)<<29 | 0b11110<<24 | (size)<<22 | 1<<21 | (Rm)<<16 | 0b10000<<11 | 1<<10 | (Rn)<<5 | (Rd))
#define ADD_64(Vd, Vn, Vm)                  EMIT(ADDSUB_scalar(0, 0b11, Vm, Vn, Vd))
#define SUB_64(Vd, Vn, Vm)                  EMIT(ADDSUB_scalar(1, 0b11, Vm, Vn, Vd))

#define NEGABS_vector(Q, U, size, Rn, Rd)   ((Q)<<30 | (U)<<29 | 0b01110<<24 | (size)<<22 | 0b10000<<17 | 0b01011<<12 | 0b10<<10 | (Rn)<<5 | (Rd))
#define NEG_8(Vd, Vn)                       EMIT(NEGABS_vector(0, 1, 0b00, Vn, Vd))
#define NEG_16(Vd, Vn)                      EMIT(NEGABS_vector(0, 1, 0b01, Vn, Vd))
#define NEG_32(Vd, Vn)                      EMIT(NEGABS_vector(0, 1, 0b10, Vn, Vd))
#define NEGQ_8(Vd, Vn)                      EMIT(NEGABS_vector(1, 1, 0b00, Vn, Vd))
#define NEGQ_16(Vd, Vn)                     EMIT(NEGABS_vector(1, 1, 0b01, Vn, Vd))
#define NEGQ_32(Vd, Vn)                     EMIT(NEGABS_vector(1, 1, 0b10, Vn, Vd))
#define NEGQ_64(Vd, Vn)                     EMIT(NEGABS_vector(1, 1, 0b11, Vn, Vd))
#define ABS_8(Vd, Vn)                       EMIT(NEGABS_vector(0, 0, 0b00, Vn, Vd))
#define ABS_16(Vd, Vn)                      EMIT(NEGABS_vector(0, 0, 0b01, Vn, Vd))
#define ABS_32(Vd, Vn)                      EMIT(NEGABS_vector(0, 0, 0b10, Vn, Vd))
#define ABSQ_8(Vd, Vn)                      EMIT(NEGABS_vector(1, 0, 0b00, Vn, Vd))
#define ABSQ_16(Vd, Vn)                     EMIT(NEGABS_vector(1, 0, 0b01, Vn, Vd))
#define ABSQ_32(Vd, Vn)                     EMIT(NEGABS_vector(1, 0, 0b10, Vn, Vd))
#define ABSQ_64(Vd, Vn)                     EMIT(NEGABS_vector(1, 0, 0b11, Vn, Vd))

#define NEGABS_vector_scalar(U, size, Rn, Rd)   (0b01<<30 | (U)<<29 | 0b11110<<24 | (size)<<22 | 0b10000<<17 | 0b01011<<12 | 0b10<<10 | (Rn)<<5 | (Rd))
#define NEG_64(Vd, Vn)                     EMIT(NEGABS_vector_scalar(1, 0b11, Vn, Vd))
#define ABS_64(Vd, Vn)                     EMIT(NEGABS_vector_scalar(0, 0b11, Vn, Vd))

// FMOV
#define FMOV_general(sf, type, mode, opcode, Rn, Rd)    ((sf)<<31 | 0b11110<<24 | (type)<<22 | 1<<21 | (mode)<<19 | (opcode)<<16 | (Rn)<<5 | (Rd))
// 32-bit to single-precision
#define FMOVSw(Sd, Wn)                      EMIT(FMOV_general(0, 0b00, 0b00, 0b111, Wn, Sd))
// Single-precision to 32-bit
#define FMOVwS(Wd, Sn)                      EMIT(FMOV_general(0, 0b00, 0b00, 0b110, Sn, Wd))
// 64-bit to double-precision
#define FMOVDx(Dd, Xn)                      EMIT(FMOV_general(1, 0b01, 0b00, 0b111, Xn, Dd))
// 64-bit to top half of 128-bit
#define FMOVD1x(Vd, Xn)                     EMIT(FMOV_general(1, 0b10, 0b01, 0b111, Xn, Vd))
// Double-precision to 64-bit
#define FMOVxD(Xd, Dn)                      EMIT(FMOV_general(1, 0b01, 0b00, 0b110, Dn, Xd))
// Top half of 128-bit to 64-bit
#define FMOVxD1(Xd, Vn)                     EMIT(FMOV_general(1, 0b10, 0b01, ob110, Vn, Xd))

#define FMOV_register(type, Rn, Rd)         (0b11110<<24 | (type)<<22 | 1<<21 | 0b10000<<10 | (Rn)<<5 | (Rd))
#define FMOVS(Sd, Sn)                       EMIT(FMOV_register(0b00, Sn, Sd))
#define FMOVD(Dd, Dn)                       EMIT(FMOV_register(0b01, Dn, Dd))

#define FMOV_vector_imm(Q, op, abc, defgh, Rd)  ((Q)<<30 | (op)<<29 | 0b0111100000<<19 | (abc)<<16 | 0b1111<<12 | 1<<10 | (defgh)<<5 | (Rd))
#define VFMOVS_8(Vd, u8)                    EMIT(FMOV_vector_imm(0, 0, ((u8)>>5)&0b111, (u8)&0b11111, Vd))
#define VFMOVSQ_8(Vd, u8)                   EMIT(FMOV_vector_imm(1, 0, ((u8)>>5)&0b111, (u8)&0b11111, Vd))
#define VFMOVDQ_8(Vd, u8)                   EMIT(FMOV_vector_imm(1, 1, ((u8)>>5)&0b111, (u8)&0b11111, Vd))

#define FMOV_scalar_imm(type, imm8, Rd)     (0b11110<<24 | (type)<<22 | 1<<21 | (imm8)<<13 | 0b100<<10 | (Rd))
// FMOV to Sd, imm=7 :~6:6:6:6:6:6:5:4 :3:2:1:0....
#define FMOVS_8(Sd, u8)                     EMIT(FMOV_scalar_imm(0b00, u8, Sd))
// FMOV to Dd, imm=7 :~6:6:6:6:6:6:6:6:6:5:4 :3:2:1:0....
#define FMOVD_8(Dd, u8)                     EMIT(FMOV_scalar_imm(0b01, u8, Dd))

// VMOV
#define VMOV_element(imm5, imm4, Rn, Rd)    (1<<30 | 1<<29 | 0b01110000<<21 | (imm5)<<16 | (imm4)<<11 | 1<<10 | (Rn)<<5 | (Rd))
#define VMOVeB(Vd, i1, Vn, i2)              EMIT(VMOV_element(((i1)<<1) | 1, (i2), Vn, Vd))
#define VMOVeH(Vd, i1, Vn, i2)              EMIT(VMOV_element(((i1)<<2) | 2, (i2)<<1, Vn, Vd))
#define VMOVeS(Vd, i1, Vn, i2)              EMIT(VMOV_element(((i1)<<3) | 4, (i2)<<2, Vn, Vd))
#define VMOVeD(Vd, i1, Vn, i2)              EMIT(VMOV_element(((i1)<<4) | 8, (i2)<<3, Vn, Vd))

#define VMOV_from(imm5, Rn, Rd)     (1<<30 | 0<<29 | 0b01110000<<21 | (imm5)<<16 | 0b0011<<11 | 1<<10 | (Rn)<<5 | (Rd))
#define VMOVQBfrom(Vd, index, Wn)    EMIT(VMOV_from(((index)<<1) | 1, Wn, Vd))
#define VMOVQHfrom(Vd, index, Wn)    EMIT(VMOV_from(((index)<<2) | 2, Wn, Vd))
#define VMOVQSfrom(Vd, index, Wn)    EMIT(VMOV_from(((index)<<3) | 4, Wn, Vd))
#define VMOVQDfrom(Vd, index, Xn)    EMIT(VMOV_from(((index)<<4) | 8, Xn, Vd))

#define UMOV_gen(Q, imm5, Rn, Rd)   ((Q)<<30 | 0b01110000<<21 | (imm5)<<16 | 0b01<<13 | 1<<12 | 1<<11 | 1<<10 | (Rn)<<5 | (Rd))
#define VMOVQDto(Xd, Vn, index)     EMIT(UMOV_gen(1, ((index)<<4) | 8, Vn, Xd))
#define VMOVBto(Wd, Vn, index)      EMIT(UMOV_gen(0, ((index)<<1) | 1, Vn, Wd))
#define VMOVHto(Wd, Vn, index)      EMIT(UMOV_gen(0, ((index)<<2) | 2, Vn, Wd))
#define VMOVSto(Wd, Vn, index)      EMIT(UMOV_gen(0, ((index)<<3) | 4, Vn, Wd))

#define SMOV_gen(Q, imm5, Rn, Rd)   ((Q)<<30 | 0b01110000<<21 | (imm5)<<16 | 0b01<<13 | 0<<12 | 1<<11 | 1<<10 | (Rn)<<5 | (Rd))
#define SMOVQDto(Xd, Vn, index)     EMIT(SMOV_gen(1, ((index)<<4) | 8, Vn, Xd))
#define SMOVQBto(Xd, Vn, index)     EMIT(SMOV_gen(1, ((index)<<1) | 1, Vn, Xd))
#define SMOVQHto(Xd, Vn, index)     EMIT(SMOV_gen(1, ((index)<<2) | 2, Vn, Xd))
#define SMOVQSto(Xd, Vn, index)     EMIT(SMOV_gen(1, ((index)<<3) | 4, Vn, Xd))

#define MVN_vector(Q, Rn, Rd)       ((Q)<<30 | 1<<29 | 0b01110<<24 | 0b10000<<17 | 0b00101<<12 | 0b10<<10 | (Rn)<<5 | (Rd))
#define VMVNQ(Rd, Rn)               EMIT(MVN_vector(1, Rn, Rd))

// VORR
#define ORR_vector(Q, Rm, Rn, Rd)   ((Q)<<30 | 0b01110<<24 | 0b10<<22 | 1<<21 | (Rm)<<16 | 0b00011<<11 | 1<<10 | (Rn)<<5 | (Rd))
#define VORRQ(Vd, Vn, Vm)           EMIT(ORR_vector(1, Vm, Vn, Vd))
#define VORR(Dd, Dn, Dm)            EMIT(ORR_vector(0, Dm, Dn, Dd))
#define VMOVQ(Vd, Vn)               EMIT(ORR_vector(1, Vn, Vn, Vd))
#define VMOV(Dd, Dn)                EMIT(ORR_vector(0, Dn, Dn, Dd))

// VAND
#define AND_vector(Q, Rm, Rn, Rd)   ((Q)<<30 | 0b01110<<24 | 0b00<<22 | 1<<21 | (Rm)<<16 | 0b00011<<11 | 1<<10 | (Rn)<<5 | (Rd))
#define VANDQ(Vd, Vn, Vm)           EMIT(AND_vector(1, Vm, Vn, Vd))
#define VAND(Dd, Dn, Dm)            EMIT(AND_vector(0, Dm, Dn, Dd))

// VBIC
#define BIC_vector(Q, Rm, Rn, Rd)   ((Q)<<30 | 0b01110<<24 | 0b01<<22 | 1<<21 | (Rm)<<16 | 0b00011<<11 | 1<<10 | (Rn)<<5 | (Rd))
#define VBICQ(Vd, Vn, Vm)           EMIT(BIC_vector(1, Vm, Vn, Vd))
#define VBIC(Dd, Dn, Dm)            EMIT(BIC_vector(0, Dm, Dn, Dd))

// VORN
#define ORN_vector(Q, Rm, Rn, Rd)   ((Q)<<30 | 0b01110<<24 | 0b11<<22 | 1<<21 | (Rm)<<16 | 0b00011<<11 | 1<<10 | (Rn)<<5 | (Rd))
#define VORNQ(Vd, Vn, Vm)           EMIT(ORN_vector(1, Vm, Vn, Vd))
#define VORN(Dd, Dn, Dm)            EMIT(ORN_vector(0, Dm, Dn, Dd))

// ADD / SUB
#define FADDSUB_vector(Q, U, op, sz, Rm, Rn, Rd)   ((Q)<<30 | (U)<<29 | 0b01110<<24 | (op)<<23 | (sz)<<22 | 1<<21 | (Rm)<<16 | 0b11010<<11 | 1<<10 | (Rn)<<5 | (Rd))
#define VFADDQS(Vd, Vn, Vm)         EMIT(FADDSUB_vector(1, 0, 0, 0, Vm, Vn, Vd))
#define VFADDQD(Vd, Vn, Vm)         EMIT(FADDSUB_vector(1, 0, 0, 1, Vm, Vn, Vd))
#define VFADDS(Dd, Dn, Dm)          EMIT(FADDSUB_vector(0, 0, 0, 0, Dm, Dn, Dd))

#define VFSUBQS(Vd, Vn, Vm)         EMIT(FADDSUB_vector(1, 0, 1, 0, Vm, Vn, Vd))
#define VFSUBQD(Vd, Vn, Vm)         EMIT(FADDSUB_vector(1, 0, 1, 1, Vm, Vn, Vd))
#define VFSUBS(Dd, Dn, Dm)          EMIT(FADDSUB_vector(0, 0, 1, 0, Dm, Dn, Dd))

#define FADDSUB_scalar(type, Rm, op, Rn, Rd)    (0b11110<<24 | (type)<<22 | 1<<21 | (Rm)<<16 | 0b001<<13 | (op)<<12 | 0b10<<10 | (Rn)<<5 | (Rd))
#define FADDS(Sd, Sn, Sm)           EMIT(FADDSUB_scalar(0b00, Sm, 0, Sn, Sd))
#define FADDD(Dd, Dn, Dm)           EMIT(FADDSUB_scalar(0b01, Dm, 0, Dn, Dd))

#define FSUBS(Sd, Sn, Sm)           EMIT(FADDSUB_scalar(0b00, Sm, 1, Sn, Sd))
#define FSUBD(Dd, Dn, Dm)           EMIT(FADDSUB_scalar(0b01, Dm, 1, Dn, Dd))

// ADD Pair
#define ADDP_vector(Q, size, Rm, Rn, Rd)    ((Q)<<30 | 0b01110<<24 | (size)<<22 | 1<<21 | (Rm)<<16 | 0b10111<<11 | 1<<10 | (Rn)<<5 | (Rd))
#define VADDPQ_8(Vd, Vn, Vm)        EMIT(ADDP_vector(1, 0b00, Vm, Vn, Vd))
#define VADDPQ_16(Vd, Vn, Vm)       EMIT(ADDP_vector(1, 0b01, Vm, Vn, Vd))
#define VADDPQ_32(Vd, Vn, Vm)       EMIT(ADDP_vector(1, 0b10, Vm, Vn, Vd))
#define VADDPQ_64(Vd, Vn, Vm)       EMIT(ADDP_vector(1, 0b11, Vm, Vn, Vd))
#define VADDP_8(Vd, Vn, Vm)         EMIT(ADDP_vector(0, 0b00, Vm, Vn, Vd))
#define VADDP_16(Vd, Vn, Vm)        EMIT(ADDP_vector(0, 0b01, Vm, Vn, Vd))
#define VADDP_32(Vd, Vn, Vm)        EMIT(ADDP_vector(0, 0b10, Vm, Vn, Vd))

#define FADDP_vector(Q, sz, Rm, Rn, Rd) ((Q)<<30 | 1<<29 | 0b01110<<24 | (sz)<<22 | 1<<21 | (Rm)<<16 | 0b11010<<11 | 1<<10 | (Rn)<<5 | (Rd))
#define VFADDPQS(Vd, Vn, Vm)        EMIT(FADDP_vector(1, 0, Vm, Vn, Vd))
#define VFADDPQD(Vd, Vn, Vm)        EMIT(FADDP_vector(1, 1, Vm, Vn, Vd))
#define VFADDPS(Vd, Vn, Vm)         EMIT(FADDP_vector(0, 0, Vm, Vn, Vd))
#define VFADDPD(Vd, Vn, Vm)         EMIT(FADDP_vector(0, 1, Vm, Vn, Vd))

#define FADDP_scalar(sz, Rn, Rd)        (0b01<<30 | 1<<29 | 0b11110<<24 | (sz)<<22 | 0b11000<<17 | 0b01101<<12 | 0b10<<10 | (Rn)<<5 | (Rd))
#define FADDPS(Sd, Sn)              EMIT(FADDP_scalar(0, Sn, Sd))
#define FADDPD(Dd, Dn)              EMIT(FADDP_scalar(1, Dn, Dd))

// NEG / ABS
#define FNEGABS_scalar(type, opc, Rn, Rd)  (0b11110<<24 | (type)<<22 | 1<<21 | (opc)<<15 | 0b10000<<10 | (Rn)<<5 | (Rd))
#define FNEGS(Sd, Sn)               EMIT(FNEGABS_scalar(0b00, 0b10, Sn, Sd))
#define FNEGD(Dd, Dn)               EMIT(FNEGABS_scalar(0b01, 0b10, Dn, Dd))

#define FABSS(Sd, Sn)               EMIT(FNEGABS_scalar(0b00, 0b01, Sn, Sd))
#define FABSD(Dd, Dn)               EMIT(FNEGABS_scalar(0b01, 0b01, Dn, Dd))

#define FNEGABS_vector(Q, U, sz, Rn, Rd)    ((Q)<<30 | (U)<<29 | 0b01110<<24 | 1<<23 | (sz)<<22 | 0b10000<<17 | 0b01111<<12 | 0b10<<10 | (Rn)<<5 | (Rd))
#define VFNEGS(Vd, Vn)              EMIT(FNEGABS_vector(0, 1, 0, Vn, Vd))
#define VFNEGQS(Vd, Vn)             EMIT(FNEGABS_vector(1, 1, 0, Vn, Vd))
#define VFNEGQD(Vd, Vn)             EMIT(FNEGABS_vector(1, 1, 1, Vn, Vd))
#define VFABSS(Vd, Vn)              EMIT(FNEGABS_vector(0, 0, 0, Vn, Vd))
#define VFABSQS(Vd, Vn)             EMIT(FNEGABS_vector(1, 0, 0, Vn, Vd))
#define VFABSQD(Vd, Vn)             EMIT(FNEGABS_vector(1, 0, 1, Vn, Vd))

// MUL
#define FMUL_vector(Q, sz, Rm, Rn, Rd)  ((Q)<<30 | 1<<29 | 0b01110<<24 | (sz)<<22 | 1<<21 | (Rm)<<16 | 0b11011<<11 | 1<<10 | (Rn)<<5 | (Rd))
#define VFMULS(Sd, Sn, Sm)          EMIT(FMUL_vector(0, 0, Sm, Sn, Sd))
#define VFMULQS(Sd, Sn, Sm)         EMIT(FMUL_vector(1, 0, Sm, Sn, Sd))
#define VFMULQD(Sd, Sn, Sm)         EMIT(FMUL_vector(1, 1, Sm, Sn, Sd))

#define FMUL_scalar(type, Rm, Rn, Rd)   (0b11110<<24 | (type)<<22 | 1<<21 | (Rm)<<16 | 0b10<<10 | (Rn)<<5 | Rd)
#define FMULS(Sd, Sn, Sm)           EMIT(FMUL_scalar(0b00, Sm, Sn, Sd))
#define FMULD(Dd, Dn, Dm)           EMIT(FMUL_scalar(0b01, Dm, Dn, Dd))

// DIV
#define FDIV_vector(Q, sz, Rm, Rn, Rd)  ((Q)<<30 | 1<<29 | 0b01110<<24 | (sz)<<22 | 1<<21 | (Rm)<<16 | 0b11111<<11 | 1<<10 | (Rn)<<5 | (Rd))
#define VFDIVS(Sd, Sn, Sm)          EMIT(FDIV_vector(0, 0, Sm, Sn, Sd))
#define VFDIVQS(Sd, Sn, Sm)         EMIT(FDIV_vector(1, 0, Sm, Sn, Sd))
#define VFDIVQD(Sd, Sn, Sm)         EMIT(FDIV_vector(1, 1, Sm, Sn, Sd))

#define FDIV_scalar(type, Rm, Rn, Rd)   (0b11110<<24 | (type)<<22 | 1<<21 | (Rm)<<16 | 0b0001<<12 | 0b10<<10 | (Rn)<<5 | (Rd))
#define FDIVS(Sd, Sn, Sm)           EMIT(FDIV_scalar(0b00, Sm, Sn, Sd))
#define FDIVD(Dd, Dn, Dm)           EMIT(FDIV_scalar(0b01, Dm, Dn, Dd))

#define FRECPE_vector(Q, sz, Rn, Rd)   ((Q)<<30 | 0<<29 | 0b01110<<24 | 1<<23 | (sz)<<22 | 0b10000<<17 | 0b11101<<12 | 0b10<<10 | (Rn)<<5 | (Rd))
#define VFRECPES(Vd, Vn)           EMIT(FRECPE_vector(0, 0, Vn, Vd))
#define VFRECPEQS(Vd, Vn)          EMIT(FRECPE_vector(1, 0, Vn, Vd))
#define VFRECPEQD(Vd, Vn)          EMIT(FRECPE_vector(1, 0, Vn, Vd))

#define FRECPS_vector(Q, sz, Rm, Rn, Rd)   ((Q)<<30 | 0<<29 | 0b01110<<24 | 0<<23 | (sz)<<22 | 1<<21 | (Rm)<<16 | 0b11111<<11 | 1<<10 | (Rn)<<5 | (Rd))
#define VFRECPSS(Vd, Vn, Vm)       EMIT(FRECPS_vector(0, 0, Vm, Vn, Vd))
#define VFRECPSQS(Vd, Vn, Vm)      EMIT(FRECPS_vector(1, 0, Vm, Vn, Vd))
#define VFRECPSQD(Vd, Vn, Vm)      EMIT(FRECPS_vector(1, 0, Vm, Vn, Vd))

// SQRT
#define FSQRT_vector(Q, sz, Rn, Rd)     ((Q)<<30 | 1<<29 | 0b01110<<24 | 1<<23 | (sz)<<22 | 0b10000<<17 | 0b11111<<12 | 0b10<<10 | (Rn)<<5 | (Rd))
#define VFSQRTS(Sd, Sn)             EMIT(FSQRT_vector(0, 0, Sn, Sd))
#define VFSQRTQS(Sd, Sn)            EMIT(FSQRT_vector(1, 0, Sn, Sd))
#define VFSQRTQD(Sd, Sn)            EMIT(FSQRT_vector(1, 1, Sn, Sd))

#define FSQRT_scalar(type, Rn, Rd)      (0b11110<<24 | (type)<<22 | 1<<21 | 0b11<<15 | 0b10000<<10 | (Rn)<<5 | (Rd))
#define FSQRTS(Sd, Sn)              EMIT(FSQRT_scalar(0b00, Sn, Sd))
#define FSQRTD(Dd, Dn)              EMIT(FSQRT_scalar(0b01, Dn, Dd))

#define FRSQRTE_vector(Q, sz, Rn, Rd)   ((Q)<<30 | 1<<29 | 0b01110<<24 | 1<<23 | (sz)<<22 | 0b10000<<17 | 0b11101<<12 | 0b10<<10 | (Rn)<<5 | (Rd))
#define VFRSQRTES(Vd, Vn)           EMIT(FRSQRTE_vector(0, 0, Vn, Vd))
#define VFRSQRTEQS(Vd, Vn)          EMIT(FRSQRTE_vector(1, 0, Vn, Vd))
#define VFRSQRTEQD(Vd, Vn)          EMIT(FRSQRTE_vector(1, 0, Vn, Vd))

#define FRSQRTS_vector(Q, sz, Rm, Rn, Rd)   ((Q)<<30 | 0<<29 | 0b01110<<24 | 1<<23 | (sz)<<22 | 1<<21 | (Rm)<<16 | 0b11111<<11 | 1<<10 | (Rn)<<5 | (Rd))
#define VFRSQRTSS(Vd, Vn, Vm)       EMIT(FRSQRTS_vector(0, 0, Vm, Vn, Vd))
#define VFRSQRTSQS(Vd, Vn, Vm)      EMIT(FRSQRTS_vector(1, 0, Vm, Vn, Vd))
#define VFRSQRTSQD(Vd, Vn, Vm)      EMIT(FRSQRTS_vector(1, 0, Vm, Vn, Vd))

// CMP . NZCV: unordere=0011, eq=0110, inf=1000, sup=0010
#define FCMP_scalar(type, Rn, Rm, opc)  (0b11110<<24 | (type)<<22 | 1<<21 | (Rm)<<16 | 0b1000<<10 | (Rn)<<5 | (opc)<<3)
#define FCMPS(Sn, Sm)              FEMIT(FCMP_scalar(0b00, Sn, Sm, 0b00))
#define FCMPD(Dn, Dm)              FEMIT(FCMP_scalar(0b01, Dn, Dm, 0b00))
#define FCMPS_0(Sn)                FEMIT(FCMP_scalar(0b00, Sn, 0, 0b01))
#define FCMPD_0(Dn)                FEMIT(FCMP_scalar(0b01, Dn, 0, 0b01))

// CVT
#define FCVT_scalar(sf, type, rmode, opcode, Rn, Rd)    ((sf)<<31 | 0b11110<<24 | (type)<<22 | 1<<21 | (rmode)<<19 | (opcode)<<16 | (Rn)<<5 | (Rd))
// Floating-point Convert to Signed integer, rounding to nearest with ties to Away
#define FCVTASwS(Wd, Sn)            EMIT(FCVT_scalar(0, 0b00, 0b00, 0b100, Sn, Wd))
#define FCVTASxS(Xd, Sn)            EMIT(FCVT_scalar(1, 0b00, 0b00, 0b100, Sn, Xd))
#define FCVTASwD(Wd, Dn)            EMIT(FCVT_scalar(0, 0b01, 0b00, 0b100, Dn, Wd))
#define FCVTASxD(Xd, Dn)            EMIT(FCVT_scalar(1, 0b01, 0b00, 0b100, Dn, Xd))
// Floating-point Convert to Unsigned integer, rounding to nearest with ties to Away
#define FCVTAUwS(Wd, Sn)            EMIT(FCVT_scalar(0, 0b00, 0b00, 0b101, Sn, Wd))
#define FCVTAUxS(Xd, Sn)            EMIT(FCVT_scalar(1, 0b00, 0b00, 0b101, Sn, Xd))
#define FCVTAUwD(Wd, Dn)            EMIT(FCVT_scalar(0, 0b01, 0b00, 0b101, Dn, Wd))
#define FCVTAUxD(Xd, Dn)            EMIT(FCVT_scalar(1, 0b01, 0b00, 0b101, Dn, Xd))
// Floating-point Convert to Signed integer, rounding toward Minus infinity
#define FCVTMSwS(Wd, Sn)            EMIT(FCVT_scalar(0, 0b00, 0b10, 0b100, Sn, Wd))
#define FCVTMSxS(Xd, Sn)            EMIT(FCVT_scalar(1, 0b00, 0b10, 0b100, Sn, Xd))
#define FCVTMSxwS(Xd, Sn)           EMIT(FCVT_scalar(rex.w, 0b00, 0b10, 0b100, Sn, Xd))
#define FCVTMSwD(Wd, Dn)            EMIT(FCVT_scalar(0, 0b01, 0b10, 0b100, Dn, Wd))
#define FCVTMSxD(Xd, Dn)            EMIT(FCVT_scalar(1, 0b01, 0b10, 0b100, Dn, Xd))
#define FCVTMSxwD(Xd, Dn)           EMIT(FCVT_scalar(rex.w, 0b01, 0b10, 0b100, Dn, Xd))
// Floating-point Convert to Unsigned integer, rounding toward Minus infinity
#define FCVTMUwS(Wd, Sn)            EMIT(FCVT_scalar(0, 0b00, 0b10, 0b101, Sn, Wd))
#define FCVTMUxS(Xd, Sn)            EMIT(FCVT_scalar(1, 0b00, 0b10, 0b101, Sn, Xd))
#define FCVTMUxwS(Xd, Sn)           EMIT(FCVT_scalar(rex.w, 0b00, 0b10, 0b101, Sn, Xd))
#define FCVTMUwD(Wd, Dn)            EMIT(FCVT_scalar(0, 0b01, 0b10, 0b101, Dn, Wd))
#define FCVTMUxD(Xd, Dn)            EMIT(FCVT_scalar(1, 0b01, 0b10, 0b101, Dn, Xd))
#define FCVTMUxwD(Xd, Dn)           EMIT(FCVT_scalar(rfex.w, 0b01, 0b10, 0b101, Dn, Xd))
// Floating-point Convert to Signed integer, rounding to nearest with ties to even
#define FCVTNSwS(Wd, Sn)            EMIT(FCVT_scalar(0, 0b00, 0b00, 0b000, Sn, Wd))
#define FCVTNSxS(Xd, Sn)            EMIT(FCVT_scalar(1, 0b00, 0b00, 0b000, Sn, Xd))
#define FCVTNSxwS(Xd, Sn)           EMIT(FCVT_scalar(rex.w, 0b00, 0b00, 0b000, Sn, Xd))
#define FCVTNSwD(Wd, Dn)            EMIT(FCVT_scalar(0, 0b01, 0b00, 0b000, Dn, Wd))
#define FCVTNSxD(Xd, Dn)            EMIT(FCVT_scalar(1, 0b01, 0b00, 0b000, Dn, Xd))
#define FCVTNSxwD(Xd, Dn)           EMIT(FCVT_scalar(rex.w, 0b01, 0b00, 0b000, Dn, Xd))
// Floating-point Convert to Unsigned integer, rounding to nearest with ties to even
#define FCVTNUwS(Wd, Sn)            EMIT(FCVT_scalar(0, 0b00, 0b00, 0b001, Sn, Wd))
#define FCVTNUxS(Xd, Sn)            EMIT(FCVT_scalar(1, 0b00, 0b00, 0b001, Sn, Xd))
#define FCVTNUxwS(Xd, Sn)           EMIT(FCVT_scalar(rex.w, 0b00, 0b00, 0b001, Sn, Xd))
#define FCVTNUwD(Wd, Dn)            EMIT(FCVT_scalar(0, 0b01, 0b00, 0b001, Dn, Wd))
#define FCVTNUxD(Xd, Dn)            EMIT(FCVT_scalar(1, 0b01, 0b00, 0b001, Dn, Xd))
#define FCVTNUxwD(Xd, Dn)           EMIT(FCVT_scalar(rex.w, 0b01, 0b00, 0b001, Dn, Xd))
// Floating-point Convert to Signed integer, rounding toward Plus infinity
#define FCVTPSwS(Wd, Sn)            EMIT(FCVT_scalar(0, 0b00, 0b01, 0b000, Sn, Wd))
#define FCVTPSxS(Xd, Sn)            EMIT(FCVT_scalar(1, 0b00, 0b01, 0b000, Sn, Xd))
#define FCVTPSxwS(Xd, Sn)           EMIT(FCVT_scalar(rex.w, 0b00, 0b01, 0b000, Sn, Xd))
#define FCVTPSwD(Wd, Dn)            EMIT(FCVT_scalar(0, 0b01, 0b01, 0b000, Dn, Wd))
#define FCVTPSxD(Xd, Dn)            EMIT(FCVT_scalar(1, 0b01, 0b01, 0b000, Dn, Xd))
#define FCVTPSxwD(Xd, Dn)           EMIT(FCVT_scalar(rex.w, 0b01, 0b01, 0b000, Dn, Xd))
// Floating-point Convert to Unsigned integer, rounding toward Plus infinity
#define FCVTPUwS(Wd, Sn)            EMIT(FCVT_scalar(0, 0b00, 0b01, 0b001, Sn, Wd))
#define FCVTPUxS(Xd, Sn)            EMIT(FCVT_scalar(1, 0b00, 0b01, 0b001, Sn, Xd))
#define FCVTPUwD(Wd, Dn)            EMIT(FCVT_scalar(0, 0b01, 0b01, 0b001, Dn, Wd))
#define FCVTPUxD(Xd, Dn)            EMIT(FCVT_scalar(1, 0b01, 0b01, 0b001, Dn, Xd))
// Floating-point Convert to Signed integer, rounding toward Zero
#define FCVTZSwS(Wd, Sn)            EMIT(FCVT_scalar(0, 0b00, 0b11, 0b000, Sn, Wd))
#define FCVTZSxS(Xd, Sn)            EMIT(FCVT_scalar(1, 0b00, 0b11, 0b000, Sn, Xd))
#define FCVTZSxwS(Xd, Sn)           EMIT(FCVT_scalar(rex.w, 0b00, 0b11, 0b000, Sn, Xd))
#define FCVTZSwD(Wd, Dn)            EMIT(FCVT_scalar(0, 0b01, 0b11, 0b000, Dn, Wd))
#define FCVTZSxD(Xd, Dn)            EMIT(FCVT_scalar(1, 0b01, 0b11, 0b000, Dn, Xd))
#define FCVTZSxwD(Xd, Dn)           EMIT(FCVT_scalar(rex.w, 0b01, 0b11, 0b000, Dn, Xd))
// Floating-point Convert to Unsigned integer, rounding toward Zero
#define FCVTZUwS(Wd, Sn)            EMIT(FCVT_scalar(0, 0b00, 0b11, 0b001, Sn, Wd))
#define FCVTZUxS(Xd, Sn)            EMIT(FCVT_scalar(1, 0b00, 0b11, 0b001, Sn, Xd))
#define FCVTZUxwS(Xd, Sn)           EMIT(FCVT_scalar(rex.w, 0b00, 0b11, 0b001, Sn, Xd))
#define FCVTZUwD(Wd, Dn)            EMIT(FCVT_scalar(0, 0b01, 0b11, 0b001, Dn, Wd))
#define FCVTZUxD(Xd, Dn)            EMIT(FCVT_scalar(1, 0b01, 0b11, 0b001, Dn, Xd))
#define FCVTZUxwD(Xd, Dn)           EMIT(FCVT_scalar(rex.w, 0b01, 0b11, 0b001, Dn, Xd))

#define FCVT_vector_scalar(U, o2, sz, o1, Rn, Rd)   (0b01<<30 | (U)<<29 | 0b11110<<24 | (o2)<<23 | (sz)<<22 | 0b10000<<17 | 0b1110<<13 | (o1)<<12 | 0b10<<10 | (Rn)<<5 | (Rd))
// Floating-point Convert to (Un)signed integer, rounding to nearest with ties to Away
#define VFCVTASs(Vd, Vn)            EMIT(FCVT_vector_scalar(0, 0, 0, 0, Vn, Vd))
#define VFCVTASd(Vd, Vn)            EMIT(FCVT_vector_scalar(0, 0, 1, 0, Vn, Vd))
#define VFCVTAUs(Vd, Vn)            EMIT(FCVT_vector_scalar(1, 0, 0, 0, Vn, Vd))
#define VFCVTAUd(Vd, Vn)            EMIT(FCVT_vector_scalar(1, 0, 1, 0, Vn, Vd))
// Floating-point Convert to (Un)signed integer, rounding toward Minus infinity
#define VFCVTMSs(Vd, Vn)            EMIT(FCVT_vector_scalar(0, 0, 0, 1, Vn, Vd))
#define VFCVTMSd(Vd, Vn)            EMIT(FCVT_vector_scalar(0, 0, 1, 1, Vn, Vd))
#define VFCVTMUs(Vd, Vn)            EMIT(FCVT_vector_scalar(1, 0, 0, 1, Vn, Vd))
#define VFCVTMUd(Vd, Vn)            EMIT(FCVT_vector_scalar(1, 0, 1, 1, Vn, Vd))

#define FCVT2_vector_scalar(U, o2, sz, o1, Rn, Rd)   (0b01<<30 | (U)<<29 | 0b11110<<24 | (o2)<<23 | (sz)<<22 | 0b10000<<17 | 0b1101<<13 | (o1)<<12 | 0b10<<10 | (Rn)<<5 | (Rd))
// Floating-point Convert to (Un)signed integer, rounding to nearest with ties to even
#define VFCVTNSs(Vd, Vn)            EMIT(FCVT2_vector_scalar(0, 0, 0, 0, Vn, Vd))
#define VFCVTNSd(Vd, Vn)            EMIT(FCVT2_vector_scalar(0, 0, 1, 0, Vn, Vd))
#define VFCVTNUs(Vd, Vn)            EMIT(FCVT2_vector_scalar(1, 0, 0, 0, Vn, Vd))
#define VFCVTNUd(Vd, Vn)            EMIT(FCVT2_vector_scalar(1, 0, 1, 0, Vn, Vd))
// Floating-point Convert to (Un)signed integer, rounding toward Plus infinity
#define VFCVTPSs(Vd, Vn)            EMIT(FCVT2_vector_scalar(0, 1, 0, 0, Vn, Vd))
#define VFCVTPSd(Vd, Vn)            EMIT(FCVT2_vector_scalar(0, 1, 1, 0, Vn, Vd))
#define VFCVTPUs(Vd, Vn)            EMIT(FCVT2_vector_scalar(1, 1, 0, 0, Vn, Vd))
#define VFCVTPUd(Vd, Vn)            EMIT(FCVT2_vector_scalar(1, 1, 1, 0, Vn, Vd))
// Floating-point Convert to (Un)signed integer, rounding toward Zero
#define VFCVTZSs(Vd, Vn)            EMIT(FCVT2_vector_scalar(0, 1, 0, 1, Vn, Vd))
#define VFCVTZSd(Vd, Vn)            EMIT(FCVT2_vector_scalar(0, 1, 1, 1, Vn, Vd))
#define VFCVTZUs(Vd, Vn)            EMIT(FCVT2_vector_scalar(1, 1, 0, 1, Vn, Vd))
#define VFCVTZUd(Vd, Vn)            EMIT(FCVT2_vector_scalar(1, 1, 1, 1, Vn, Vd))

#define FCVT_vector(Q, U, o2, sz, o1, Rn, Rd)       ((Q)<<30 | (U)<<29 | 0b01110<<24 | (o2)<<23 | (sz)<<22 | 0b10000<<17 | 0b1110<<13 | (o1)<<12 | 0b10<<10 | (Rn)<<5 | (Rd))
// Floating-point Convert to (Un)signed integer, rounding to nearest with ties to Away
#define VFCVTASS(Vd, Vn)            EMIT(FCVT_vector(0, 0, 0, 0, 0, Vn, Vd))
#define VFCVTASD(Vd, Vn)            EMIT(FCVT_vector(0, 0, 0, 1, 0, Vn, Vd))
#define VFCVTASQS(Vd, Vn)           EMIT(FCVT_vector(1, 0, 0, 0, 0, Vn, Vd))
#define VFCVTASQD(Vd, Vn)           EMIT(FCVT_vector(1, 0, 0, 1, 0, Vn, Vd))
#define VFCVTAUS(Vd, Vn)            EMIT(FCVT_vector(0, 1, 0, 0, 0, Vn, Vd))
#define VFCVTAUD(Vd, Vn)            EMIT(FCVT_vector(0, 1, 0, 1, 0, Vn, Vd))
#define VFCVTAUQS(Vd, Vn)           EMIT(FCVT_vector(1, 1, 0, 0, 0, Vn, Vd))
#define VFCVTAUQD(Vd, Vn)           EMIT(FCVT_vector(1, 1, 0, 1, 0, Vn, Vd))
// Floating-point Convert to (Un)signed integer, rounding toward Minus infinity
#define VFCVTMSS(Vd, Vn)            EMIT(FCVT_vector(0, 0, 0, 0, 1, Vn, Vd))
#define VFCVTMSD(Vd, Vn)            EMIT(FCVT_vector(0, 0, 0, 1, 1, Vn, Vd))
#define VFCVTMSQS(Vd, Vn)           EMIT(FCVT_vector(1, 0, 0, 0, 1, Vn, Vd))
#define VFCVTMSQD(Vd, Vn)           EMIT(FCVT_vector(1, 0, 0, 1, 1, Vn, Vd))
#define VFCVTMUS(Vd, Vn)            EMIT(FCVT_vector(0, 1, 0, 0, 1, Vn, Vd))
#define VFCVTMUD(Vd, Vn)            EMIT(FCVT_vector(0, 1, 0, 1, 1, Vn, Vd))
#define VFCVTMUQS(Vd, Vn)           EMIT(FCVT_vector(1, 1, 0, 0, 1, Vn, Vd))
#define VFCVTMUQD(Vd, Vn)           EMIT(FCVT_vector(1, 1, 0, 1, 1, Vn, Vd))

#define FCVT2_vector(Q, U, o2, sz, o1, Rn, Rd)       ((Q)<<30 | (U)<<29 | 0b01110<<24 | (o2)<<23 | (sz)<<22 | 0b10000<<17 | 0b1101<<13 | (o1)<<12 | 0b10<<10 | (Rn)<<5 | (Rd))
// Floating-point Convert to (Un)signed integer, rounding to nearest with ties to even
#define VFCVTNSS(Vd, Vn)            EMIT(FCVT2_vector(0, 0, 0, 0, 0, Vn, Vd))
#define VFCVTNSD(Vd, Vn)            EMIT(FCVT2_vector(0, 0, 0, 1, 0, Vn, Vd))
#define VFCVTNSQS(Vd, Vn)           EMIT(FCVT2_vector(1, 0, 0, 0, 0, Vn, Vd))
#define VFCVTNSQD(Vd, Vn)           EMIT(FCVT2_vector(1, 0, 0, 1, 0, Vn, Vd))
#define VFCVTNUS(Vd, Vn)            EMIT(FCVT2_vector(0, 1, 0, 0, 0, Vn, Vd))
#define VFCVTNUD(Vd, Vn)            EMIT(FCVT2_vector(0, 1, 0, 1, 0, Vn, Vd))
#define VFCVTNUQS(Vd, Vn)           EMIT(FCVT2_vector(1, 1, 0, 0, 0, Vn, Vd))
#define VFCVTNUQD(Vd, Vn)           EMIT(FCVT2_vector(1, 1, 0, 1, 0, Vn, Vd))
// Floating-point Convert to (Un)signed integer, rounding toward Plus infinity
#define VFCVTPSS(Vd, Vn)            EMIT(FCVT2_vector(0, 0, 1, 0, 0, Vn, Vd))
#define VFCVTPSD(Vd, Vn)            EMIT(FCVT2_vector(0, 0, 1, 1, 0, Vn, Vd))
#define VFCVTPSQS(Vd, Vn)           EMIT(FCVT2_vector(1, 0, 1, 0, 0, Vn, Vd))
#define VFCVTPSQD(Vd, Vn)           EMIT(FCVT2_vector(1, 0, 1, 1, 0, Vn, Vd))
#define VFCVTPUS(Vd, Vn)            EMIT(FCVT2_vector(0, 1, 1, 0, 0, Vn, Vd))
#define VFCVTPUD(Vd, Vn)            EMIT(FCVT2_vector(0, 1, 1, 1, 0, Vn, Vd))
#define VFCVTPUQS(Vd, Vn)           EMIT(FCVT2_vector(1, 1, 1, 0, 0, Vn, Vd))
#define VFCVTPUQD(Vd, Vn)           EMIT(FCVT2_vector(1, 1, 1, 1, 0, Vn, Vd))
// Floating-point Convert to (Un)signed integer, rounding toward Zero
#define VFCVTZSS(Vd, Vn)            EMIT(FCVT2_vector(0, 0, 1, 0, 1, Vn, Vd))
#define VFCVTZSD(Vd, Vn)            EMIT(FCVT2_vector(0, 0, 1, 1, 1, Vn, Vd))
#define VFCVTZSQS(Vd, Vn)           EMIT(FCVT2_vector(1, 0, 1, 0, 1, Vn, Vd))
#define VFCVTZSQD(Vd, Vn)           EMIT(FCVT2_vector(1, 0, 1, 1, 1, Vn, Vd))
#define VFCVTZUS(Vd, Vn)            EMIT(FCVT2_vector(0, 1, 1, 0, 1, Vn, Vd))
#define VFCVTZUD(Vd, Vn)            EMIT(FCVT2_vector(0, 1, 1, 1, 1, Vn, Vd))
#define VFCVTZUQS(Vd, Vn)           EMIT(FCVT2_vector(1, 1, 1, 0, 1, Vn, Vd))
#define VFCVTZUQD(Vd, Vn)           EMIT(FCVT2_vector(1, 1, 1, 1, 1, Vn, Vd))

#define FCVT_precision(type, opc, Rn, Rd)   (0b11110<<24 | (type)<<22 | 1<<21 | 0b0001<<17 | (opc)<<15 | 0b10000<<10 | (Rn)<<5 | (Rd))
#define FCVT_D_S(Dd, Sn)            EMIT(FCVT_precision(0b00, 0b01, Sn, Dd))
#define FCVT_S_D(Sd, Dn)            EMIT(FCVT_precision(0b01, 0b00, Dn, Sd))

#define FCVTN_vector(Q, sz, Rn, Rd)   ((Q)<<30 | 0<<29 | 0b01110<<24 | (sz)<<22 | 0b10000<<17 | 0b10110<<12 | 0b10<<10 | (Rn)<<5 | (Rd))
// Convert Vn from 2*Double to lower Vd as 2*float and clears the upper half, use FPCR rounding
#define FCVTN(Vd, Vn)               EMIT(FCVTN_vector(0, 1, Vn, Vd))
// Convert Vn from 2*Double to higher Vd as 2*float, use FPCR rounding
#define FCVTN2(Vd, Vn)              EMIT(FCVTN_vector(1, 1, Vn, Vd))
// Convert Vn from 2*Float to lower Vd as 2*float16 and clears the upper half, use FPCR rounding
#define FCVTN16(Vd, Vn)             EMIT(FCVTN_vector(0, 0, Vn, Vd))
// Convert Vn from 2*Float to higher Vd as 2*float16, use FPCR rounding
#define FCVTN162(Vd, Vn)            EMIT(FCVTN_vector(1, 0, Vn, Vd))

#define FCVTXN_vector(Q, sz, Rn, Rd)   ((Q)<<30 | 1<<29 | 0b01110<<24 | (sz)<<22 | 0b10000<<17 | 0b10110<<12 | 0b10<<10 | (Rn)<<5 | (Rd))
// Convert Vn from 2*Double to lower Vd as 2*float and clears the upper half
#define FCVTXN(Vd, Vn)              EMIT(FCVTXN_vector(0, 1, Vn, Vd))
// Convert Vn from 2*Double to higher Vd as 2*float
#define FCVTXN2(Vd, Vn)             EMIT(FCVTXN_vector(1, 1, Vn, Vd))
// Convert Vn from 2*Float to lower Vd as 2*float16 and clears the upper half
#define FCVTXN16(Vd, Vn)            EMIT(FCVTXN_vector(0, 0, Vn, Vd))
// Convert Vn from 2*Float to higher Vd as 2*float16
#define FCVTXN162(Vd, Vn)           EMIT(FCVTXN_vector(1, 0, Vn, Vd))

#define FCVTL_vector(Q, sz, Rn, Rd)     ((Q)<<30 | 0<<29 | 0b01110<<24 | (sz)<<22 | 0b10000<<17 | 0b10111<<12 | 0b10<<10 | (Rn)<<5 | (Rd))
// Convert lower Vn from 2*float to Vd as 2*double
#define FCVTL(Vd, Vn)               EMIT(FCVTL_vector(0, 1, Vn, Vd))
// Convert higher Vn from 2*float to Vd as 2*double
#define FCVTL2(Vd, Vn)              EMIT(FCVTL_vector(1, 1, Vn, Vd))
// Convert lower Vn from 2*float16 to Vd as 2*float
#define FCVTL16(Vd, Vn)             EMIT(FCVTL_vector(0, 0, Vn, Vd))
// Convert higher Vn from 2*float16 to Vd as 2*float
#define FCVTL162(Vd, Vn)            EMIT(FCVTL_vector(1, 0, Vn, Vd))

#define SCVTF_scalar(sf, type, rmode, opcode, Rn, Rd)   ((sf)<<31 | 0b11110<<24 | (type)<<22 | 1<<21 | (rmode)<<19 | (opcode)<<16 | (Rn)<<5 | (Rd))
#define SCVTFSw(Sd, Wn)             EMIT(SCVTF_scalar(0, 0b00, 0b00, 0b010, Wn, Sd))
#define SCVTFDw(Dd, Wn)             EMIT(SCVTF_scalar(0, 0b01, 0b00, 0b010, Wn, Dd))
#define SCVTFSx(Sd, Xn)             EMIT(SCVTF_scalar(1, 0b00, 0b00, 0b010, Xn, Sd))
#define SCVTFDx(Dd, Xn)             EMIT(SCVTF_scalar(1, 0b01, 0b00, 0b010, Xn, Dd))

#define SCVTF_vector_scalar(U, sz, Rn, Rd)    (1<<30 | (U)<<29 | 0b11110<<24 | (sz)<<22 | 0b10000<<17 | 0b11101<<12 | 0b10<<10 | (Rn)<<5 | (Rd))
// Convert Vn from i32 to Vd float
#define SCVTFSS(Vd, Vn)             EMIT(SCVTF_vector_scalar(0, 0, Vn, Vd))
// Convert Vn from i64 to Vd double
#define SCVTFDD(Vd, Vn)             EMIT(SCVTF_vector_scalar(0, 1, Vn, Vd))

#define SCVTF_vector(Q, U, sz, Rn, Rd)      ((Q)<<30 | (U)<<29 | 0b01110<<24 | (sz)<<22 | 0b10000<<17 | 0b11101<<12 | 0b10<<10 | (Rn)<<5 | (Rd))
#define SCVTFS(Vd, Vn)              EMIT(SCVTF_vector(0, 0, 0, Vn, Vd))
#define SCVTFD(Vd, Vn)              EMIT(SCVTF_vector(0, 0, 1, Vn, Vd))
#define SCVTQFS(Vd, Vn)             EMIT(SCVTF_vector(1, 0, 0, Vn, Vd))
#define SCVTQFD(Vd, Vn)             EMIT(SCVTF_vector(1, 0, 1, Vn, Vd))

// FRINTI Floating-point Round to Integral, using current rounding mode from FPCR (vector).
#define FRINT_vector(Q, U, o2, sz, o1, Rn, Rd) ((Q)<<30 | (U)<<29 | 0b01110<<24 | (o2)<<23 | (sz)<<22 | 0b10000<<17 | 0b1100<<13 | (o1)<<12 | 0b10<<10 | (Rn)<<5 | (Rd))
#define VFRINTIS(Vd,Vn)             EMIT(FRINT_vector(0, 1, 1, 0, 1, Vn, Vd))
#define VFRINTISQ(Vd,Vn)            EMIT(FRINT_vector(1, 1, 1, 0, 1, Vn, Vd))
#define VFRINTIDQ(Vd,Vn)            EMIT(FRINT_vector(1, 1, 1, 1, 1, Vn, Vd))
// round with mode, mode is 0 = TieEven, 1=+inf, 2=-inf, 3=zero
#define VFRINTRDQ(Vd,Vn, mode)      EMIT(FRINT_vector(1, 0, (mode)&1, 1, ((mode)>>1)&1, Vn, Vd))
// round with mode, mode is 0 = TieEven, 1=+inf, 2=-inf, 3=zero
#define VFRINTRSQ(Vd,Vn, mode)      EMIT(FRINT_vector(1, 0, (mode)&1, 0, ((mode)>>1)&1, Vn, Vd))
#define VFRINTRS(Vd, Vn, mode)      EMIT(FRINT_vector(0, 0, (mode)&1, 0, ((mode)>>1)&1, Vn, Vd))

#define FRINTI_scalar(type, Rn, Rd)  (0b11110<<24 | (type)<<22 | 1<<21 | 0b001<<18 | 0b111<<15 | 0b10000<<10 | (Rn)<<5 | (Rd))
#define FRINTIS(Sd, Sn)             EMIT(FRINTI_scalar(0b00, Sn, Sd))
#define FRINTID(Dd, Dn)             EMIT(FRINTI_scalar(0b01, Dn, Dd))

#define FRINT_scalar(type, rmode, Rn, Rd)   (0b11110<<24 | (type)<<22 | 1<<21 | 0b001<<18 | (rmode)<<15 | 0b10000<<10 | (Rn)<<5 | (Rd))
// round toward 0 (truncate)
#define FRINTZS(Sd, Sn)             EMIT(FRINT_scalar(0b00, 0b011, Sn, Sd))
// round toward 0 (truncate)
#define FRINTZD(Sd, Sn)             EMIT(FRINT_scalar(0b01, 0b011, Sn, Sd))
// round with current FPCR mode
#define FRINTXS(Sd, Sn)             EMIT(FRINT_scalar(0b00, 0b110, Sn, Sd))
// round with current FPCR mode
#define FRINTXD(Sd, Sn)             EMIT(FRINT_scalar(0b01, 0b110, Sn, Sd))
// round with mode, mode is 0 = TieEven, 1=+inf, 2=-inf, 3=zero
#define FRINTRRS(Sd, Sn, mode)      EMIT(FRINT_scalar(0b00, ((mode)&3), Sn, Sd))
// round with mode, mode is 0 = TieEven, 1=+inf, 2=-inf, 3=zero
#define FRINTRRD(Dd, Dn, mode)      EMIT(FRINT_scalar(0b01, ((mode)&3), Dn, Dd))

// FMAX / FMIN
#define FMINMAX_vector(Q, U, o1, sz, Rm, Rn, Rd)    ((Q)<<30 | (U)<<29 | 0b01110<<24 | (o1)<<23 | (sz)<<22 | 0b1<<21 | (Rm)<<16 | 0b11110<<11 | 1<<10 | (Rn)<<5 | (Rd))
#define VFMINS(Vd, Vn, Vm)          EMIT(FMINMAX_vector(0, 0, 1, 0, Vm, Vn, Vd))
#define VFMAXS(Vd, Vn, Vm)          EMIT(FMINMAX_vector(0, 0, 0, 0, Vm, Vn, Vd))
#define VFMINQS(Vd, Vn, Vm)         EMIT(FMINMAX_vector(1, 0, 1, 0, Vm, Vn, Vd))
#define VFMAXQS(Vd, Vn, Vm)         EMIT(FMINMAX_vector(1, 0, 0, 0, Vm, Vn, Vd))
#define VFMINQD(Vd, Vn, Vm)         EMIT(FMINMAX_vector(1, 0, 1, 1, Vm, Vn, Vd))
#define VFMAXQD(Vd, Vn, Vm)         EMIT(FMINMAX_vector(1, 0, 0, 1, Vm, Vn, Vd))
#define VFMINPS(Vd, Vn, Vm)         EMIT(FMINMAX_vector(0, 1, 1, 0, Vm, Vn, Vd))
#define VFMAXPS(Vd, Vn, Vm)         EMIT(FMINMAX_vector(0, 1, 0, 0, Vm, Vn, Vd))
#define VFMINPQS(Vd, Vn, Vm)        EMIT(FMINMAX_vector(1, 1, 1, 0, Vm, Vn, Vd))
#define VFMAXPQS(Vd, Vn, Vm)        EMIT(FMINMAX_vector(1, 1, 0, 0, Vm, Vn, Vd))
#define VFMINPQD(Vd, Vn, Vm)        EMIT(FMINMAX_vector(1, 1, 1, 1, Vm, Vn, Vd))
#define VFMAXPQD(Vd, Vn, Vm)        EMIT(FMINMAX_vector(1, 1, 0, 1, Vm, Vn, Vd))

#define FMINMAX_scalar(type, Rm, op, Rn, Rd)        (0b11110<<24 | (type)<<22 | 1<<21 | (Rm)<<16 | 0b01<<14 | (op)<<12 | 0b10<<10 | (Rn)<<5 | (Rd))
#define FMINS(Sd, Sn, Sm)           EMIT(FMINMAX_scalar(0b00, Sm, 0b01, Sn, Sd))
#define FMIND(Dd, Dn, Dm)           EMIT(FMINMAX_scalar(0b01, Dm, 0b01, Dn, Dd))
#define FMAXS(Sd, Sn, Sm)           EMIT(FMINMAX_scalar(0b00, Sm, 0b00, Sn, Sd))
#define FMAXD(Dd, Dn, Dm)           EMIT(FMINMAX_scalar(0b01, Dm, 0b00, Dn, Dd))
// FMINNM NaN vs Number: number is picked
#define FMINNMS(Sd, Sn, Sm)         EMIT(FMINMAX_scalar(0b00, Sm, 0b11, Sn, Sd))
// FMINNM NaN vs Number: number is picked
#define FMINNMD(Dd, Dn, Dm)         EMIT(FMINMAX_scalar(0b01, Dm, 0b11, Dn, Dd))
// FMAXNM NaN vs Number: number is picked
#define FMAXNMS(Sd, Sn, Sm)         EMIT(FMINMAX_scalar(0b00, Sm, 0b10, Sn, Sd))
// FMAXNM NaN vs Number: number is picked
#define FMAXNMD(Dd, Dn, Dm)         EMIT(FMINMAX_scalar(0b01, Dm, 0b10, Dn, Dd))

// Fused Add Multiply
#define FMADD_gen(type, o1, Rm, o0, Ra, Rn, Rd) (0b11111<<24 | (type)<<22 | (o1)<<21 | (Rm)<<16 | (o0)<<15 | (Ra)<<10 | (Rn)<<5 | (Rd))
// scalar Rd = Ra + Rn*Rm
#define FMADD_32(Sd, Sa, Sn, Sm)    EMIT(FMADD_gen(0b00, 0, Sm, 0, Sa, Sn, Sd))
// scalar Rd = Ra + Rn*Rm
#define FMADD_64(Dd, Da, Dn, Dm)    EMIT(FMADD_gen(0b01, 0, Dm, 0, Da, Dn, Dd))
// scalar Rd = -Ra - Rn*Rm
#define FNMADD_32(Sd, Sa, Sn, Sm)   EMIT(FMADD_gen(0b00, 1, Sm, 0, Sa, Sn, Sd))
// scalar Rd = -Ra - Rn*Rm
#define FNMADD_64(Dd, Da, Dn, Dm)   EMIT(FMADD_gen(0b01, 1, Dm, 0, Da, Dn, Dd))
// scalar Rd = Ra - Rn*Rm
#define FMSUB_32(Sd, Sa, Sn, Sm)    EMIT(FMADD_gen(0b00, 0, Sm, 1, Sa, Sn, Sd))
// scalar Rd = Ra - Rn*Rm
#define FMSUB_64(Dd, Da, Dn, Dm)    EMIT(FMADD_gen(0b01, 0, Dm, 1, Da, Dn, Dd))
// scalar Rd = -Ra + Rn*Rm
#define FNMSUB_32(Sd, Sa, Sn, Sm)   EMIT(FMADD_gen(0b00, 1, Sm, 1, Sa, Sn, Sd))
// scalar Rd = -Ra + Rn*Rm
#define FNMSUB_64(Dd, Da, Dn, Dm)   EMIT(FMADD_gen(0b01, 1, Dm, 1, Da, Dn, Dd))

#define FMLA_vector(Q, op, sz, Rm, Rn, Rd)  ((Q)<<30 | 0b01110<<24 | (op)<<23 | (sz)<<22 | 1<<21 | (Rm)<<16 | 0b11001<<11 | 1<<10 | (Rn)<<5 | (Rd))
// Vd += Vn*Vm
#define VFMLAS(Vd, Vn, Vm)          EMIT(FMLA_vector(0, 0, 0, Vm, Vn, Vd))
// Vd += Vn*Vm
#define VFMLAQS(Vd, Vn, Vm)         EMIT(FMLA_vector(1, 0, 0, Vm, Vn, Vd))
// Vd += Vn*Vm
#define VFMLAQD(Vd, Vn, Vm)         EMIT(FMLA_vector(1, 0, 1, Vm, Vn, Vd))
// Vd -= Vn*Vm
#define VFMLSQS(Vd, Vn, Vm)         EMIT(FMLA_vector(1, 1, 0, Vm, Vn, Vd))
// Vd -= Vn*Vm
#define VFMLSQD(Vd, Vn, Vm)         EMIT(FMLA_vector(1, 1, 1, Vm, Vn, Vd))

// ZIP / UZP
#define ZIP_gen(Q, size, Rm, op, Rn, Rd)    ((Q)<<30 | 0b001110<<24 | (size)<<22 | (Rm)<<16 | (op)<<14 | 0b11<<12 | 0b10<<10 | (Rn)<<5 | (Rd))
#define VZIP1Q_8(Rt, Rn, Rm)        EMIT(ZIP_gen(1, 0b00, Rm, 0, Rn, Rt))
#define VZIP2Q_8(Rt, Rn, Rm)        EMIT(ZIP_gen(1, 0b00, Rm, 1, Rn, Rt))
#define VZIP1_8(Rt, Rn, Rm)         EMIT(ZIP_gen(0, 0b00, Rm, 0, Rn, Rt))
#define VZIP2_8(Rt, Rn, Rm)         EMIT(ZIP_gen(0, 0b00, Rm, 1, Rn, Rt))
#define VZIP1Q_16(Rt, Rn, Rm)       EMIT(ZIP_gen(1, 0b01, Rm, 0, Rn, Rt))
#define VZIP2Q_16(Rt, Rn, Rm)       EMIT(ZIP_gen(1, 0b01, Rm, 1, Rn, Rt))
#define VZIP1_16(Rt, Rn, Rm)        EMIT(ZIP_gen(0, 0b01, Rm, 0, Rn, Rt))
#define VZIP2_16(Rt, Rn, Rm)        EMIT(ZIP_gen(0, 0b01, Rm, 1, Rn, Rt))
#define VZIP1Q_32(Rt, Rn, Rm)       EMIT(ZIP_gen(1, 0b10, Rm, 0, Rn, Rt))
#define VZIP2Q_32(Rt, Rn, Rm)       EMIT(ZIP_gen(1, 0b10, Rm, 1, Rn, Rt))
#define VZIP1_32(Rt, Rn, Rm)        EMIT(ZIP_gen(0, 0b10, Rm, 0, Rn, Rt))
#define VZIP2_32(Rt, Rn, Rm)        EMIT(ZIP_gen(0, 0b10, Rm, 1, Rn, Rt))
#define VZIP1Q_64(Rt, Rn, Rm)       EMIT(ZIP_gen(1, 0b11, Rm, 0, Rn, Rt))
#define VZIP2Q_64(Rt, Rn, Rm)       EMIT(ZIP_gen(1, 0b11, Rm, 1, Rn, Rt))

#define UZP_gen(Q, size, Rm, op, Rn, Rd)    ((Q)<<30 | 0b001110<<24 | (size)<<22 | (Rm)<<16 | (op)<<14 | 0b01<<12 | 0b10<<10 | (Rn)<<5 | (Rd))
#define VUZP1Q_8(Rt, Rn, Rm)        EMIT(UZP_gen(1, 0b00, Rm, 0, Rn, Rt))
#define VUZP2Q_8(Rt, Rn, Rm)        EMIT(UZP_gen(1, 0b00, Rm, 1, Rn, Rt))
#define VUZP1_8(Rt, Rn, Rm)         EMIT(UZP_gen(0, 0b00, Rm, 0, Rn, Rt))
#define VUZP2_8(Rt, Rn, Rm)         EMIT(UZP_gen(0, 0b00, Rm, 1, Rn, Rt))
#define VUZP1Q_16(Rt, Rn, Rm)       EMIT(UZP_gen(1, 0b01, Rm, 0, Rn, Rt))
#define VUZP2Q_16(Rt, Rn, Rm)       EMIT(UZP_gen(1, 0b01, Rm, 1, Rn, Rt))
#define VUZP1_16(Rt, Rn, Rm)        EMIT(UZP_gen(0, 0b01, Rm, 0, Rn, Rt))
#define VUZP2_16(Rt, Rn, Rm)        EMIT(UZP_gen(0, 0b01, Rm, 1, Rn, Rt))
#define VUZP1Q_32(Rt, Rn, Rm)       EMIT(UZP_gen(1, 0b10, Rm, 0, Rn, Rt))
#define VUZP2Q_32(Rt, Rn, Rm)       EMIT(UZP_gen(1, 0b10, Rm, 1, Rn, Rt))
#define VUZP1_32(Rt, Rn, Rm)        EMIT(UZP_gen(0, 0b10, Rm, 0, Rn, Rt))
#define VUZP2_32(Rt, Rn, Rm)        EMIT(UZP_gen(0, 0b10, Rm, 1, Rn, Rt))
#define VUZP1Q_64(Rt, Rn, Rm)       EMIT(UZP_gen(1, 0b11, Rm, 0, Rn, Rt))
#define VUZP2Q_64(Rt, Rn, Rm)       EMIT(UZP_gen(1, 0b11, Rm, 1, Rn, Rt))

#define BITBIF_gen(Q, opc2, Rm, Rn, Rd) ((Q)<<30 | 0b101110<<24 | (opc2)<<22 | 1<<21 | (Rm)<<16 | 0b000111<<10 | (Rn)<<5 | (Rd))
// Bitwise insert Vn in Vd if Vm is "0"
#define VBIF(Vd, Vn,Vm)             EMIT(BITBIF_gen(0, 0b11, Vm, Vn, Vd))
// Bitwise insert Vn in Vd if Vm is "0"
#define VBIFQ(Vd, Vn,Vm)            EMIT(BITBIF_gen(1, 0b11, Vm, Vn, Vd))
// Bitwise insert Vn in Vd if Vm is "1"
#define VBIT(Vd, Vn,Vm)             EMIT(BITBIF_gen(0, 0b10, Vm, Vn, Vd))
// Bitwise insert Vn in Vd if Vm is "1"
#define VBITQ(Vd, Vn,Vm)            EMIT(BITBIF_gen(1, 0b10, Vm, Vn, Vd))

#define DUP_element(Q, imm5, Rn, Rd)    ((Q)<<30 | 0b01110000<<21 | (imm5)<<16 | 1<<10 | (Rn)<<5 | (Rd))
#define VDUP_8(Vd, Vn, idx)         EMIT(DUP_element(0, ((idx)<<1|1), Vn, Vd))
#define VDUPQ_8(Vd, Vn, idx)        EMIT(DUP_element(1, ((idx)<<1|1), Vn, Vd))
#define VDUP_16(Vd, Vn, idx)        EMIT(DUP_element(0, ((idx)<<2|0b10), Vn, Vd))
#define VDUPQ_16(Vd, Vn, idx)       EMIT(DUP_element(1, ((idx)<<2|0b10), Vn, Vd))
#define VDUP_32(Vd, Vn, idx)        EMIT(DUP_element(0, ((idx)<<3|0b100), Vn, Vd))
#define VDUPQ_32(Vd, Vn, idx)       EMIT(DUP_element(1, ((idx)<<3|0b100), Vn, Vd))
#define VDUPQ_64(Vd, Vn, idx)       EMIT(DUP_element(1, ((idx)<<4|0b1000), Vn, Vd))

#define DUP_general(Q, imm5, Rn, Rd)    ((Q)<<30 | 0b01110000<<21 | (imm5)<<16 | 0b11<<10 | (Rn)<<5 | (Rd))
#define VDUPB(Vd, Wn)         EMIT(DUP_general(0, 0b1, Wn, Vd))
#define VDUPQB(Vd, Wn)        EMIT(DUP_general(1, 0b1, Wn, Vd))
#define VDUPH(Vd, Wn)        EMIT(DUP_general(0, 0b10, Wn, Vd))
#define VDUPQH(Vd, Wn)       EMIT(DUP_general(1, 0b10, Wn, Vd))
#define VDUPS(Vd, Wn)        EMIT(DUP_general(0, 0b100, Wn, Vd))
#define VDUPQS(Vd, Wn)       EMIT(DUP_general(1, 0b100, Wn, Vd))
#define VDUPQD(Vd, Xn)       EMIT(DUP_general(1, 0b1000, Xn, Vd))

// TBL
#define TBL_gen(Q, Rm, len, op, Rn, Rd) ((Q)<<30 | 0b001110<<24 | (Rm)<<16 | (len)<<13 | (op)<<12 | (Rn)<<5 | (Rd))
//Use Rm[] to pick from Rn element and store in Rd. Out-of-range element gets 0
#define VTBLQ1_8(Rd, Rn, Rm)        EMIT(TBL_gen(1, Rm, 0b00, 0, Rn, Rd))
#define VTBL1_8(Rd, Rn, Rm)         EMIT(TBL_gen(0, Rm, 0b00, 0, Rn, Rd))
//Use Rm[] to pick from Rn, Rn+1 element and store in Rd. Out-of-range element gets 0
#define VTBLQ2_8(Rd, Rn, Rm)        EMIT(TBL_gen(1, Rm, 0b01, 0, Rn, Rd))
//Use Rm[] to pick from Rn, Rn+1, Rn+2 element and store in Rd. Out-of-range element gets 0
#define VTBLQ3_8(Rd, Rn, Rm)        EMIT(TBL_gen(1, Rm, 0b10, 0, Rn, Rd))
//Use Rm[] to pick from Rn, Rn+1, Rn+2, Rn+3 element and store in Rd. Out-of-range element gets 0
#define VTBLQ4_8(Rd, Rn, Rm)        EMIT(TBL_gen(1, Rm, 0b11, 0, Rn, Rd))
//Use Rm[] to pick from Rn element and store in Rd. Out-of-range element stay untouched
#define VTBXQ1_8(Rd, Rn, Rm)        EMIT(TBL_gen(1, Rm, 0b00, 1, Rn, Rd))
//Use Rm[] to pick from Rn, Rn+1 element and store in Rd. Out-of-range element stay untouched
#define VTBXQ2_8(Rd, Rn, Rm)        EMIT(TBL_gen(1, Rm, 0b01, 1, Rn, Rd))
//Use Rm[] to pick from Rn, Rn+1, Rn+2 element and store in Rd. Out-of-range element stay untouched
#define VTBXQ3_8(Rd, Rn, Rm)        EMIT(TBL_gen(1, Rm, 0b10, 1, Rn, Rd))
//Use Rm[] to pick from Rn, Rn+1, Rn+2, Rn+3 element and store in Rd. Out-of-range element stay untouched
#define VTBXQ4_8(Rd, Rn, Rm)        EMIT(TBL_gen(1, Rm, 0b11, 1, Rn, Rd))

// TRN
#define TRN_gen(Q, size, Rm, op, Rn, Rd)    ((Q)<<30 | 0b001110<<24 | (size)<<22 | (Rm)<<16 | (op)<<14 | 0b10<<12 | 0b10<<10 | (Rn)<<5 | (Rd))
#define VTRNQ1_64(Vd, Vn, Vm)       EMIT(TRN_gen(1, 0b11, Vm, 0, Vn, Vd))
#define VTRNQ1_32(Vd, Vn, Vm)       EMIT(TRN_gen(1, 0b10, Vm, 0, Vn, Vd))
#define VTRNQ1_16(Vd, Vn, Vm)       EMIT(TRN_gen(1, 0b01, Vm, 0, Vn, Vd))
#define VTRNQ1_8(Vd, Vn, Vm)        EMIT(TRN_gen(1, 0b00, Vm, 0, Vn, Vd))
#define VTRNQ2_64(Vd, Vn, Vm)       EMIT(TRN_gen(1, 0b11, Vm, 1, Vn, Vd))
#define VTRNQ2_32(Vd, Vn, Vm)       EMIT(TRN_gen(1, 0b10, Vm, 1, Vn, Vd))
#define VTRNQ2_16(Vd, Vn, Vm)       EMIT(TRN_gen(1, 0b01, Vm, 1, Vn, Vd))
#define VTRNQ2_8(Vd, Vn, Vm)        EMIT(TRN_gen(1, 0b00, Vm, 1, Vn, Vd))

// QXTN / QXTN2
#define QXTN_scalar(U, size, Rn, Rd)        (0b01<<30 | (U)<<29 | 0b11110<<24 | (size)<<22 | 0b10000<<17 | 0b10100<<12 | 0b10<<10 | (Rn)<<5 | (Rd))
// Signed saturating extract Narrow, from D to S
#define SQXTN_S_D(Sd, Dn)           EMIT(QXTN_scalar(0, 0b10, Dn, Sd))
// Signed saturating extract Narrow, from S to H
#define SQXTN_H_S(Hd, Sn)           EMIT(QXTN_scalar(0, 0b01, Sn, Hd))
// Signed saturating extract Narrow, from H to B
#define SQXTN_B_H(Bd, Hn)           EMIT(QXTN_scalar(0, 0b00, Hn, Bd))

#define QXTN_vector(Q, U, size, Rn, Rd)     ((Q)<<30 | (U)<<29 | 0b01110<<24 | (size)<<22 | 0b10000<<17 | 0b10100<<12 | 0b10<<10 | (Rn)<<5 | (Rd))
// Signed saturating extract Narrow, takes Rn element and reduce 64->32 with Signed saturation and fit lower part of Rd
#define SQXTN_32(Rd, Rn)            EMIT(QXTN_vector(0, 0, 0b10, Rn, Rd))
// Signed saturating extract Narrow, takes Rn element and reduce 64->32 with Signed saturation and fit higher part of Rd
#define SQXTN2_32(Rd, Rn)           EMIT(QXTN_vector(1, 0, 0b10, Rn, Rd))
// Signed saturating extract Narrow, takes Rn element and reduce 32->16 with Signed saturation and fit lower part of Rd
#define SQXTN_16(Rd, Rn)            EMIT(QXTN_vector(0, 0, 0b01, Rn, Rd))
// Signed saturating extract Narrow, takes Rn element and reduce 32->16 with Signed saturation and fit higher part of Rd
#define SQXTN2_16(Rd, Rn)           EMIT(QXTN_vector(1, 0, 0b01, Rn, Rd))
// Signed saturating extract Narrow, takes Rn element and reduce 16->8 with Signed saturation and fit lower part of Rd
#define SQXTN_8(Rd, Rn)             EMIT(QXTN_vector(0, 0, 0b00, Rn, Rd))
// Signed saturating extract Narrow, takes Rn element and reduce 16->8 with Signed saturation and fit higher part of Rd
#define SQXTN2_8(Rd, Rn)            EMIT(QXTN_vector(1, 0, 0b00, Rn, Rd))
// Unsigned saturating Extract Narrow, takes Rn element and reduce 64->32 with Unsigned saturation and fit lower part of Rd
#define UQXTN_32(Rd, Rn)            EMIT(QXTN_vector(0, 1, 0b10, Rn, Rd))
// Unsigned saturating Extract Narrow, takes Rn element and reduce 64->32 with Unsigned saturation and fit higher part of Rd
#define UQXTN2_32(Rd, Rn)           EMIT(QXTN_vector(1, 1, 0b10, Rn, Rd))
// Unsigned saturating extract Narrow, takes Rn element and reduce 32->16 with Unsigned saturation and fit lower part of Rd
#define UQXTN_16(Rd, Rn)            EMIT(QXTN_vector(0, 1, 0b01, Rn, Rd))
// Unsigned saturating extract Narrow, takes Rn element and reduce 32->16 with Unsigned saturation and fit higher part of Rd
#define UQXTN2_16(Rd, Rn)           EMIT(QXTN_vector(1, 1, 0b01, Rn, Rd))
// Unsigned saturating extract Narrow, takes Rn element and reduce 16->8 with Unsigned saturation and fit lower part of Rd
#define UQXTN_8(Rd, Rn)             EMIT(QXTN_vector(0, 1, 0b00, Rn, Rd))
// Unsigned saturating extract Narrow, takes Rn element and reduce 16->8 with Unsigned saturation and fit higher part of Rd
#define UQXTN2_8(Rd, Rn)            EMIT(QXTN_vector(1, 1, 0b00, Rn, Rd))

#define QXTUN_vector(Q, U, size, Rn, Rd)    ((Q)<<30 | (U)<<29 | 0b01110<<24 | (size)<<22 | 0b10000<<17 | 0b10010<<12 | 0b10<<10 | (Rn)<<5 | (Rd))
// Signed saturating extract Unsigned Narrow, takes Rn element and reduce 64->32 with Unsigned saturation and fit lower part of Rd
#define SQXTUN_32(Rd, Rn)           EMIT(QXTUN_vector(0, 1, 0b10, Rn, Rd))
// Signed saturating extract Unsigned Narrow, takes Rn element and reduce 64->32 with Unsigned saturation and fit higher part of Rd
#define SQXTUN2_32(Rd, Rn)          EMIT(QXTUN_vector(1, 1, 0b10, Rn, Rd))
// Signed saturating extract Unsigned Narrow, takes Rn element and reduce 32->16 with Unsigned saturation and fit lower part of Rd
#define SQXTUN_16(Rd, Rn)           EMIT(QXTUN_vector(0, 1, 0b01, Rn, Rd))
// Signed saturating extract Unsigned Narrow, takes Rn element and reduce 32->16 with Unsigned saturation and fit higher part of Rd
#define SQXTUN2_16(Rd, Rn)          EMIT(QXTUN_vector(1, 1, 0b01, Rn, Rd))
// Signed saturating extract Unsigned Narrow, takes Rn element and reduce 16->8 with Unsigned saturation and fit lower part of Rd
#define SQXTUN_8(Rd, Rn)            EMIT(QXTUN_vector(0, 1, 0b00, Rn, Rd))
// Signed saturating extract Unsigned Narrow, takes Rn element and reduce 16->8 with Unsigned saturation and fit higher part of Rd
#define SQXTUN2_8(Rd, Rn)           EMIT(QXTUN_vector(1, 1, 0b00, Rn, Rd))

#define XTN_vector(Q, size, Rn, Rd) ((Q)<<30 | 0b01110<<24 | (size)<<22 | 0b10000<<17 | 0b10010<<12 | 0b10<<10 | (Rn)<<5 | (Rd))
// Xtract narrow to X bits
#define XTN_8(Vd, Vn)               EMIT(XTN_vector(0, 0b00, Vn, Vd))
#define XTN_16(Vd, Vn)              EMIT(XTN_vector(0, 0b01, Vn, Vd))
#define XTN_32(Vd, Vn)              EMIT(XTN_vector(0, 0b10, Vn, Vd))
#define XTN2_8(Vd, Vn)              EMIT(XTN_vector(1, 0b00, Vn, Vd))
#define XTN2_16(Vd, Vn)             EMIT(XTN_vector(1, 0b01, Vn, Vd))
#define XTN2_32(Vd, Vn)             EMIT(XTN_vector(1, 0b10, Vn, Vd))

// Integer CMP
// EQual
#define CMEQ_vector(Q, U, size, Rm, Rn, Rd)     ((Q)<<30 | (U)<<29 | 0b01110<<24 | (size)<<22 | 1<<21 | (Rm)<<16 | 0b10001<<11 | 1<<10 | (Rn)<<5 | (Rd))
#define VCMEQ_8(Rd, Rn, Rm)         EMIT(CMEQ_vector(0, 1, 0b00, Rm, Rn, Rd))
#define VCMEQ_16(Rd, Rn, Rm)        EMIT(CMEQ_vector(0, 1, 0b01, Rm, Rn, Rd))
#define VCMEQ_32(Rd, Rn, Rm)        EMIT(CMEQ_vector(0, 1, 0b10, Rm, Rn, Rd))
#define VCMEQQ_8(Rd, Rn, Rm)        EMIT(CMEQ_vector(1, 1, 0b00, Rm, Rn, Rd))
#define VCMEQQ_16(Rd, Rn, Rm)       EMIT(CMEQ_vector(1, 1, 0b01, Rm, Rn, Rd))
#define VCMEQQ_32(Rd, Rn, Rm)       EMIT(CMEQ_vector(1, 1, 0b10, Rm, Rn, Rd))
#define VCMEQQ_64(Rd, Rn, Rm)       EMIT(CMEQ_vector(1, 1, 0b11, Rm, Rn, Rd))
// Greater test
#define CMG_vector(Q, U, size, eq, Rm, Rn, Rd)     ((Q)<<30 | (U)<<29 | 0b01110<<24 | (size)<<22 | 1<<21 | (Rm)<<16 | 0b0011<<12 | (eq)<<11 | 1<<10 | (Rn)<<5 | (Rd))
// Signed Greater or Equal
#define VCMGEQ_8(Rd, Rn, Rm)        EMIT(CMG_vector(1, 0, 0b00, 1, Rm, Rn, Rd))
#define VCMGEQ_16(Rd, Rn, Rm)       EMIT(CMG_vector(1, 0, 0b01, 1, Rm, Rn, Rd))
#define VCMGEQ_32(Rd, Rn, Rm)       EMIT(CMG_vector(1, 0, 0b10, 1, Rm, Rn, Rd))
#define VCMGEQ_64(Rd, Rn, Rm)       EMIT(CMG_vector(1, 0, 0b11, 1, Rm, Rn, Rd))
// Unsigned Higher or Same
#define VCMHSQ_8(Rd, Rn, Rm)        EMIT(CMG_vector(1, 1, 0b00, 1, Rm, Rn, Rd))
#define VCMHSQ_16(Rd, Rn, Rm)       EMIT(CMG_vector(1, 1, 0b01, 1, Rm, Rn, Rd))
#define VCMHSQ_32(Rd, Rn, Rm)       EMIT(CMG_vector(1, 1, 0b10, 1, Rm, Rn, Rd))
#define VCMHSQ_64(Rd, Rn, Rm)       EMIT(CMG_vector(1, 1, 0b11, 1, Rm, Rn, Rd))
// Signed Greater Than
#define VCMGTQ_8(Rd, Rn, Rm)        EMIT(CMG_vector(1, 0, 0b00, 0, Rm, Rn, Rd))
#define VCMGTQ_16(Rd, Rn, Rm)       EMIT(CMG_vector(1, 0, 0b01, 0, Rm, Rn, Rd))
#define VCMGTQ_32(Rd, Rn, Rm)       EMIT(CMG_vector(1, 0, 0b10, 0, Rm, Rn, Rd))
#define VCMGTQ_64(Rd, Rn, Rm)       EMIT(CMG_vector(1, 0, 0b11, 0, Rm, Rn, Rd))
#define VCMGT_8(Rd, Rn, Rm)         EMIT(CMG_vector(0, 0, 0b00, 0, Rm, Rn, Rd))
#define VCMGT_16(Rd, Rn, Rm)        EMIT(CMG_vector(0, 0, 0b01, 0, Rm, Rn, Rd))
#define VCMGT_32(Rd, Rn, Rm)        EMIT(CMG_vector(0, 0, 0b10, 0, Rm, Rn, Rd))
// Unsigned Higher
#define VCHIQQ_8(Rd, Rn, Rm)        EMIT(CMG_vector(1, 1, 0b00, 0, Rm, Rn, Rd))
#define VCHIQQ_16(Rd, Rn, Rm)       EMIT(CMG_vector(1, 1, 0b01, 0, Rm, Rn, Rd))
#define VCHIQQ_32(Rd, Rn, Rm)       EMIT(CMG_vector(1, 1, 0b10, 0, Rm, Rn, Rd))
#define VCHIQQ_64(Rd, Rn, Rm)       EMIT(CMG_vector(1, 1, 0b11, 0, Rm, Rn, Rd))

// Less Than 0
#define CMLT_0_vector(Q, size, Rn, Rd)      ((Q)<<30 | 0b01110<<24 | (size)<<22 | 0b10000<<17 | 0b01010<<12 | 0b10<<10 | (Rn)<<5 | (Rd))
#define CMLT_0_8(Rd, Rn)            EMIT(CMLT_0_vector(0, 0b00, Rn, Rd))
#define CMLT_0_16(Rd, Rn)           EMIT(CMLT_0_vector(0, 0b01, Rn, Rd))
#define CMLT_0_32(Rd, Rn)           EMIT(CMLT_0_vector(0, 0b10, Rn, Rd))
#define CMLTQ_0_8(Rd, Rn)           EMIT(CMLT_0_vector(1, 0b00, Rn, Rd))
#define CMLTQ_0_16(Rd, Rn)          EMIT(CMLT_0_vector(1, 0b01, Rn, Rd))
#define CMLTQ_0_32(Rd, Rn)          EMIT(CMLT_0_vector(1, 0b10, Rn, Rd))
#define CMLTQ_0_64(Rd, Rn)          EMIT(CMLT_0_vector(1, 0b11, Rn, Rd))
// Equal 0
#define CMEQ_0_vector(Q, size, Rn, Rd)          ((Q)<<30 | 0b01110<<24 | (size)<<22 | 0b10000<<17 | 0b0100<<13 | 1<<12 | 0b10<<10 | (Rn)<<5 | (Rd))
#define CMEQ_0_8(Rd, Rn)            EMIT(CMEQ_0_vector(0, 0b00, Rn, Rd))
#define CMEQ_0_16(Rd, Rn)           EMIT(CMEQ_0_vector(0, 0b01, Rn, Rd))
#define CMEQ_0_32(Rd, Rn)           EMIT(CMEQ_0_vector(0, 0b10, Rn, Rd))
#define CMEQQ_0_8(Rd, Rn)           EMIT(CMEQ_0_vector(1, 0b00, Rn, Rd))
#define CMEQQ_0_16(Rd, Rn)          EMIT(CMEQ_0_vector(1, 0b01, Rn, Rd))
#define CMEQQ_0_32(Rd, Rn)          EMIT(CMEQ_0_vector(1, 0b10, Rn, Rd))
#define CMEQQ_0_64(Rd, Rn)          EMIT(CMEQ_0_vector(1, 0b11, Rn, Rd))
// Greater Than 0
#define CMCond_0_vector(Q, U, size, op, Rn, Rd) ((Q)<<30 | (U)<<29 | 0b01110<<24 | (size)<<22 | 0b10000<<17 | 0b0100<<13 | (op)<<12 | 0b10<<10 | (Rn)<<5 | (Rd))
#define CMGT_0_8(Rd, Rn)            EMIT(CMCond_0_vector(0, 0, 0b00, 0, Rn, Rd))
#define CMGT_0_16(Rd, Rn)           EMIT(CMCond_0_vector(0, 0, 0b01, 0, Rn, Rd))
#define CMGT_0_32(Rd, Rn)           EMIT(CMCond_0_vector(0, 0, 0b10, 0, Rn, Rd))
#define CMGTQ_0_8(Rd, Rn)           EMIT(CMCond_0_vector(1, 0, 0b00, 0, Rn, Rd))
#define CMGTQ_0_16(Rd, Rn)          EMIT(CMCond_0_vector(1, 0, 0b01, 0, Rn, Rd))
#define CMGTQ_0_32(Rd, Rn)          EMIT(CMCond_0_vector(1, 0, 0b10, 0, Rn, Rd))
#define CMGTQ_0_64(Rd, Rn)          EMIT(CMCond_0_vector(1, 0, 0b11, 0, Rn, Rd))

// Vector Float CMP
// EQual
#define FCMP_vector(Q, U, E, sz, Rm, ac, Rn, Rd)    ((Q)<<30 | (U)<<29 | 0b01110<<24 | (E)<<23 | (sz)<<22 | 1<<21 | (Rm)<<16 | 0b1110<<12 | (ac)<<11 | 1<<10 | (Rn)<<5 | (Rd))
#define VFCMEQQD(Rd, Rn, Rm)         EMIT(FCMP_vector(1, 0, 0, 1, Rm, 0, Rn, Rd))
#define VFCMEQQS(Rd, Rn, Rm)         EMIT(FCMP_vector(1, 0, 0, 0, Rm, 0, Rn, Rd))
// Greater or Equal
#define VFCMGEQD(Rd, Rn, Rm)         EMIT(FCMP_vector(1, 1, 0, 1, Rm, 0, Rn, Rd))
#define VFCMGEQS(Rd, Rn, Rm)         EMIT(FCMP_vector(1, 1, 0, 0, Rm, 0, Rn, Rd))
#define VFCMGEQD_ABS(Rd, Rn, Rm)     EMIT(FCMP_vector(1, 1, 0, 1, Rm, 1, Rn, Rd))
#define VFCMGEQS_ABS(Rd, Rn, Rm)     EMIT(FCMP_vector(1, 1, 0, 0, Rm, 1, Rn, Rd))
// Greater Than
#define VFCMGTQD(Rd, Rn, Rm)         EMIT(FCMP_vector(1, 1, 1, 1, Rm, 0, Rn, Rd))
#define VFCMGTQS(Rd, Rn, Rm)         EMIT(FCMP_vector(1, 1, 1, 0, Rm, 0, Rn, Rd))
#define VFCMGTQD_ABS(Rd, Rn, Rm)     EMIT(FCMP_vector(1, 1, 1, 1, Rm, 1, Rn, Rd))
#define VFCMGTQS_ABS(Rd, Rn, Rm)     EMIT(FCMP_vector(1, 1, 1, 0, Rm, 1, Rn, Rd))

// Scalar Float CMP to 0
#define FCMP_0_scalar(U, sz, op, Rn, Rd) (0b01<<30 | (U)<<29| 0b11110<<24 | 1<<23 | (sz)<<22 | 0b10000<<17 | 0b011<<14 | (op)<<12 | 0b10<<10 | (Rn)<<5 | (Rd))
// Less or equal to 0
#define FCMLES_0(Rd, Rn)             EMIT(FCMP_0_scalar(1, 0, 0b01, (Rn), (Rd)))
#define FCMLED_0(Rd, Rn)             EMIT(FCMP_0_scalar(1, 1, 0b01, (Rn), (Rd)))
// Greater than 0
#define FCMGTS_0(Rd, Rn)             EMIT(FCMP_0_scalar(0, 0, 0b00, (Rn), (Rd)))
#define FCMGTD_0(Rd, Rn)             EMIT(FCMP_0_scalar(0, 1, 0b00, (Rn), (Rd)))
// Less than 0
#define FCMLTS_0(Rd, Rn)             EMIT(FCMP_0_scalar(0, 0, 0b10, (Rn), (Rd)))
#define FCMLTD_0(Rd, Rn)             EMIT(FCMP_0_scalar(0, 1, 0b10, (Rn), (Rd)))

// Scalar Float CMEQ
#define FCMP_op_scalar(U, E, sz, Rm, ac, Rn, Rd)    (0b01<<30 | (U)<<29 | 0b11110<<24 | (E)<<23 | (sz)<<22 | 1<<21 | (Rm)<<16 | 0b1110<<12 | (ac)<<11 | 1<<10 | (Rn)<<5 | (Rd))
#define FCMEQS(Rd, Rn, Rm)          EMIT(FCMP_op_scalar(0, 0, 0, (Rm), 0, (Rn), (Rd)))
#define FCMEQD(Rd, Rn, Rm)          EMIT(FCMP_op_scalar(0, 0, 1, (Rm), 0, (Rn), (Rd)))

// UMULL / SMULL
#define MULL_vector(Q, U, size, Rm, Rn, Rd) ((Q)<<30 | (U)<<29 | 0b01110<<24 | (size)<<22 | 1<<21 | (Rm)<<16 | 0b1100<<12 |(Rn)<<5 |(Rd))
#define VUMULL_8(Rd, Rn, Rm)        EMIT(MULL_vector(0, 1, 0b00, Rm, Rn, Rd))
#define VUMULL_16(Rd, Rn, Rm)       EMIT(MULL_vector(0, 1, 0b01, Rm, Rn, Rd))
#define VUMULL_32(Rd, Rn, Rm)       EMIT(MULL_vector(0, 1, 0b10, Rm, Rn, Rd))
#define VUMULL2_8(Rd, Rn, Rm)       EMIT(MULL_vector(1, 1, 0b00, Rm, Rn, Rd))
#define VUMULL2_16(Rd, Rn, Rm)      EMIT(MULL_vector(1, 1, 0b01, Rm, Rn, Rd))
#define VUMULL2_32(Rd, Rn, Rm)      EMIT(MULL_vector(1, 1, 0b10, Rm, Rn, Rd))
#define VSMULL_8(Rd, Rn, Rm)        EMIT(MULL_vector(0, 0, 0b00, Rm, Rn, Rd))
#define VSMULL_16(Rd, Rn, Rm)       EMIT(MULL_vector(0, 0, 0b01, Rm, Rn, Rd))
#define VSMULL_32(Rd, Rn, Rm)       EMIT(MULL_vector(0, 0, 0b10, Rm, Rn, Rd))
#define VSMULL2_8(Rd, Rn, Rm)       EMIT(MULL_vector(1, 0, 0b00, Rm, Rn, Rd))
#define VSMULL2_16(Rd, Rn, Rm)      EMIT(MULL_vector(1, 0, 0b01, Rm, Rn, Rd))
#define VSMULL2_32(Rd, Rn, Rm)      EMIT(MULL_vector(1, 0, 0b10, Rm, Rn, Rd))

// MUL
#define MUL_vector(Q, size, Rm, Rn, Rd)     ((Q)<<30 | 0b01110<<24 | (size)<<22 | 1<<21 | (Rm)<<16 | 0b10011<<11 | 1<<10 | (Rn)<<5 | (Rd))
#define VMUL_8(Vd, Vn, Vm)          EMIT(MUL_vector(0, 0b00, Vm, Vn, Vd))
#define VMUL_16(Vd, Vn, Vm)         EMIT(MUL_vector(0, 0b01, Vm, Vn, Vd))
#define VMUL_32(Vd, Vn, Vm)         EMIT(MUL_vector(0, 0b10, Vm, Vn, Vd))
#define VMULQ_8(Vd, Vn, Vm)         EMIT(MUL_vector(1, 0b00, Vm, Vn, Vd))
#define VMULQ_16(Vd, Vn, Vm)        EMIT(MUL_vector(1, 0b01, Vm, Vn, Vd))
#define VMULQ_32(Vd, Vn, Vm)        EMIT(MUL_vector(1, 0b10, Vm, Vn, Vd))

// (S/Q)ADD
#define QADD_vector(Q, U, size, Rm, Rn, Rd) ((Q)<<30 | (U)<<29 | 0b01110<<24 | (size)<<22 | 1<<21 | (Rm)<<16 | 0b00001<<11 | 1<<10 | (Rn)<<5 | (Rd))
#define SQADDQ_8(Vd, Vn, Vm)        EMIT(QADD_vector(1, 0, 0b00, Vm, Vn, Vd))
#define SQADDQ_16(Vd, Vn, Vm)       EMIT(QADD_vector(1, 0, 0b01, Vm, Vn, Vd))
#define SQADDQ_32(Vd, Vn, Vm)       EMIT(QADD_vector(1, 0, 0b10, Vm, Vn, Vd))
#define SQADDQ_64(Vd, Vn, Vm)       EMIT(QADD_vector(1, 0, 0b11, Vm, Vn, Vd))
#define UQADDQ_8(Vd, Vn, Vm)        EMIT(QADD_vector(1, 1, 0b00, Vm, Vn, Vd))
#define UQADDQ_16(Vd, Vn, Vm)       EMIT(QADD_vector(1, 1, 0b01, Vm, Vn, Vd))
#define UQADDQ_32(Vd, Vn, Vm)       EMIT(QADD_vector(1, 1, 0b10, Vm, Vn, Vd))
#define UQADDQ_64(Vd, Vn, Vm)       EMIT(QADD_vector(1, 1, 0b11, Vm, Vn, Vd))
#define SQADD_8(Vd, Vn, Vm)         EMIT(QADD_vector(0, 0, 0b00, Vm, Vn, Vd))
#define SQADD_16(Vd, Vn, Vm)        EMIT(QADD_vector(0, 0, 0b01, Vm, Vn, Vd))
#define SQADD_32(Vd, Vn, Vm)        EMIT(QADD_vector(0, 0, 0b10, Vm, Vn, Vd))
#define SQADD_64(Vd, Vn, Vm)        EMIT(QADD_vector(0, 0, 0b11, Vm, Vn, Vd))
#define UQADD_8(Vd, Vn, Vm)         EMIT(QADD_vector(0, 1, 0b00, Vm, Vn, Vd))
#define UQADD_16(Vd, Vn, Vm)        EMIT(QADD_vector(0, 1, 0b01, Vm, Vn, Vd))
#define UQADD_32(Vd, Vn, Vm)        EMIT(QADD_vector(0, 1, 0b10, Vm, Vn, Vd))
#define UQADD_64(Vd, Vn, Vm)        EMIT(QADD_vector(0, 1, 0b11, Vm, Vn, Vd))

// Absolute Difference
#define AD_vector(Q, U, size, Rm, ac, Rn, Rd)   ((Q)<<30 | (U)<<29 | 0b01110<<24 | (size)<<22 | 1<<21 | (Rm)<<16 | 0b0111<<12 | (ac)<<11 | 1<<10 | (Rn)<<5 | (Rd))
// Signed Absolute Difference and accumulate
#define SABAQ_8(Rd, Rn, Rm)         EMIT(AD_vector(1, 0, 0b00, Rm, 1, Rn, Rd))
#define SABAQ_16(Rd, Rn, Rm)        EMIT(AD_vector(1, 0, 0b01, Rm, 1, Rn, Rd))
#define SABAQ_32(Rd, Rn, Rm)        EMIT(AD_vector(1, 0, 0b10, Rm, 1, Rn, Rd))
#define SABA_8(Rd, Rn, Rm)          EMIT(AD_vector(0, 0, 0b00, Rm, 1, Rn, Rd))
#define SABA_16(Rd, Rn, Rm)         EMIT(AD_vector(0, 0, 0b01, Rm, 1, Rn, Rd))
#define SABA_32(Rd, Rn, Rm)         EMIT(AD_vector(0, 0, 0b10, Rm, 1, Rn, Rd))
// Signed Absolute Difference
#define SABDQ_8(Rd, Rn, Rm)         EMIT(AD_vector(1, 0, 0b00, Rm, 0, Rn, Rd))
#define SABDQ_16(Rd, Rn, Rm)        EMIT(AD_vector(1, 0, 0b01, Rm, 0, Rn, Rd))
#define SABDQ_32(Rd, Rn, Rm)        EMIT(AD_vector(1, 0, 0b10, Rm, 0, Rn, Rd))
#define SABD_8(Rd, Rn, Rm)          EMIT(AD_vector(0, 0, 0b00, Rm, 0, Rn, Rd))
#define SABD_16(Rd, Rn, Rm)         EMIT(AD_vector(0, 0, 0b01, Rm, 0, Rn, Rd))
#define SABD_32(Rd, Rn, Rm)         EMIT(AD_vector(0, 0, 0b10, Rm, 0, Rn, Rd))

#define ADL_vector(Q, U, size, Rm, op, Rn, Rd)  ((Q)<<30 | (U)<<29 | 0b01110<<24 | (size)<<22 | 1<<21 | (Rm)<<16 | 0b01<<14 | (op)<<13 | 1<<12 | (Rn)<<5 | (Rd))
#define SABAL_8(Rd, Rn, Rm)         EMIT(ADL_vector(0, 0, 0b00, Rm, 0, Rn, Rd))
#define SABAL2_8(Rd, Rn, Rm)        EMIT(ADL_vector(1, 0, 0b00, Rm, 0, Rn, Rd))
#define SABAL_16(Rd, Rn, Rm)        EMIT(ADL_vector(0, 0, 0b01, Rm, 0, Rn, Rd))
#define SABAL2_16(Rd, Rn, Rm)       EMIT(ADL_vector(1, 0, 0b01, Rm, 0, Rn, Rd))
#define SABAL_32(Rd, Rn, Rm)        EMIT(ADL_vector(0, 0, 0b10, Rm, 0, Rn, Rd))
#define SABAL2_32(Rd, Rn, Rm)       EMIT(ADL_vector(1, 0, 0b10, Rm, 0, Rn, Rd))
#define UABAL_8(Rd, Rn, Rm)         EMIT(ADL_vector(0, 1, 0b00, Rm, 0, Rn, Rd))
#define UABAL2_8(Rd, Rn, Rm)        EMIT(ADL_vector(1, 1, 0b00, Rm, 0, Rn, Rd))
#define UABAL_16(Rd, Rn, Rm)        EMIT(ADL_vector(0, 1, 0b01, Rm, 0, Rn, Rd))
#define UABAL2_16(Rd, Rn, Rm)       EMIT(ADL_vector(1, 1, 0b01, Rm, 0, Rn, Rd))
#define UABAL_32(Rd, Rn, Rm)        EMIT(ADL_vector(0, 1, 0b10, Rm, 0, Rn, Rd))
#define UABAL2_32(Rd, Rn, Rm)       EMIT(ADL_vector(1, 1, 0b10, Rm, 0, Rn, Rd))
#define SABDL_8(Rd, Rn, Rm)         EMIT(ADL_vector(0, 0, 0b00, Rm, 1, Rn, Rd))
#define SABDL2_8(Rd, Rn, Rm)        EMIT(ADL_vector(1, 0, 0b00, Rm, 1, Rn, Rd))
#define SABDL_16(Rd, Rn, Rm)        EMIT(ADL_vector(0, 0, 0b01, Rm, 1, Rn, Rd))
#define SABDL2_16(Rd, Rn, Rm)       EMIT(ADL_vector(1, 0, 0b01, Rm, 1, Rn, Rd))
#define SABDL_32(Rd, Rn, Rm)        EMIT(ADL_vector(0, 0, 0b10, Rm, 1, Rn, Rd))
#define SABDL2_32(Rd, Rn, Rm)       EMIT(ADL_vector(1, 0, 0b10, Rm, 1, Rn, Rd))
#define UABDL_8(Rd, Rn, Rm)         EMIT(ADL_vector(0, 1, 0b00, Rm, 1, Rn, Rd))
#define UABDL2_8(Rd, Rn, Rm)        EMIT(ADL_vector(1, 1, 0b00, Rm, 1, Rn, Rd))
#define UABDL_16(Rd, Rn, Rm)        EMIT(ADL_vector(0, 1, 0b01, Rm, 1, Rn, Rd))
#define UABDL2_16(Rd, Rn, Rm)       EMIT(ADL_vector(1, 1, 0b01, Rm, 1, Rn, Rd))
#define UABDL_32(Rd, Rn, Rm)        EMIT(ADL_vector(0, 1, 0b10, Rm, 1, Rn, Rd))
#define UABDL2_32(Rd, Rn, Rm)       EMIT(ADL_vector(1, 1, 0b10, Rm, 1, Rn, Rd))

// Add Pairwise
#define ADDLP_vector(Q, U, size, op, Rn, Rd)    ((Q)<<30 | (U)<<29 | 0b01110<<24 | (size)<<22 | 1<<21 | (op)<<14 | 0b10<<12 | 0b10<<10 | (Rn)<<5 | (Rd))
#define SADDLPQ_8(Rd, Rn)           EMIT(ADDLP_vector(1, 0, 0b00, 0, Rn, Rd))
#define SADDLPQ_16(Rd, Rn)          EMIT(ADDLP_vector(1, 0, 0b01, 0, Rn, Rd))
#define SADDLPQ_32(Rd, Rn)          EMIT(ADDLP_vector(1, 0, 0b10, 0, Rn, Rd))
#define SADDLP_8(Rd, Rn)            EMIT(ADDLP_vector(0, 0, 0b00, 0, Rn, Rd))
#define SADDLP_16(Rd, Rn)           EMIT(ADDLP_vector(0, 0, 0b01, 0, Rn, Rd))
#define SADDLP_32(Rd, Rn)           EMIT(ADDLP_vector(0, 0, 0b10, 0, Rn, Rd))
#define UADDLPQ_8(Rd, Rn)           EMIT(ADDLP_vector(1, 1, 0b00, 0, Rn, Rd))
#define UADDLPQ_16(Rd, Rn)          EMIT(ADDLP_vector(1, 1, 0b01, 0, Rn, Rd))
#define UADDLPQ_32(Rd, Rn)          EMIT(ADDLP_vector(1, 1, 0b10, 0, Rn, Rd))
#define UADDLP_8(Rd, Rn)            EMIT(ADDLP_vector(0, 1, 0b00, 0, Rn, Rd))
#define UADDLP_16(Rd, Rn)           EMIT(ADDLP_vector(0, 1, 0b01, 0, Rn, Rd))
#define UADDLP_32(Rd, Rn)           EMIT(ADDLP_vector(0, 1, 0b10, 0, Rn, Rd))

// Add accros vector
#define ADDLV_vector(Q, U, size, Rn, Rd)    ((Q)<<30 | (U)<<29 | 0b01110<<24 | (size)<<22 | 0b11000<<17 | 0b00011<<12 | 0b10<<10 | (Rn)<<5 | (Rd))
#define SADDLVQ_8(Rd, Rn)           EMIT(ADDLV_vector(1, 0, 0b00, Rn, Rd))
#define SADDLVQ_16(Rd, Rn)          EMIT(ADDLV_vector(1, 0, 0b01, Rn, Rd))
#define SADDLVQ_32(Rd, Rn)          EMIT(ADDLV_vector(1, 0, 0b10, Rn, Rd))
#define SADDLV_8(Rd, Rn)            EMIT(ADDLV_vector(0, 0, 0b00, Rn, Rd))
#define SADDLV_16(Rd, Rn)           EMIT(ADDLV_vector(0, 0, 0b01, Rn, Rd))
#define SADDLV_32(Rd, Rn)           EMIT(ADDLV_vector(0, 0, 0b10, Rn, Rd))
#define UADDLVQ_8(Rd, Rn)           EMIT(ADDLV_vector(1, 1, 0b00, Rn, Rd))
#define UADDLVQ_16(Rd, Rn)          EMIT(ADDLV_vector(1, 1, 0b01, Rn, Rd))
#define UADDLVQ_32(Rd, Rn)          EMIT(ADDLV_vector(1, 1, 0b10, Rn, Rd))
#define UADDLV_8(Rd, Rn)            EMIT(ADDLV_vector(0, 1, 0b00, Rn, Rd))
#define UADDLV_16(Rd, Rn)           EMIT(ADDLV_vector(0, 1, 0b01, Rn, Rd))
#define UADDLV_32(Rd, Rn)           EMIT(ADDLV_vector(0, 1, 0b10, Rn, Rd))

// Population Count per byte
#define CNT_vector(Q, size, Rn, Rd)     ((Q)<<30 | 0b01110<<24 | (size)<<22 | 0b10000<<17 | 0b00101<<12 | 0b10<<10 | (Rn)<<5 | (Rd))
#define CNT_8(Rd, Rn)               EMIT(CNT_vector(0, 0b00, Rn, Rd))
#define CNTQ_8(Rd, Rn)              EMIT(CNT_vector(1, 0b00, Rn, Rd))

// MOV Immediate
#define MOVI_vector(Q, op, abc, cmode, defgh, Rd)   ((Q)<<30 | (op)<<29 | 0b0111100000<<19 | (abc)<<16 | (cmode)<<12 | 1<<10 | (defgh)<<5 | (Rd))
#define MOVIQ_8(Rd, imm8)           EMIT(MOVI_vector(1, 0, (((imm8)>>5)&0b111), 0b1110, ((imm8)&0b11111), Rd))
#define MOVIQ_16(Rd, imm8, lsl8)    EMIT(MOVI_vector(1, 0, (((imm8)>>5)&0b111), 0b1000|((lsl8)?0b10:0), ((imm8)&0b11111), Rd))
#define MOVIQ_32(Rd, imm8)          EMIT(MOVI_vector(1, 0, (((imm8)>>5)&0b111), 0b0000, ((imm8)&0b11111), Rd))
#define MOVIQ_32_lsl(Rd, imm8, lsl8) EMIT(MOVI_vector(1, 0, (((imm8)>>5)&0b111), (lsl8<<1), ((imm8)&0b11111), Rd))
#define MOVIQ_64(Rd, imm8)          EMIT(MOVI_vector(1, 1, (((imm8)>>5)&0b111), 0b1110, ((imm8)&0b11111), Rd))
#define MOVI_8(Rd, imm8)            EMIT(MOVI_vector(0, 0, (((imm8)>>5)&0b111), 0b1110, ((imm8)&0b11111), Rd))
#define MOVI_16(Rd, imm8, lsl8)     EMIT(MOVI_vector(0, 0, (((imm8)>>5)&0b111), 0b1000|((lsl8)?0b10:0), ((imm8)&0b11111), Rd))
#define MOVI_32_lsl(Rd, imm8, lsl8) EMIT(MOVI_vector(0, 0, (((imm8)>>5)&0b111), (lsl8<<1), ((imm8)&0b11111), Rd))
#define MOVI_32(Rd, imm8)           EMIT(MOVI_vector(0, 0, (((imm8)>>5)&0b111), 0b0000, ((imm8)&0b11111), Rd))
#define MOVI_64(Rd, imm8)           EMIT(MOVI_vector(0, 1, (((imm8)>>5)&0b111), 0b1110, ((imm8)&0b11111), Rd))

// SHLL and eXtend Long
#define SHLL_vector(Q, U, immh, immb, Rn, Rd)  ((Q)<<30 | (U)<<29 | 0b011110<<23 | (immh)<<19 | (immb)<<16 | 0b10100<<11 | 1<<10 | (Rn)<<5 | (Rd))
#define USHLL2_8(Vd, Vn, imm)       EMIT(SHLL_vector(1, 1, 0b0001, (imm)&0x7, Vn, Vd))
#define USHLL_8(Vd, Vn, imm)        EMIT(SHLL_vector(0, 1, 0b0001, (imm)&0x7, Vn, Vd))
#define SSHLL2_8(Vd, Vn, imm)       EMIT(SHLL_vector(1, 0, 0b0001, (imm)&0x7, Vn, Vd))
#define SSHLL_8(Vd, Vn, imm)        EMIT(SHLL_vector(0, 0, 0b0001, (imm)&0x7, Vn, Vd))
#define USHLL2_16(Vd, Vn, imm)      EMIT(SHLL_vector(1, 1, 0b0010|(((imm)>>3)&1), (imm)&0x7, Vn, Vd))
#define USHLL_16(Vd, Vn, imm)       EMIT(SHLL_vector(0, 1, 0b0010|(((imm)>>3)&1), (imm)&0x7, Vn, Vd))
#define SSHLL2_16(Vd, Vn, imm)      EMIT(SHLL_vector(1, 0, 0b0010|(((imm)>>3)&1), (imm)&0x7, Vn, Vd))
#define SSHLL_16(Vd, Vn, imm)       EMIT(SHLL_vector(0, 0, 0b0010|(((imm)>>3)&1), (imm)&0x7, Vn, Vd))
#define USHLL2_32(Vd, Vn, imm)      EMIT(SHLL_vector(1, 1, 0b0100|(((imm)>>3)&3), (imm)&0x7, Vn, Vd))
#define USHLL_32(Vd, Vn, imm)       EMIT(SHLL_vector(0, 1, 0b0100|(((imm)>>3)&3), (imm)&0x7, Vn, Vd))
#define SSHLL2_32(Vd, Vn, imm)      EMIT(SHLL_vector(1, 0, 0b0100|(((imm)>>3)&3), (imm)&0x7, Vn, Vd))
#define SSHLL_32(Vd, Vn, imm)       EMIT(SHLL_vector(0, 0, 0b0100|(((imm)>>3)&3), (imm)&0x7, Vn, Vd))

#define UXTL_8(Vd, Vn)              USHLL_8(Vd, Vn, 0)
#define UXTL2_8(Vd, Vn)             USHLL2_8(Vd, Vn, 0)
#define UXTL_16(Vd, Vn)             USHLL_16(Vd, Vn, 0)
#define UXTL2_16(Vd, Vn)            USHLL2_16(Vd, Vn, 0)
#define UXTL_32(Vd, Vn)             USHLL_32(Vd, Vn, 0)
#define UXTL2_32(Vd, Vn)            USHLL2_32(Vd, Vn, 0)

#define SXTL_8(Vd, Vn)              SSHLL_8(Vd, Vn, 0)
#define SXTL2_8(Vd, Vn)             SSHLL2_8(Vd, Vn, 0)
#define SXTL_16(Vd, Vn)             SSHLL_16(Vd, Vn, 0)
#define SXTL2_16(Vd, Vn)            SSHLL2_16(Vd, Vn, 0)
#define SXTL_32(Vd, Vn)             SSHLL_32(Vd, Vn, 0)
#define SXTL2_32(Vd, Vn)            SSHLL2_32(Vd, Vn, 0)

// SHRN
#define QSHRN_vector(Q, U, immh, immb, op, Rn, Rd)  ((Q)<<30 | (U)<<29 | 0b011110<<23 | (immh)<<19 | (immb)<<16 | 0b1001<<12 | (op)<<11 | 1<<10 | (Rn)<<5 | (Rd))
#define UQSHRN_8(Vd, Vn, imm)       EMIT(QSHRN_vector(0, 1, 0b0001, (8-(imm))&0x7, 0, Vn, Vd))
#define UQSHRN2_8(Vd, Vn, imm)      EMIT(QSHRN_vector(1, 1, 0b0001, (8-(imm))&0x7, 0, Vn, Vd))
#define SQSHRN_8(Vd, Vn, imm)       EMIT(QSHRN_vector(0, 0, 0b0001, (8-(imm))&0x7, 0, Vn, Vd))
#define SQSHRN2_8(Vd, Vn, imm)      EMIT(QSHRN_vector(1, 0, 0b0001, (8-(imm))&0x7, 0, Vn, Vd))
#define UQSHRN_16(Vd, Vn, imm)      EMIT(QSHRN_vector(0, 1, 0b0010|(((16-(imm))>>3)&1), (16-(imm))&0x7, 0, Vn, Vd))
#define UQSHRN2_16(Vd, Vn, imm)     EMIT(QSHRN_vector(1, 1, 0b0010|(((16-(imm))>>3)&1), (16-(imm))&0x7, 0, Vn, Vd))
#define SQSHRN_16(Vd, Vn, imm)      EMIT(QSHRN_vector(0, 0, 0b0010|(((16-(imm))>>3)&1), (16-(imm))&0x7, 0, Vn, Vd))
#define SQSHRN2_16(Vd, Vn, imm)     EMIT(QSHRN_vector(1, 0, 0b0010|(((16-(imm))>>3)&1), (16-(imm))&0x7, 0, Vn, Vd))
#define UQSHRN_32(Vd, Vn, imm)      EMIT(QSHRN_vector(0, 1, 0b0100|(((32-(imm))>>3)&3), (32-(imm))&0x7, 0, Vn, Vd))
#define UQSHRN2_32(Vd, Vn, imm)     EMIT(QSHRN_vector(1, 1, 0b0100|(((32-(imm))>>3)&3), (32-(imm))&0x7, 0, Vn, Vd))
#define SQSHRN_32(Vd, Vn, imm)      EMIT(QSHRN_vector(0, 0, 0b0100|(((32-(imm))>>3)&3), (32-(imm))&0x7, 0, Vn, Vd))
#define SQSHRN2_32(Vd, Vn, imm)     EMIT(QSHRN_vector(1, 0, 0b0100|(((32-(imm))>>3)&3), (32-(imm))&0x7, 0, Vn, Vd))

// UQSUB
#define QSUB_vector(Q, U, size, Rm, Rn, Rd)     ((Q)<<30 | (U)<<29 | 0b01110<<24 | (size)<<22 | 1<<21 | (Rm)<<16 | 0b00101<<11 | 1<<10 | (Rn)<<5 | (Rd))
#define UQSUB_8(Vd, Vn, Vm)         EMIT(QSUB_vector(0, 1, 0b00, Vm, Vn, Vd))
#define UQSUB_16(Vd, Vn, Vm)        EMIT(QSUB_vector(0, 1, 0b01, Vm, Vn, Vd))
#define UQSUB_32(Vd, Vn, Vm)        EMIT(QSUB_vector(0, 1, 0b10, Vm, Vn, Vd))
#define UQSUB_64(Vd, Vn, Vm)        EMIT(QSUB_vector(0, 1, 0b11, Vm, Vn, Vd))
#define SQSUB_8(Vd, Vn, Vm)         EMIT(QSUB_vector(0, 0, 0b00, Vm, Vn, Vd))
#define SQSUB_16(Vd, Vn, Vm)        EMIT(QSUB_vector(0, 0, 0b01, Vm, Vn, Vd))
#define SQSUB_32(Vd, Vn, Vm)        EMIT(QSUB_vector(0, 0, 0b10, Vm, Vn, Vd))
#define SQSUB_64(Vd, Vn, Vm)        EMIT(QSUB_vector(0, 0, 0b11, Vm, Vn, Vd))
#define UQSUBQ_8(Vd, Vn, Vm)        EMIT(QSUB_vector(1, 1, 0b00, Vm, Vn, Vd))
#define UQSUBQ_16(Vd, Vn, Vm)       EMIT(QSUB_vector(1, 1, 0b01, Vm, Vn, Vd))
#define UQSUBQ_32(Vd, Vn, Vm)       EMIT(QSUB_vector(1, 1, 0b10, Vm, Vn, Vd))
#define UQSUBQ_64(Vd, Vn, Vm)       EMIT(QSUB_vector(1, 1, 0b11, Vm, Vn, Vd))
#define SQSUBQ_8(Vd, Vn, Vm)        EMIT(QSUB_vector(1, 0, 0b00, Vm, Vn, Vd))
#define SQSUBQ_16(Vd, Vn, Vm)       EMIT(QSUB_vector(1, 0, 0b01, Vm, Vn, Vd))
#define SQSUBQ_32(Vd, Vn, Vm)       EMIT(QSUB_vector(1, 0, 0b10, Vm, Vn, Vd))
#define SQSUBQ_64(Vd, Vn, Vm)       EMIT(QSUB_vector(1, 0, 0b11, Vm, Vn, Vd))

// MAX/MIN vector
#define MINMAX_vector(Q, U, size, Rm, op, Rn, Rd)   ((Q)<<30 | (U)<<29 | 0b01110<<24 | (size)<<22 | 1<<21 | (Rm)<<16 | 0b0110<<12 | (op)<<11 | 1<<10 | (Rn)<<5 | (Rd))
#define SMAX_8(Vd, Vn, Vm)          EMIT(MINMAX_vector(0, 0, 0b00, Vm, 0, Vn, Vd))
#define SMAX_16(Vd, Vn, Vm)         EMIT(MINMAX_vector(0, 0, 0b01, Vm, 0, Vn, Vd))
#define SMAX_32(Vd, Vn, Vm)         EMIT(MINMAX_vector(0, 0, 0b10, Vm, 0, Vn, Vd))
//#define SMAX_64(Vd, Vn, Vm)         EMIT(MINMAX_vector(0, 0, 0b11, Vm, 0, Vn, Vd))
#define UMAX_8(Vd, Vn, Vm)          EMIT(MINMAX_vector(0, 1, 0b00, Vm, 0, Vn, Vd))
#define UMAX_16(Vd, Vn, Vm)         EMIT(MINMAX_vector(0, 1, 0b01, Vm, 0, Vn, Vd))
#define UMAX_32(Vd, Vn, Vm)         EMIT(MINMAX_vector(0, 1, 0b10, Vm, 0, Vn, Vd))
//#define UMAX_64(Vd, Vn, Vm)         EMIT(MINMAX_vector(0, 1, 0b11, Vm, 0, Vn, Vd))
#define SMIN_8(Vd, Vn, Vm)          EMIT(MINMAX_vector(0, 0, 0b00, Vm, 1, Vn, Vd))
#define SMIN_16(Vd, Vn, Vm)         EMIT(MINMAX_vector(0, 0, 0b01, Vm, 1, Vn, Vd))
#define SMIN_32(Vd, Vn, Vm)         EMIT(MINMAX_vector(0, 0, 0b10, Vm, 1, Vn, Vd))
//#define SMIN_64(Vd, Vn, Vm)         EMIT(MINMAX_vector(0, 0, 0b11, Vm, 1, Vn, Vd))
#define UMIN_8(Vd, Vn, Vm)          EMIT(MINMAX_vector(0, 1, 0b00, Vm, 1, Vn, Vd))
#define UMIN_16(Vd, Vn, Vm)         EMIT(MINMAX_vector(0, 1, 0b01, Vm, 1, Vn, Vd))
#define UMIN_32(Vd, Vn, Vm)         EMIT(MINMAX_vector(0, 1, 0b10, Vm, 1, Vn, Vd))
//#define UMIN_64(Vd, Vn, Vm)         EMIT(MINMAX_vector(0, 1, 0b11, Vm, 1, Vn, Vd))
#define SMAXQ_8(Vd, Vn, Vm)         EMIT(MINMAX_vector(1, 0, 0b00, Vm, 0, Vn, Vd))
#define SMAXQ_16(Vd, Vn, Vm)        EMIT(MINMAX_vector(1, 0, 0b01, Vm, 0, Vn, Vd))
#define SMAXQ_32(Vd, Vn, Vm)        EMIT(MINMAX_vector(1, 0, 0b10, Vm, 0, Vn, Vd))
//#define SMAXQ_64(Vd, Vn, Vm)        EMIT(MINMAX_vector(1, 0, 0b11, Vm, 0, Vn, Vd))
#define UMAXQ_8(Vd, Vn, Vm)         EMIT(MINMAX_vector(1, 1, 0b00, Vm, 0, Vn, Vd))
#define UMAXQ_16(Vd, Vn, Vm)        EMIT(MINMAX_vector(1, 1, 0b01, Vm, 0, Vn, Vd))
#define UMAXQ_32(Vd, Vn, Vm)        EMIT(MINMAX_vector(1, 1, 0b10, Vm, 0, Vn, Vd))
//#define UMAXQ_64(Vd, Vn, Vm)        EMIT(MINMAX_vector(1, 1, 0b11, Vm, 0, Vn, Vd))
#define SMINQ_8(Vd, Vn, Vm)         EMIT(MINMAX_vector(1, 0, 0b00, Vm, 1, Vn, Vd))
#define SMINQ_16(Vd, Vn, Vm)        EMIT(MINMAX_vector(1, 0, 0b01, Vm, 1, Vn, Vd))
#define SMINQ_32(Vd, Vn, Vm)        EMIT(MINMAX_vector(1, 0, 0b10, Vm, 1, Vn, Vd))
//#define SMINQ_64(Vd, Vn, Vm)        EMIT(MINMAX_vector(1, 0, 0b11, Vm, 1, Vn, Vd))
#define UMINQ_8(Vd, Vn, Vm)         EMIT(MINMAX_vector(1, 1, 0b00, Vm, 1, Vn, Vd))
#define UMINQ_16(Vd, Vn, Vm)        EMIT(MINMAX_vector(1, 1, 0b01, Vm, 1, Vn, Vd))
#define UMINQ_32(Vd, Vn, Vm)        EMIT(MINMAX_vector(1, 1, 0b10, Vm, 1, Vn, Vd))
//#define UMINQ_64(Vd, Vn, Vm)        EMIT(MINMAX_vector(1, 1, 0b11, Vm, 1, Vn, Vd))

// MIN or MAX accros vector
#define MAXMINV_vector(Q, U, size, op, Rn, Rd)  ((Q)<<30 | (U)<<29 | 0b01110<<24 | (size)<<22 | 0b11000<<17 | (op)<<16 | 0b1010<<12 | 0b10<<10 | (Rn)<<5 | (Rd))
#define SMAXV_8(Vd, Vn)             EMIT(MAXMINV_vector(0, 0, 0b00, 0, Vn, Vd))
#define SMINV_8(Vd, Vn)             EMIT(MAXMINV_vector(0, 0, 0b00, 1, Vn, Vd))
#define UMAXV_8(Vd, Vn)             EMIT(MAXMINV_vector(0, 1, 0b00, 0, Vn, Vd))
#define UMINV_8(Vd, Vn)             EMIT(MAXMINV_vector(0, 1, 0b00, 1, Vn, Vd))
#define SMAXV_16(Vd, Vn)            EMIT(MAXMINV_vector(0, 0, 0b01, 0, Vn, Vd))
#define SMINV_16(Vd, Vn)            EMIT(MAXMINV_vector(0, 0, 0b01, 1, Vn, Vd))
#define UMAXV_16(Vd, Vn)            EMIT(MAXMINV_vector(0, 1, 0b01, 0, Vn, Vd))
#define UMINV_16(Vd, Vn)            EMIT(MAXMINV_vector(0, 1, 0b01, 1, Vn, Vd))
#define SMAXV_32(Vd, Vn)            EMIT(MAXMINV_vector(0, 0, 0b10, 0, Vn, Vd))
#define SMINV_32(Vd, Vn)            EMIT(MAXMINV_vector(0, 0, 0b10, 1, Vn, Vd))
#define UMAXV_32(Vd, Vn)            EMIT(MAXMINV_vector(0, 1, 0b10, 0, Vn, Vd))
#define UMINV_32(Vd, Vn)            EMIT(MAXMINV_vector(0, 1, 0b10, 1, Vn, Vd))
#define SMAXVQ_8(Vd, Vn)            EMIT(MAXMINV_vector(1, 0, 0b00, 0, Vn, Vd))
#define SMINVQ_8(Vd, Vn)            EMIT(MAXMINV_vector(1, 0, 0b00, 1, Vn, Vd))
#define UMAXVQ_8(Vd, Vn)            EMIT(MAXMINV_vector(1, 1, 0b00, 0, Vn, Vd))
#define UMINVQ_8(Vd, Vn)            EMIT(MAXMINV_vector(1, 1, 0b00, 1, Vn, Vd))
#define SMAXVQ_16(Vd, Vn)           EMIT(MAXMINV_vector(1, 0, 0b01, 0, Vn, Vd))
#define SMINVQ_16(Vd, Vn)           EMIT(MAXMINV_vector(1, 0, 0b01, 1, Vn, Vd))
#define UMAXVQ_16(Vd, Vn)           EMIT(MAXMINV_vector(1, 1, 0b01, 0, Vn, Vd))
#define UMINVQ_16(Vd, Vn)           EMIT(MAXMINV_vector(1, 1, 0b01, 1, Vn, Vd))
#define SMAXVQ_32(Vd, Vn)           EMIT(MAXMINV_vector(1, 0, 0b10, 0, Vn, Vd))
#define SMINVQ_32(Vd, Vn)           EMIT(MAXMINV_vector(1, 0, 0b10, 1, Vn, Vd))
#define UMAXVQ_32(Vd, Vn)           EMIT(MAXMINV_vector(1, 1, 0b10, 0, Vn, Vd))
#define UMINVQ_32(Vd, Vn)           EMIT(MAXMINV_vector(1, 1, 0b10, 1, Vn, Vd))

// HADD vector
#define HADD_vector(Q, U, size, Rm, Rn, Rd)     ((Q)<<30 | (U)<<29 | 0b01110<<24 | (size)<<22 | 1<<21 | (Rm)<<16 | 1<<10 | (Rn)<<5 | (Rd))
#define SHADD_8(Vd, Vn, Vm)         EMIT(HADD_vector(0, 0, 0b00, Vm, Vn, Vd))
#define SHADD_16(Vd, Vn, Vm)        EMIT(HADD_vector(0, 0, 0b01, Vm, Vn, Vd))
#define SHADD_32(Vd, Vn, Vm)        EMIT(HADD_vector(0, 0, 0b10, Vm, Vn, Vd))
#define SHADDQ_8(Vd, Vn, Vm)        EMIT(HADD_vector(1, 0, 0b00, Vm, Vn, Vd))
#define SHADDQ_16(Vd, Vn, Vm)       EMIT(HADD_vector(1, 0, 0b01, Vm, Vn, Vd))
#define SHADDQ_32(Vd, Vn, Vm)       EMIT(HADD_vector(1, 0, 0b10, Vm, Vn, Vd))
#define UHADD_8(Vd, Vn, Vm)         EMIT(HADD_vector(0, 1, 0b00, Vm, Vn, Vd))
#define UHADD_16(Vd, Vn, Vm)        EMIT(HADD_vector(0, 1, 0b01, Vm, Vn, Vd))
#define UHADD_32(Vd, Vn, Vm)        EMIT(HADD_vector(0, 1, 0b10, Vm, Vn, Vd))
#define UHADDQ_8(Vd, Vn, Vm)        EMIT(HADD_vector(1, 1, 0b00, Vm, Vn, Vd))
#define UHADDQ_16(Vd, Vn, Vm)       EMIT(HADD_vector(1, 1, 0b01, Vm, Vn, Vd))
#define UHADDQ_32(Vd, Vn, Vm)       EMIT(HADD_vector(1, 1, 0b10, Vm, Vn, Vd))

#define RHADD_vector(Q, U, size, Rm, Rn, Rd)    ((Q)<<30 | (U)<<29 | 0b01110<<24 | (size)<<22 | 1<<21 | (Rm)<<16 | 0b00010<<11 | 1<<10 | (Rn)<<5 | (Rd))
#define SRHADD_8(Vd, Vn, Vm)        EMIT(RHADD_vector(0, 0, 0b00, Vm, Vn, Vd))
#define SRHADD_16(Vd, Vn, Vm)       EMIT(RHADD_vector(0, 0, 0b01, Vm, Vn, Vd))
#define SRHADD_32(Vd, Vn, Vm)       EMIT(RHADD_vector(0, 0, 0b10, Vm, Vn, Vd))
#define SRHADDQ_8(Vd, Vn, Vm)       EMIT(RHADD_vector(1, 0, 0b00, Vm, Vn, Vd))
#define SRHADDQ_16(Vd, Vn, Vm)      EMIT(RHADD_vector(1, 0, 0b01, Vm, Vn, Vd))
#define SRHADDQ_32(Vd, Vn, Vm)      EMIT(RHADD_vector(1, 0, 0b10, Vm, Vn, Vd))
#define URHADD_8(Vd, Vn, Vm)        EMIT(RHADD_vector(0, 1, 0b00, Vm, Vn, Vd))
#define URHADD_16(Vd, Vn, Vm)       EMIT(RHADD_vector(0, 1, 0b01, Vm, Vn, Vd))
#define URHADD_32(Vd, Vn, Vm)       EMIT(RHADD_vector(0, 1, 0b10, Vm, Vn, Vd))
#define URHADDQ_8(Vd, Vn, Vm)       EMIT(RHADD_vector(1, 1, 0b00, Vm, Vn, Vd))
#define URHADDQ_16(Vd, Vn, Vm)      EMIT(RHADD_vector(1, 1, 0b01, Vm, Vn, Vd))
#define URHADDQ_32(Vd, Vn, Vm)      EMIT(RHADD_vector(1, 1, 0b10, Vm, Vn, Vd))

//SRSHR/URSHR
#define RSHR(Q, U, immh, immb, Rn, Rd)      ((Q)<<30 | (U)<<29 | 0b011110<<23 | (immh)<<19 | (immb)<<16 | 1<<13 | 0<<12 | 1<<10 | (Rn)<<5 | (Rd))
#define SRSHRQ_32(Vd, Vn, shift)    EMIT(RSHR(1, 0, 0b0100 | (((32-(shift))>>3)&0b11), (32-(shift))&0b111, Vn, Vd))

// QRDMULH Signed saturating (Rounding) Doubling Multiply returning High half
#define QDMULH_vector(Q, U, size, Rm, Rn, Rd)   ((Q)<<30 | (U)<<29 | 0b01110<<24 | (size)<<22 | 1<<21 | (Rm)<<16 | 0b10110<<11 | 1<<10 | (Rn)<<5 | (Rd))
#define SQRDMULH_8(Vd, Vn, Vm)      EMIT(QDMULH_vector(0, 1, 0b00, Vm, Vn, Vd))
#define SQRDMULH_16(Vd, Vn, Vm)     EMIT(QDMULH_vector(0, 1, 0b01, Vm, Vn, Vd))
#define SQRDMULH_32(Vd, Vn, Vm)     EMIT(QDMULH_vector(0, 1, 0b10, Vm, Vn, Vd))
#define SQRDMULHQ_8(Vd, Vn, Vm)     EMIT(QDMULH_vector(1, 1, 0b00, Vm, Vn, Vd))
#define SQRDMULHQ_16(Vd, Vn, Vm)    EMIT(QDMULH_vector(1, 1, 0b01, Vm, Vn, Vd))
#define SQRDMULHQ_32(Vd, Vn, Vm)    EMIT(QDMULH_vector(1, 1, 0b10, Vm, Vn, Vd))
#define SQDMULH_8(Vd, Vn, Vm)       EMIT(QDMULH_vector(0, 0, 0b00, Vm, Vn, Vd))
#define SQDMULH_16(Vd, Vn, Vm)      EMIT(QDMULH_vector(0, 0, 0b01, Vm, Vn, Vd))
#define SQDMULH_32(Vd, Vn, Vm)      EMIT(QDMULH_vector(0, 0, 0b10, Vm, Vn, Vd))
#define SQDMULHQ_8(Vd, Vn, Vm)      EMIT(QDMULH_vector(1, 0, 0b00, Vm, Vn, Vd))
#define SQDMULHQ_16(Vd, Vn, Vm)     EMIT(QDMULH_vector(1, 0, 0b01, Vm, Vn, Vd))
#define SQDMULHQ_32(Vd, Vn, Vm)     EMIT(QDMULH_vector(1, 0, 0b10, Vm, Vn, Vd))

// AES extension
#define AES_gen(D, Rn, Rd)      (0b01001110<<24 | 0b00<<22 | 0b10100<<17 | 0b0010<<13 | (D)<<12 | 0b10<<10 | (Rn)<<5 | (Rd))
#define AESD(Vd, Vn)    EMIT(AES_gen(1, Vn, Vd))
#define AESE(Vd, Vn)    EMIT(AES_gen(0, Vn, Vd))

#define AESMC_gen(D, Rn, Rd)    (0b01001110<<24 | 0b00<<22 | 0b10100<<17 | 0b0011<<13 | (D)<<12 | 0b10<<10 | (Rn)<<5 | (Rd))
#define AESIMC(Vd, Vn)  EMIT(AESMC_gen(1, Vn, Vd))
#define AESMC(Vd, Vn)   EMIT(AESMC_gen(0, Vn, Vd))

// PMULL extension is PMULL_128
#define PMULL_gen(Q, size, Rm, Rn, Rd)  (0<<31 | (Q)<<30 | 0b001110<<24 | (size)<<22 | 1<<21 | (Rm)<<16 | 0b1110<<12 | (Rn)<<5 | (Rd))
#define PMULL(Rd, Rn, Rm)   EMIT(PMULL_gen(0, 0b00, Rm, Rn, Rd))
#define PMULL2(Rd, Rn, Rm)  EMIT(PMULL_gen(1, 0b00, Rm, Rn, Rd))
#define PMULL_128(Rd, Rn, Rm)   EMIT(PMULL_gen(0, 0b11, Rm, Rn, Rd))
#define PMULL2_128(Rd, Rn, Rm)  EMIT(PMULL_gen(1, 0b11, Rm, Rn, Rd))

// ATOMIC extension
#define ATOMIC_gen(size, A, R, Rs, opc, Rn, Rt) ((size)<<30 | 0b111<<27 | (A)<<23 | (R)<<22 | 1<<21 | (Rs)<<16 | (opc)<<12 | (Rn)<<5 | (Rt))
// Atomic ADD
#define LDADDxw(Rs, Rt, Rn)             EMIT(ATOMIC_gen(0b10+rex.w, 0, 0, Rs, 0b000, Rn, Rt))
#define LDADDAxw(Rs, Rt, Rn)            EMIT(ATOMIC_gen(0b10+rex.w, 1, 0, Rs, 0b000, Rn, Rt))
#define LDADDALxw(Rs, Rt, Rn)           EMIT(ATOMIC_gen(0b10+rex.w, 1, 1, Rs, 0b000, Rn, Rt))
#define LDADDLxw(Rs, Rt, Rn)            EMIT(ATOMIC_gen(0b10+rex.w, 0, 1, Rs, 0b000, Rn, Rt))
#define STADDxw(Rs, Rn)                 EMIT(ATOMIC_gen(0b10+rex.w, 0, 0, Rs, 0b000, Rn, 0b11111))
#define STADDLxw(Rs, Rn)                EMIT(ATOMIC_gen(0b10+rex.w, 0, 1, Rs, 0b000, Rn, 0b11111))
#define LDADDB(Rs, Rt, Rn)              EMIT(ATOMIC_gen(0b00, 0, 0, Rs, 0b000, Rn, Rt))
#define LDADDAB(Rs, Rt, Rn)             EMIT(ATOMIC_gen(0b00, 1, 0, Rs, 0b000, Rn, Rt))
#define LDADDALB(Rs, Rt, Rn)            EMIT(ATOMIC_gen(0b00, 1, 1, Rs, 0b000, Rn, Rt))
#define LDADDLB(Rs, Rt, Rn)             EMIT(ATOMIC_gen(0b00, 0, 1, Rs, 0b000, Rn, Rt))
#define STADDB(Rs, Rn)                  EMIT(ATOMIC_gen(0b00, 0, 0, Rs, 0b000, Rn, 0b11111))
#define STADDLB(Rs, Rn)                 EMIT(ATOMIC_gen(0b00, 0, 1, Rs, 0b000, Rn, 0b11111))
#define LDADDH(Rs, Rt, Rn)              EMIT(ATOMIC_gen(0b01, 0, 0, Rs, 0b000, Rn, Rt))
#define LDADDAH(Rs, Rt, Rn)             EMIT(ATOMIC_gen(0b01, 1, 0, Rs, 0b000, Rn, Rt))
#define LDADDALH(Rs, Rt, Rn)            EMIT(ATOMIC_gen(0b01, 1, 1, Rs, 0b000, Rn, Rt))
#define LDADDLH(Rs, Rt, Rn)             EMIT(ATOMIC_gen(0b01, 0, 1, Rs, 0b000, Rn, Rt))
#define STADDH(Rs, Rn)                  EMIT(ATOMIC_gen(0b01, 0, 0, Rs, 0b000, Rn, 0b11111))
#define STADDLH(Rs, Rn)                 EMIT(ATOMIC_gen(0b01, 0, 1, Rs, 0b000, Rn, 0b11111))
// Atomic AND with complement (i.e. BIC)
#define LDCLRxw(Rs, Rt, Rn)             EMIT(ATOMIC_gen(0b10+rex.w, 0, 0, Rs, 0b001, Rn, Rt))
#define LDCLRAxw(Rs, Rt, Rn)            EMIT(ATOMIC_gen(0b10+rex.w, 1, 0, Rs, 0b001, Rn, Rt))
#define LDCLRALxw(Rs, Rt, Rn)           EMIT(ATOMIC_gen(0b10+rex.w, 1, 1, Rs, 0b001, Rn, Rt))
#define LDCLRLxw(Rs, Rt, Rn)            EMIT(ATOMIC_gen(0b10+rex.w, 0, 1, Rs, 0b001, Rn, Rt))
#define STCLRxw(Rs, Rn)                 EMIT(ATOMIC_gen(0b10+rex.w, 0, 0, Rs, 0b001, Rn, 0b11111))
#define STCLRLxw(Rs, Rn)                EMIT(ATOMIC_gen(0b10+rex.w, 0, 1, Rs, 0b001, Rn, 0b11111))
#define LDCLRB(Rs, Rt, Rn)              EMIT(ATOMIC_gen(0b00, 0, 0, Rs, 0b001, Rn, Rt))
#define LDCLRAB(Rs, Rt, Rn)             EMIT(ATOMIC_gen(0b00, 1, 0, Rs, 0b001, Rn, Rt))
#define LDCLRALB(Rs, Rt, Rn)            EMIT(ATOMIC_gen(0b00, 1, 1, Rs, 0b001, Rn, Rt))
#define LDCLRLB(Rs, Rt, Rn)             EMIT(ATOMIC_gen(0b00, 0, 1, Rs, 0b001, Rn, Rt))
#define STCLRB(Rs, Rn)                  EMIT(ATOMIC_gen(0b00, 0, 0, Rs, 0b001, Rn, 0b11111))
#define STCLRLB(Rs, Rn)                 EMIT(ATOMIC_gen(0b00, 0, 1, Rs, 0b001, Rn, 0b11111))
#define LDCLRH(Rs, Rt, Rn)              EMIT(ATOMIC_gen(0b01, 0, 0, Rs, 0b001, Rn, Rt))
#define LDCLRAH(Rs, Rt, Rn)             EMIT(ATOMIC_gen(0b01, 1, 0, Rs, 0b001, Rn, Rt))
#define LDCLRALH(Rs, Rt, Rn)            EMIT(ATOMIC_gen(0b01, 1, 1, Rs, 0b001, Rn, Rt))
#define LDCLRLH(Rs, Rt, Rn)             EMIT(ATOMIC_gen(0b01, 0, 1, Rs, 0b001, Rn, Rt))
#define STCLRH(Rs, Rn)                  EMIT(ATOMIC_gen(0b01, 0, 0, Rs, 0b001, Rn, 0b11111))
#define STCLRLH(Rs, Rn)                 EMIT(ATOMIC_gen(0b01, 0, 1, Rs, 0b001, Rn, 0b11111))
// Atomic EOR
#define LDEORxw(Rs, Rt, Rn)             EMIT(ATOMIC_gen(0b10+rex.w, 0, 0, Rs, 0b010, Rn, Rt))
#define LDEORAxw(Rs, Rt, Rn)            EMIT(ATOMIC_gen(0b10+rex.w, 1, 0, Rs, 0b010, Rn, Rt))
#define LDEORALxw(Rs, Rt, Rn)           EMIT(ATOMIC_gen(0b10+rex.w, 1, 1, Rs, 0b010, Rn, Rt))
#define LDEORLxw(Rs, Rt, Rn)            EMIT(ATOMIC_gen(0b10+rex.w, 0, 1, Rs, 0b010, Rn, Rt))
#define STEORxw(Rs, Rn)                 EMIT(ATOMIC_gen(0b10+rex.w, 0, 0, Rs, 0b010, Rn, 0b11111))
#define STEORLxw(Rs, Rn)                EMIT(ATOMIC_gen(0b10+rex.w, 0, 1, Rs, 0b010, Rn, 0b11111))
#define LDEORB(Rs, Rt, Rn)              EMIT(ATOMIC_gen(0b00, 0, 0, Rs, 0b010, Rn, Rt))
#define LDEORAB(Rs, Rt, Rn)             EMIT(ATOMIC_gen(0b00, 1, 0, Rs, 0b010, Rn, Rt))
#define LDEORALB(Rs, Rt, Rn)            EMIT(ATOMIC_gen(0b00, 1, 1, Rs, 0b010, Rn, Rt))
#define LDEORLB(Rs, Rt, Rn)             EMIT(ATOMIC_gen(0b00, 0, 1, Rs, 0b010, Rn, Rt))
#define STEORB(Rs, Rn)                  EMIT(ATOMIC_gen(0b00, 0, 0, Rs, 0b010, Rn, 0b11111))
#define STEORLB(Rs, Rn)                 EMIT(ATOMIC_gen(0b00, 0, 1, Rs, 0b010, Rn, 0b11111))
#define LDEORH(Rs, Rt, Rn)              EMIT(ATOMIC_gen(0b01, 0, 0, Rs, 0b010, Rn, Rt))
#define LDEORAH(Rs, Rt, Rn)             EMIT(ATOMIC_gen(0b01, 1, 0, Rs, 0b010, Rn, Rt))
#define LDEORALH(Rs, Rt, Rn)            EMIT(ATOMIC_gen(0b01, 1, 1, Rs, 0b010, Rn, Rt))
#define LDEORLH(Rs, Rt, Rn)             EMIT(ATOMIC_gen(0b01, 0, 1, Rs, 0b010, Rn, Rt))
#define STEORH(Rs, Rn)                  EMIT(ATOMIC_gen(0b01, 0, 0, Rs, 0b010, Rn, 0b11111))
#define STEORLH(Rs, Rn)                 EMIT(ATOMIC_gen(0b01, 0, 1, Rs, 0b010, Rn, 0b11111))
// Atomic OR
#define LDSETxw(Rs, Rt, Rn)             EMIT(ATOMIC_gen(0b10+rex.w, 0, 0, Rs, 0b011, Rn, Rt))
#define LDSETAxw(Rs, Rt, Rn)            EMIT(ATOMIC_gen(0b10+rex.w, 1, 0, Rs, 0b011, Rn, Rt))
#define LDSETALxw(Rs, Rt, Rn)           EMIT(ATOMIC_gen(0b10+rex.w, 1, 1, Rs, 0b011, Rn, Rt))
#define LDSETLxw(Rs, Rt, Rn)            EMIT(ATOMIC_gen(0b10+rex.w, 0, 1, Rs, 0b011, Rn, Rt))
#define STSETxw(Rs, Rn)                 EMIT(ATOMIC_gen(0b10+rex.w, 0, 0, Rs, 0b011, Rn, 0b11111))
#define STSETLxw(Rs, Rn)                EMIT(ATOMIC_gen(0b10+rex.w, 0, 1, Rs, 0b011, Rn, 0b11111))
#define LDSETB(Rs, Rt, Rn)              EMIT(ATOMIC_gen(0b00, 0, 0, Rs, 0b011, Rn, Rt))
#define LDSETAB(Rs, Rt, Rn)             EMIT(ATOMIC_gen(0b00, 1, 0, Rs, 0b011, Rn, Rt))
#define LDSETALB(Rs, Rt, Rn)            EMIT(ATOMIC_gen(0b00, 1, 1, Rs, 0b011, Rn, Rt))
#define LDSETLB(Rs, Rt, Rn)             EMIT(ATOMIC_gen(0b00, 0, 1, Rs, 0b011, Rn, Rt))
#define STSETB(Rs, Rn)                  EMIT(ATOMIC_gen(0b00, 0, 0, Rs, 0b011, Rn, 0b11111))
#define STSETLB(Rs, Rn)                 EMIT(ATOMIC_gen(0b00, 0, 1, Rs, 0b011, Rn, 0b11111))
#define LDSETH(Rs, Rt, Rn)              EMIT(ATOMIC_gen(0b01, 0, 0, Rs, 0b011, Rn, Rt))
#define LDSETAH(Rs, Rt, Rn)             EMIT(ATOMIC_gen(0b01, 1, 0, Rs, 0b011, Rn, Rt))
#define LDSETALH(Rs, Rt, Rn)            EMIT(ATOMIC_gen(0b01, 1, 1, Rs, 0b011, Rn, Rt))
#define LDSETLH(Rs, Rt, Rn)             EMIT(ATOMIC_gen(0b01, 0, 1, Rs, 0b011, Rn, Rt))
#define STSETH(Rs, Rn)                  EMIT(ATOMIC_gen(0b01, 0, 0, Rs, 0b011, Rn, 0b11111))
#define STSETLH(Rs, Rn)                 EMIT(ATOMIC_gen(0b01, 0, 1, Rs, 0b011, Rn, 0b11111))
// Atomic Signed Max
#define LDSMAXxw(Rs, Rt, Rn)             EMIT(ATOMIC_gen(0b10+rex.w, 0, 0, Rs, 0b100, Rn, Rt))
#define LDSMAXAxw(Rs, Rt, Rn)            EMIT(ATOMIC_gen(0b10+rex.w, 1, 0, Rs, 0b100, Rn, Rt))
#define LDSMAXALxw(Rs, Rt, Rn)           EMIT(ATOMIC_gen(0b10+rex.w, 1, 1, Rs, 0b100, Rn, Rt))
#define LDSMAXLxw(Rs, Rt, Rn)            EMIT(ATOMIC_gen(0b10+rex.w, 0, 1, Rs, 0b100, Rn, Rt))
#define STSMAXxw(Rs, Rn)                 EMIT(ATOMIC_gen(0b10+rex.w, 0, 0, Rs, 0b100, Rn, 0b11111))
#define STSMAXLxw(Rs, Rn)                EMIT(ATOMIC_gen(0b10+rex.w, 0, 1, Rs, 0b100, Rn, 0b11111))
#define LDSMAXB(Rs, Rt, Rn)              EMIT(ATOMIC_gen(0b00, 0, 0, Rs, 0b100, Rn, Rt))
#define LDSMAXAB(Rs, Rt, Rn)             EMIT(ATOMIC_gen(0b00, 1, 0, Rs, 0b100, Rn, Rt))
#define LDSMAXALB(Rs, Rt, Rn)            EMIT(ATOMIC_gen(0b00, 1, 1, Rs, 0b100, Rn, Rt))
#define LDSMAXLB(Rs, Rt, Rn)             EMIT(ATOMIC_gen(0b00, 0, 1, Rs, 0b100, Rn, Rt))
#define STSMAXB(Rs, Rn)                  EMIT(ATOMIC_gen(0b00, 0, 0, Rs, 0b100, Rn, 0b11111))
#define STSMAXLB(Rs, Rn)                 EMIT(ATOMIC_gen(0b00, 0, 1, Rs, 0b100, Rn, 0b11111))
#define LDSMAXH(Rs, Rt, Rn)              EMIT(ATOMIC_gen(0b01, 0, 0, Rs, 0b100, Rn, Rt))
#define LDSMAXAH(Rs, Rt, Rn)             EMIT(ATOMIC_gen(0b01, 1, 0, Rs, 0b100, Rn, Rt))
#define LDSMAXALH(Rs, Rt, Rn)            EMIT(ATOMIC_gen(0b01, 1, 1, Rs, 0b100, Rn, Rt))
#define LDSMAXLH(Rs, Rt, Rn)             EMIT(ATOMIC_gen(0b01, 0, 1, Rs, 0b100, Rn, Rt))
#define STSMAXH(Rs, Rn)                  EMIT(ATOMIC_gen(0b01, 0, 0, Rs, 0b100, Rn, 0b11111))
#define STSMAXLH(Rs, Rn)                 EMIT(ATOMIC_gen(0b01, 0, 1, Rs, 0b100, Rn, 0b11111))
// Atomic Signed Min
#define LDSMINxw(Rs, Rt, Rn)             EMIT(ATOMIC_gen(0b10+rex.w, 0, 0, Rs, 0b101, Rn, Rt))
#define LDSMINAxw(Rs, Rt, Rn)            EMIT(ATOMIC_gen(0b10+rex.w, 1, 0, Rs, 0b101, Rn, Rt))
#define LDSMINALxw(Rs, Rt, Rn)           EMIT(ATOMIC_gen(0b10+rex.w, 1, 1, Rs, 0b101, Rn, Rt))
#define LDSMINLxw(Rs, Rt, Rn)            EMIT(ATOMIC_gen(0b10+rex.w, 0, 1, Rs, 0b101, Rn, Rt))
#define STSMINxw(Rs, Rn)                 EMIT(ATOMIC_gen(0b10+rex.w, 0, 0, Rs, 0b101, Rn, 0b11111))
#define STSMINLxw(Rs, Rn)                EMIT(ATOMIC_gen(0b10+rex.w, 0, 1, Rs, 0b101, Rn, 0b11111))
#define LDSMINB(Rs, Rt, Rn)              EMIT(ATOMIC_gen(0b00, 0, 0, Rs, 0b101, Rn, Rt))
#define LDSMINAB(Rs, Rt, Rn)             EMIT(ATOMIC_gen(0b00, 1, 0, Rs, 0b101, Rn, Rt))
#define LDSMINALB(Rs, Rt, Rn)            EMIT(ATOMIC_gen(0b00, 1, 1, Rs, 0b101, Rn, Rt))
#define LDSMINLB(Rs, Rt, Rn)             EMIT(ATOMIC_gen(0b00, 0, 1, Rs, 0b101, Rn, Rt))
#define STSMINB(Rs, Rn)                  EMIT(ATOMIC_gen(0b00, 0, 0, Rs, 0b101, Rn, 0b11111))
#define STSMINLB(Rs, Rn)                 EMIT(ATOMIC_gen(0b00, 0, 1, Rs, 0b101, Rn, 0b11111))
#define LDSMINH(Rs, Rt, Rn)              EMIT(ATOMIC_gen(0b01, 0, 0, Rs, 0b101, Rn, Rt))
#define LDSMINAH(Rs, Rt, Rn)             EMIT(ATOMIC_gen(0b01, 1, 0, Rs, 0b101, Rn, Rt))
#define LDSMINALH(Rs, Rt, Rn)            EMIT(ATOMIC_gen(0b01, 1, 1, Rs, 0b101, Rn, Rt))
#define LDSMINLH(Rs, Rt, Rn)             EMIT(ATOMIC_gen(0b01, 0, 1, Rs, 0b101, Rn, Rt))
#define STSMINH(Rs, Rn)                  EMIT(ATOMIC_gen(0b01, 0, 0, Rs, 0b101, Rn, 0b11111))
#define STSMINLH(Rs, Rn)                 EMIT(ATOMIC_gen(0b01, 0, 1, Rs, 0b101, Rn, 0b11111))
// Atomic Unsigned Max
#define LDUMAXxw(Rs, Rt, Rn)             EMIT(ATOMIC_gen(0b10+rex.w, 0, 0, Rs, 0b110, Rn, Rt))
#define LDUMAXAxw(Rs, Rt, Rn)            EMIT(ATOMIC_gen(0b10+rex.w, 1, 0, Rs, 0b110, Rn, Rt))
#define LDUMAXALxw(Rs, Rt, Rn)           EMIT(ATOMIC_gen(0b10+rex.w, 1, 1, Rs, 0b110, Rn, Rt))
#define LDUMAXLxw(Rs, Rt, Rn)            EMIT(ATOMIC_gen(0b10+rex.w, 0, 1, Rs, 0b110, Rn, Rt))
#define STUMAXxw(Rs, Rn)                 EMIT(ATOMIC_gen(0b10+rex.w, 0, 0, Rs, 0b110, Rn, 0b11111))
#define STUMAXLxw(Rs, Rn)                EMIT(ATOMIC_gen(0b10+rex.w, 0, 1, Rs, 0b110, Rn, 0b11111))
#define LDUMAXB(Rs, Rt, Rn)              EMIT(ATOMIC_gen(0b00, 0, 0, Rs, 0b110, Rn, Rt))
#define LDUMAXAB(Rs, Rt, Rn)             EMIT(ATOMIC_gen(0b00, 1, 0, Rs, 0b110, Rn, Rt))
#define LDUMAXALB(Rs, Rt, Rn)            EMIT(ATOMIC_gen(0b00, 1, 1, Rs, 0b110, Rn, Rt))
#define LDUMAXLB(Rs, Rt, Rn)             EMIT(ATOMIC_gen(0b00, 0, 1, Rs, 0b110, Rn, Rt))
#define STUMAXB(Rs, Rn)                  EMIT(ATOMIC_gen(0b00, 0, 0, Rs, 0b110, Rn, 0b11111))
#define STUMAXLB(Rs, Rn)                 EMIT(ATOMIC_gen(0b00, 0, 1, Rs, 0b110, Rn, 0b11111))
#define LDUMAXH(Rs, Rt, Rn)              EMIT(ATOMIC_gen(0b01, 0, 0, Rs, 0b110, Rn, Rt))
#define LDUMAXAH(Rs, Rt, Rn)             EMIT(ATOMIC_gen(0b01, 1, 0, Rs, 0b110, Rn, Rt))
#define LDUMAXALH(Rs, Rt, Rn)            EMIT(ATOMIC_gen(0b01, 1, 1, Rs, 0b110, Rn, Rt))
#define LDUMAXLH(Rs, Rt, Rn)             EMIT(ATOMIC_gen(0b01, 0, 1, Rs, 0b110, Rn, Rt))
#define STUMAXH(Rs, Rn)                  EMIT(ATOMIC_gen(0b01, 0, 0, Rs, 0b110, Rn, 0b11111))
#define STUMAXLH(Rs, Rn)                 EMIT(ATOMIC_gen(0b01, 0, 1, Rs, 0b110, Rn, 0b11111))
// Atomic Unsigned Min
#define LDUMINxw(Rs, Rt, Rn)             EMIT(ATOMIC_gen(0b10+rex.w, 0, 0, Rs, 0b111, Rn, Rt))
#define LDUMINAxw(Rs, Rt, Rn)            EMIT(ATOMIC_gen(0b10+rex.w, 1, 0, Rs, 0b111, Rn, Rt))
#define LDUMINALxw(Rs, Rt, Rn)           EMIT(ATOMIC_gen(0b10+rex.w, 1, 1, Rs, 0b111, Rn, Rt))
#define LDUMINLxw(Rs, Rt, Rn)            EMIT(ATOMIC_gen(0b10+rex.w, 0, 1, Rs, 0b111, Rn, Rt))
#define STUMINxw(Rs, Rn)                 EMIT(ATOMIC_gen(0b10+rex.w, 0, 0, Rs, 0b111, Rn, 0b11111))
#define STUMINLxw(Rs, Rn)                EMIT(ATOMIC_gen(0b10+rex.w, 0, 1, Rs, 0b111, Rn, 0b11111))
#define LDUMINB(Rs, Rt, Rn)              EMIT(ATOMIC_gen(0b00, 0, 0, Rs, 0b111, Rn, Rt))
#define LDUMINAB(Rs, Rt, Rn)             EMIT(ATOMIC_gen(0b00, 1, 0, Rs, 0b111, Rn, Rt))
#define LDUMINALB(Rs, Rt, Rn)            EMIT(ATOMIC_gen(0b00, 1, 1, Rs, 0b111, Rn, Rt))
#define LDUMINLB(Rs, Rt, Rn)             EMIT(ATOMIC_gen(0b00, 0, 1, Rs, 0b111, Rn, Rt))
#define STUMINB(Rs, Rn)                  EMIT(ATOMIC_gen(0b00, 0, 0, Rs, 0b111, Rn, 0b11111))
#define STUMINLB(Rs, Rn)                 EMIT(ATOMIC_gen(0b00, 0, 1, Rs, 0b111, Rn, 0b11111))
#define LDUMINH(Rs, Rt, Rn)              EMIT(ATOMIC_gen(0b01, 0, 0, Rs, 0b111, Rn, Rt))
#define LDUMINAH(Rs, Rt, Rn)             EMIT(ATOMIC_gen(0b01, 1, 0, Rs, 0b111, Rn, Rt))
#define LDUMINALH(Rs, Rt, Rn)            EMIT(ATOMIC_gen(0b01, 1, 1, Rs, 0b111, Rn, Rt))
#define LDUMINLH(Rs, Rt, Rn)             EMIT(ATOMIC_gen(0b01, 0, 1, Rs, 0b111, Rn, Rt))
#define STUMINH(Rs, Rn)                  EMIT(ATOMIC_gen(0b01, 0, 0, Rs, 0b111, Rn, 0b11111))
#define STUMINLH(Rs, Rn)                 EMIT(ATOMIC_gen(0b01, 0, 1, Rs, 0b111, Rn, 0b11111))

// SWAPxx(Xs, Xt, Xn) : [Xn] => Xt, Xs => [Xn]
#define SWAP_gen(size, A, R, Rs, Rn, Rt)    ((size)<<30 | 0b111<<27 | (A)<<23 | (R)<<22 | 1<<21 | (Rs)<<16 | 1<<15 | (Rn)<<5 | (Rt))
#define SWPxw(Rs, Rt, Rn)               EMIT(SWAP_gen(0b10+rex.w, 0, 0, Rs, Rn, Rt))
#define SWPAxw(Rs, Rt, Rn)              EMIT(SWAP_gen(0b10+rex.w, 1, 0, Rs, Rn, Rt))
#define SWPALxw(Rs, Rt, Rn)             EMIT(SWAP_gen(0b10+rex.w, 1, 1, Rs, Rn, Rt))
#define SWPLxw(Rs, Rt, Rn)              EMIT(SWAP_gen(0b10+rex.w, 0, 1, Rs, Rn, Rt))
#define SWPB(Rs, Rt, Rn)                EMIT(SWAP_gen(0b00, 0, 0, Rs, Rn, Rt))
#define SWPAB(Rs, Rt, Rn)               EMIT(SWAP_gen(0b00, 1, 0, Rs, Rn, Rt))
#define SWPALB(Rs, Rt, Rn)              EMIT(SWAP_gen(0b00, 1, 1, Rs, Rn, Rt))
#define SWPLB(Rs, Rt, Rn)               EMIT(SWAP_gen(0b00, 0, 1, Rs, Rn, Rt))
#define SWPH(Rs, Rt, Rn)                EMIT(SWAP_gen(0b01, 0, 0, Rs, Rn, Rt))
#define SWPAH(Rs, Rt, Rn)               EMIT(SWAP_gen(0b01, 1, 0, Rs, Rn, Rt))
#define SWPALH(Rs, Rt, Rn)              EMIT(SWAP_gen(0b01, 1, 1, Rs, Rn, Rt))
#define SWPLH(Rs, Rt, Rn)               EMIT(SWAP_gen(0b01, 0, 1, Rs, Rn, Rt))

#define CAS_gen(size, L, Rs, O0, Rn, Rt)    ((size)<<30 | 0b001000<<24 | 1<<23 | (L)<<22 | 1<<21 | (Rs)<<16 | (O0)<<15 | 0b11111<<10 | (Rn)<<5 | (Rt))
// Compare and Swap compare Rs with [Rn], write Rt is same, return old [Rn] in Rs
#define CASxw(Rs, Rt, Rn)               EMIT(CAS_gen(0b10+rex.w, 0, Rs, 0, Rn, Rt))
#define CASAxw(Rs, Rt, Rn)              EMIT(CAS_gen(0b10+rex.w, 1, Rs, 0, Rn, Rt))
#define CASALxw(Rs, Rt, Rn)             EMIT(CAS_gen(0b10+rex.w, 1, Rs, 1, Rn, Rt))
#define CASLxw(Rs, Rt, Rn)              EMIT(CAS_gen(0b10+rex.w, 0, Rs, 1, Rn, Rt))
#define CASB(Rs, Rt, Rn)                EMIT(CAS_gen(0b00, 0, Rs, 0, Rn, Rt))
#define CASAB(Rs, Rt, Rn)               EMIT(CAS_gen(0b00, 1, Rs, 0, Rn, Rt))
#define CASALB(Rs, Rt, Rn)              EMIT(CAS_gen(0b00, 1, Rs, 1, Rn, Rt))
#define CASLB(Rs, Rt, Rn)               EMIT(CAS_gen(0b00, 0, Rs, 1, Rn, Rt))
#define CASH(Rs, Rt, Rn)                EMIT(CAS_gen(0b01, 0, Rs, 0, Rn, Rt))
#define CASAH(Rs, Rt, Rn)               EMIT(CAS_gen(0b01, 1, Rs, 0, Rn, Rt))
#define CASALH(Rs, Rt, Rn)              EMIT(CAS_gen(0b01, 1, Rs, 1, Rn, Rt))
#define CASLH(Rs, Rt, Rn)               EMIT(CAS_gen(0b01, 0, Rs, 1, Rn, Rt))

#define CASP_gen(size, L, Rs, O0, Rn, Rt)   ((size)<<30 | 0b001000<<24 | 0<<23 | (L)<<22 | 1<<21 | (Rs)<<16 | (O0)<<15 | 0b11111<<10 | (Rn)<<5 | (Rt))
// Compare and Swap with pair, Rs, Rs+1 and Rt,Rt+1 with [Rt]
#define CASPxw(Rs, Rt, Rn)              EMIT(CASP_gen(0b00+rex.w, 0, Rs, 0, Rn, Rt))
#define CASPAxw(Rs, Rt, Rn)             EMIT(CASP_gen(0b00+rex.w, 1, Rs, 0, Rn, Rt))
#define CASPALxw(Rs, Rt, Rn)            EMIT(CASP_gen(0b00+rex.w, 1, Rs, 1, Rn, Rt))
#define CASPLxw(Rs, Rt, Rn)             EMIT(CASP_gen(0b00+rex.w, 0, Rs, 1, Rn, Rt))

// FLAGM extension
// Invert Carry Flag
#define CFINV()                        FEMIT(0b1101010100<<22 | 0b0100<<12 | 0b000<<5 | 0b11111)

#define RMIF_gen(imm6, Rn, mask)        (0b10111010000<<21 | (imm6)<<15 | 0b00001<<10 | (Rn)<<5 | (mask))
// Rotate right reg and use as NZCV
#define RMIF(Xn, shift, mask)          FEMIT(RMIF_gen(shift, Xn, mask))

#define SETF_gen(sz, Rn)                (0b00111010000<<21 | (sz)<<14 | 0b0010<<10 | (Rn)<<5 | 0b1101)
// Set NZVc with 8bit value of reg: N=bit7, Z=[0..7]==0, V=bit8 eor bit7, C unchanged
#define SETF8(Wn)                      FEMIT(SETF_gen(0, Wn))
// Set NZVc with 16bit value of reg: N=bit15, Z=[0..15]==0, V=bit16 eor bit15, C unchanged
#define SETF16(Wn)                     FEMIT(SETF_gen(1, Wn))

// FLAGM2 extension
// NZCV -> N=0 Z=C|V C=C&!V V=0
#define AXFLAG()           FEMIT(0b1101010100<<22 | 0b0100<<12 | 0b010<<5 | 0b11111)
// NZCV -> N=!C&!Z Z=Z&C C=C|Z V=!C&Z
#define XAFLAG()           FEMIT(0b1101010100<<22 | 0b0100<<12 | 0b001<<5 | 0b11111)

// FRINTTS extension
#define FRINTxx_scalar(type, op, Rn, Rd)  (0b11110<<24 | (type)<<22 | 1<<21 | 0b0100<<17 | (op)<<15 | 0b10000<<10 | (Rn)<<5 | (Rd))
#define FRINT32ZS(Sd, Sn)           EMIT(FRINTxx_scalar(0b00, 0b00, Sn, Sd))
#define FRINT32ZD(Dd, Dn)           EMIT(FRINTxx_scalar(0b01, 0b00, Dn, Dd))
#define FRINT32XS(Sd, Sn)           EMIT(FRINTxx_scalar(0b00, 0b01, Sn, Sd))
#define FRINT32XD(Dd, Dn)           EMIT(FRINTxx_scalar(0b01, 0b01, Dn, Dd))
#define FRINT64ZS(Sd, Sn)           EMIT(FRINTxx_scalar(0b00, 0b10, Sn, Sd))
#define FRINT64ZD(Dd, Dn)           EMIT(FRINTxx_scalar(0b01, 0b10, Dn, Dd))
#define FRINT64XS(Sd, Sn)           EMIT(FRINTxx_scalar(0b00, 0b11, Sn, Sd))
#define FRINT64XD(Dd, Dn)           EMIT(FRINTxx_scalar(0b01, 0b11, Dn, Dd))

#define FRINTxx_vector(Q, U, sz, op, Rn, Rd)    ((Q)<<30 | (U)<<29 | 0b01110<<24 | (sz)<<22 | 0b10000<<17 | 0b1111<<13 | (op)<<12 | 0b10<<10 | (Rn)<<5 | (Rd))
#define VFRINT32ZS(Vd, Vn)          EMIT(FRINTxx_vector(0, 0, 0, 0, Vn, Vd))
#define VFRINT32ZSQ(Vd, Vn)         EMIT(FRINTxx_vector(1, 0, 0, 0, Vn, Vd))
#define VFRINT32XS(Vd, Vn)          EMIT(FRINTxx_vector(0, 1, 0, 0, Vn, Vd))
#define VFRINT32XSQ(Vd, Vn)         EMIT(FRINTxx_vector(1, 1, 0, 0, Vn, Vd))
#define VFRINT32ZD(Vd, Vn)          EMIT(FRINTxx_vector(0, 0, 1, 0, Vn, Vd))
#define VFRINT32ZDQ(Vd, Vn)         EMIT(FRINTxx_vector(1, 0, 1, 0, Vn, Vd))
#define VFRINT32XD(Vd, Vn)          EMIT(FRINTxx_vector(0, 1, 1, 0, Vn, Vd))
#define VFRINT32XDQ(Vd, Vn)         EMIT(FRINTxx_vector(1, 1, 1, 0, Vn, Vd))
#define VFRINT64ZS(Vd, Vn)          EMIT(FRINTxx_vector(0, 0, 0, 1, Vn, Vd))
#define VFRINT64ZSQ(Vd, Vn)         EMIT(FRINTxx_vector(1, 0, 0, 1, Vn, Vd))
#define VFRINT64XS(Vd, Vn)          EMIT(FRINTxx_vector(0, 1, 0, 1, Vn, Vd))
#define VFRINT64XSQ(Vd, Vn)         EMIT(FRINTxx_vector(1, 1, 0, 1, Vn, Vd))
#define VFRINT64ZD(Vd, Vn)          EMIT(FRINTxx_vector(0, 0, 1, 1, Vn, Vd))
#define VFRINT64ZDQ(Vd, Vn)         EMIT(FRINTxx_vector(1, 0, 1, 1, Vn, Vd))
#define VFRINT64XD(Vd, Vn)          EMIT(FRINTxx_vector(0, 1, 1, 1, Vn, Vd))
#define VFRINT64XDQ(Vd, Vn)         EMIT(FRINTxx_vector(1, 1, 1, 1, Vn, Vd))

// CRC32 extension
#define CRC32C_gen(sf, Rm, sz, Rn, Rd)  ((sf)<<31 | 0b11010110<<21 | (Rm)<<16 | 0b010<<13 | 1<<12 | (sz)<<10 | (Rn)<<5 | (Rd))
#define CRC32CB(Wd, Wn, Wm)         EMIT(CRC32C_gen(0, Wm, 0b00, Wn, Wd))
#define CRC32CH(Wd, Wn, Wm)         EMIT(CRC32C_gen(0, Wm, 0b01, Wn, Wd))
#define CRC32CW(Wd, Wn, Wm)         EMIT(CRC32C_gen(0, Wm, 0b10, Wn, Wd))
#define CRC32CX(Wd, Wn, Xm)         EMIT(CRC32C_gen(1, Xm, 0b11, Wn, Wd))
#define CRC32Cxw(Wd, Wn, Rm)        EMIT(CRC32C_gen(rex.w, Rm, 0b10|rex.w, Wn, Wd))

// SHA1 extension
#define SHA1H_gen(Rn, Rd)       (0b01011110<<24 | 0b10100<<17 | 0b10<<10 | (Rn)<<5 | (Rd))
// SHA1 fixed rotate (ROL 30 of 32bits value)
#define SHA1H(Sd, Sn)           EMIT(SHA1H_gen(Sn, Sd))

#define SHA1SU1_gen(Rn, Rd)     (0b01011110<<24 | 0b10100<<17 | 0b00001<<12 | 0b10<<10 | (Rn)<<5 | (Rd))
// SHA1 schedule update 1
#define SHA1SU1(Vd, Vn)         EMIT(SHA1SU1_gen(Vn, Vd))

#define SHA1C_gen(Rm, Rn, Rd)   (0b01011110<<24 | (Rm)<<16 | (Rn)<<5 | (Rd))
// SHA1 hash update (choose)
#define SHA1C(Qd, Sn, Vm)       EMIT(SHA1C_gen(Vm, Sn, Qd))

#define SHA1M_gen(Rm, Rn, Rd)   (0b01011110<<24 | (Rm)<<16 | 0b010<<12 | (Rn)<<5 | (Rd))
// SHA1 hash update (majority)
#define SHA1M(Qd, Sn, Vm)       EMIT(SHA1M_gen(Vm, Sn, Qd))

#define SHA1P_gen(Rm, Rn, Rd)   (0b01011110<<24 | (Rm)<<16 | 0b001<<12 | (Rn)<<5 | (Rd))
// SHA1 hash update (parity)
#define SHA1P(Qd, Sn, Vm)       EMIT(SHA1P_gen(Vm, Sn, Qd))

#define SHA256SU0_gen(Rn,Rd)    (0b01011110<<24 | 0b10100<<17 | 0b00010<<12 | 0b10<<10 | (Rn)<<5 | (Rd))
//SHA256 schedule update 0
#define SHA256SU0(Vd, Vn)       EMIT(SHA256SU0_gen(Vn, Vd))

#define SHA256SU1_gen(Rm, Rn, Rd)   (0b01011110<<24 | (Rm)<<16 | 0b110<<12 | (Rn)<<5 | (Rd))
//SHA256 schedule update 1
#define SHA256SU1(Vd, Vn, Vm)       EMIT(SHA256SU1_gen(Vm, Vn, Vd))

#define SHA256H_gen(Rm, Rn, Rd) (0b01011110<<24 | (Rm)<<16 | 0b100<<12 | (Rn)<<5 | (Rd))
//SHA256 hash update (part 1)
#define SHA256H(Vd, Vn, Vm)     EMIT(SHA256H_gen(Vm, Vn, Vd))

#define SHA256H2_gen(Rm, Rn, Rd)    (0b01011110<<24 | (Rm)<<16 | 0b101<<12 | (Rn)<<5 | (Rd))
//SHA256 hash update (part 2)
#define SHA256H2(Vd, Vn, Vm)        EMIT(SHA256H2_gen(Vm, Vn, Vd))

// LRCPC extension

#define LDAPR_gen(sz, Rn, Rt)   ((sz)<<30 | 0b111<<27 | 1<<23 | 1<<21 | 0b11111<<16 | 1<<15 | 0b100<<12 | (Rn)<<5 | (Rt))
#define LDAPRx(Rt, Rn)      EMIT(LDAPR_gen(0b11, Rn, Rt))
#define LDAPRw(Rt, Rn)      EMIT(LDAPR_gen(0b10, Rn, Rt))
#define LDAPRxw(Rt, Rn)     EMIT(LDAPR_gen(0b10+rex.w, Rn, Rt))
#define LDAPRz(Rt, Rn)      EMIT(LDAPR_gen(rex.is32bits?0b10:0b11, Rn, Rt))
#define LDAPRH(Rt, Rn)      EMIT(LDAPR_gen(0b01, Rn, Rt))
#define LDAPRB(Rt, Rn)      EMIT(LDAPR_gen(0b00, Rn, Rt))

#endif  //__ARM64_EMITTER_H__