1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
|
#ifndef __DYNAREC_RV64_HELPER_H__
#define __DYNAREC_RV64_HELPER_H__
// undef to get Close to SSE Float->int conversions
//#define PRECISE_CVT
#if STEP == 0
#include "dynarec_rv64_pass0.h"
#elif STEP == 1
#include "dynarec_rv64_pass1.h"
#elif STEP == 2
#include "dynarec_rv64_pass2.h"
#elif STEP == 3
#include "dynarec_rv64_pass3.h"
#endif
#include "debug.h"
#include "rv64_emitter.h"
#include "../emu/x64primop.h"
#define F8 *(uint8_t*)(addr++)
#define F8S *(int8_t*)(addr++)
#define F16 *(uint16_t*)(addr += 2, addr - 2)
#define F16S *(int16_t*)(addr += 2, addr - 2)
#define F32 *(uint32_t*)(addr += 4, addr - 4)
#define F32S *(int32_t*)(addr += 4, addr - 4)
#define F32S64 (uint64_t)(int64_t) F32S
#define F64 *(uint64_t*)(addr += 8, addr - 8)
#define PK(a) *(uint8_t*)(addr + a)
#define PK16(a) *(uint16_t*)(addr + a)
#define PK32(a) *(uint32_t*)(addr + a)
#define PK64(a) *(uint64_t*)(addr + a)
#define PKip(a) *(uint8_t*)(ip + a)
// Strong mem emulation helpers
#define SMREAD_MIN 2
#define SMWRITE_MIN 1
// Sequence of Read will trigger a DMB on "first" read if strongmem is >= SMREAD_MIN
// Sequence of Write will trigger a DMB on "last" write if strongmem is >= 1
// All Write operation that might use a lock all have a memory barrier if strongmem is >= SMWRITE_MIN
// Opcode will read
#define SMREAD() if((dyn->smread==0) && (box64_dynarec_strongmem>SMREAD_MIN)) {SMDMB();} else dyn->smread=1
// Opcode will read with option forced lock
#define SMREADLOCK(lock) if((lock) || ((dyn->smread==0) && (box64_dynarec_strongmem>SMREAD_MIN))) {SMDMB();}
// Opcode might read (depend on nextop)
#define SMMIGHTREAD() if(!MODREG) {SMREAD();}
// Opcode has wrote
#define SMWRITE() dyn->smwrite=1
// Opcode has wrote (strongmem>1 only)
#define SMWRITE2() if(box64_dynarec_strongmem>SMREAD_MIN) dyn->smwrite=1
// Opcode has wrote with option forced lock
#define SMWRITELOCK(lock) if(lock || (box64_dynarec_strongmem>SMWRITE_MIN)) {SMDMB();} else dyn->smwrite=1
// Opcode might have wrote (depend on nextop)
#define SMMIGHTWRITE() if(!MODREG) {SMWRITE();}
// Start of sequence
#define SMSTART() SMEND()
// End of sequence
#define SMEND() if(dyn->smwrite && box64_dynarec_strongmem) {FENCE();} dyn->smwrite=0; dyn->smread=0;
// Force a Data memory barrier (for LOCK: prefix)
#define SMDMB() FENCE(); dyn->smwrite=0; dyn->smread=1
// LOCK_* define
#define LOCK_LOCK (int*)1
// GETGD get x64 register in gd
#define GETGD gd = xRAX + ((nextop & 0x38) >> 3) + (rex.r << 3)
// GETED can use r1 for ed, and r2 for wback. wback is 0 if ed is xEAX..xEDI
#define GETED(D) \
if (MODREG) { \
ed = xRAX + (nextop & 7) + (rex.b << 3); \
wback = 0; \
} else { \
SMREAD(); \
addr = geted(dyn, addr, ninst, nextop, &wback, x2, x1, &fixedaddress, rex, NULL, 1, D); \
LDxw(x1, wback, fixedaddress); \
ed = x1; \
}
// GETSED can use r1 for ed, and r2 for wback. ed will be sign extended!
#define GETSED(D) \
if (MODREG) { \
ed = xRAX + (nextop & 7) + (rex.b << 3); \
wback = 0; \
if (!rex.w) { \
ADDW(x1, ed, xZR); \
ed = x1; \
} \
} else { \
SMREAD(); \
addr = geted(dyn, addr, ninst, nextop, &wback, x2, x1, &fixedaddress, rex, NULL, 1, D); \
if (rex.w) \
LD(x1, wback, fixedaddress); \
else \
LW(x1, wback, fixedaddress); \
ed = x1; \
}
// GETEDx can use r1 for ed, and r2 for wback. wback is 0 if ed is xEAX..xEDI
#define GETEDx(D) \
if (MODREG) { \
ed = xRAX + (nextop & 7) + (rex.b << 3); \
wback = 0; \
} else { \
SMREAD(); \
addr = geted(dyn, addr, ninst, nextop, &wback, x2, x1, &fixedaddress, rex, NULL, 1, D); \
LD(x1, wback, fixedaddress); \
ed = x1; \
}
#define GETEDz(D) \
if (MODREG) { \
ed = xRAX + (nextop & 7) + (rex.b << 3); \
wback = 0; \
} else { \
SMREAD(); \
addr = geted(dyn, addr, ninst, nextop, &wback, x2, x1, &fixedaddress, rex, NULL, 1, D); \
LDz(x1, wback, fixedaddress); \
ed = x1; \
}
// GETED32 can use r1 for ed, and r2 for wback. wback is 0 if ed is xEAX..xEDI
#define GETED32(D) \
if (MODREG) { \
ed = xRAX + (nextop & 7) + (rex.b << 3); \
wback = 0; \
} else { \
SMREAD(); \
addr = geted32(dyn, addr, ninst, nextop, &wback, x2, x1, &fixedaddress, rex, NULL, 1, D); \
LDxw(x1, wback, fixedaddress); \
ed = x1; \
}
// GETEDH can use hint for ed, and x1 or x2 for wback (depending on hint), might also use x3. wback is 0 if ed is xEAX..xEDI
#define GETEDH(hint, D) \
if (MODREG) { \
ed = xRAX + (nextop & 7) + (rex.b << 3); \
wback = 0; \
} else { \
SMREAD(); \
addr = geted(dyn, addr, ninst, nextop, &wback, (hint == x2) ? x1 : x2, (hint == x1) ? x1 : x3, &fixedaddress, rex, NULL, 1, D); \
LDxw(hint, wback, fixedaddress); \
ed = hint; \
}
// GETEDW can use hint for wback and ret for ed. wback is 0 if ed is xEAX..xEDI
#define GETEDW(hint, ret, D) \
if (MODREG) { \
ed = xRAX + (nextop & 7) + (rex.b << 3); \
MV(ret, ed); \
wback = 0; \
} else { \
SMREAD(); \
addr = geted(dyn, addr, ninst, nextop, &wback, (hint == x2) ? x1 : x2, (hint == x1) ? x1 : x3, &fixedaddress, rex, NULL, 0, D); \
ed = ret; \
LDxw(ed, wback, fixedaddress); \
}
// GETGW extract x64 register in gd, that is i
#define GETGW(i) \
gd = xRAX + ((nextop & 0x38) >> 3) + (rex.r << 3); \
ZEXTH(i, gd); \
gd = i;
// GETEWW will use i for ed, and can use w for wback.
#define GETEWW(w, i, D) \
if (MODREG) { \
wback = xRAX + (nextop & 7) + (rex.b << 3); \
ZEXTH(i, wback); \
ed = i; \
wb1 = 0; \
} else { \
SMREAD(); \
addr = geted(dyn, addr, ninst, nextop, &wback, w, i, &fixedaddress, rex, NULL, 1, D); \
LHU(i, wback, fixedaddress); \
ed = i; \
wb1 = 1; \
}
// GETEW will use i for ed, and *may* use x3 for wback.
#define GETEW(i, D) GETEWW(x3, i, D)
// GETSEW will use i for ed, and *may* use x3 for wback. This is the Signed version
#define GETSEW(i, D) \
if (MODREG) { \
wback = xRAX + (nextop & 7) + (rex.b << 3); \
SEXTH(i, wback); \
ed = i; \
wb1 = 0; \
} else { \
SMREAD(); \
addr = geted(dyn, addr, ninst, nextop, &wback, x3, i, &fixedaddress, rex, NULL, 1, D); \
LH(i, wback, fixedaddress); \
ed = i; \
wb1 = 1; \
}
// Write ed back to original register / memory
#define EWBACK EWBACKW(ed)
// Write w back to original register / memory (w needs to be 16bits only!)
#define EWBACKW(w) \
if (wb1) { \
SH(w, wback, fixedaddress); \
SMWRITE(); \
} else { \
SRLI(wback, wback, 16); \
SLLI(wback, wback, 16); \
OR(wback, wback, w); \
}
// Write back gd in correct register (gd needs to be 16bits only!)
#define GWBACK \
do { \
int g = xRAX + ((nextop & 0x38) >> 3) + (rex.r << 3); \
SRLI(g, g, 16); \
SLLI(g, g, 16); \
OR(g, g, gd); \
} while (0)
// GETEDO can use r1 for ed, and r2 for wback. wback is 0 if ed is xEAX..xEDI
#define GETEDO(O, D, S) \
if (MODREG) { \
ed = xRAX + (nextop & 7) + (rex.b << 3); \
wback = 0; \
} else { \
SMREAD(); \
addr = geted(dyn, addr, ninst, nextop, &wback, x2, S, &fixedaddress, rex, NULL, 1, D); \
ADD(S, wback, O); \
LDxw(x1, S, fixedaddress); \
ed = x1; \
}
// GETEDOz can use r1 for ed, and r2 for wback. wback is 0 if ed is xEAX..xEDI
#define GETEDOz(O, D, S) \
if (MODREG) { \
ed = xRAX + (nextop & 7) + (rex.b << 3); \
wback = 0; \
} else { \
SMREAD(); \
addr = geted(dyn, addr, ninst, nextop, &wback, x2, S, &fixedaddress, rex, NULL, 1, D); \
ADD(S, wback, O); \
LDz(x1, S, fixedaddress); \
ed = x1; \
}
#define WBACKO(O) \
if (wback) { \
ADD(O, wback, O); \
SDxw(ed, O, 0); \
SMWRITE2(); \
}
// FAKEED like GETED, but doesn't get anything
#define FAKEED \
if (!MODREG) { \
addr = fakeed(dyn, addr, ninst, nextop); \
}
// GETGW extract x64 register in gd, that is i, Signed extented
#define GETSGW(i) \
gd = xRAX + ((nextop & 0x38) >> 3) + (rex.r << 3); \
SLLIW(i, gd, 16); \
SRAIW(i, i, 16); \
gd = i;
// Write back ed in wback (if wback not 0)
#define WBACK \
if (wback) { \
SDxw(ed, wback, fixedaddress); \
SMWRITE(); \
}
// GETEB will use i for ed, and can use r3 for wback.
#define GETEB(i, D) \
if (MODREG) { \
if (rex.rex) { \
wback = xRAX + (nextop & 7) + (rex.b << 3); \
wb2 = 0; \
} else { \
wback = (nextop & 7); \
wb2 = (wback >> 2) * 8; \
wback = xRAX + (wback & 3); \
} \
if (wb2) { \
if (rv64_xtheadbb) { \
TH_EXTU(i, wback, 15, 8); \
} else { \
SRLI(i, wback, wb2); \
ANDI(i, i, 0xff); \
} \
} else \
ANDI(i, wback, 0xff); \
wb1 = 0; \
ed = i; \
} else { \
SMREAD(); \
addr = geted(dyn, addr, ninst, nextop, &wback, x3, x2, &fixedaddress, rex, NULL, 1, D); \
LBU(i, wback, fixedaddress); \
wb1 = 1; \
ed = i; \
}
// GETEBO will use i for ed, i is also Offset, and can use r3 for wback.
#define GETEBO(i, D) \
if (MODREG) { \
if (rex.rex) { \
wback = xRAX + (nextop & 7) + (rex.b << 3); \
wb2 = 0; \
} else { \
wback = (nextop & 7); \
wb2 = (wback >> 2) * 8; \
wback = xRAX + (wback & 3); \
} \
if (wb2) { \
if (rv64_xtheadbb) { \
TH_EXTU(i, wback, 15, 8); \
} else { \
SRLI(i, wback, wb2); \
ANDI(i, i, 0xff); \
} \
} else \
ANDI(i, wback, 0xff); \
wb1 = 0; \
ed = i; \
} else { \
SMREAD(); \
addr = geted(dyn, addr, ninst, nextop, &wback, x3, x2, &fixedaddress, rex, NULL, 1, D); \
ADD(x3, wback, i); \
if (wback != x3) wback = x3; \
LBU(i, wback, fixedaddress); \
wb1 = 1; \
ed = i; \
}
// GETSEB sign extend EB, will use i for ed, and can use r3 for wback.
#define GETSEB(i, D) \
if (MODREG) { \
if (rex.rex) { \
wback = xRAX + (nextop & 7) + (rex.b << 3); \
wb2 = 0; \
} else { \
wback = (nextop & 7); \
wb2 = (wback >> 2) * 8; \
wback = xRAX + (wback & 3); \
} \
MV(i, wback); \
SLLIW(i, i, 24 - wb2); \
SRAIW(i, i, 24); \
wb1 = 0; \
ed = i; \
} else { \
SMREAD(); \
addr = geted(dyn, addr, ninst, nextop, &wback, x2, x3, &fixedaddress, rex, NULL, 1, D); \
LB(i, wback, fixedaddress); \
wb1 = 1; \
ed = i; \
}
// GETEB32 will use i for ed, and can use r3 for wback.
#define GETEB32(i, D) \
if (MODREG) { \
if (rex.rex) { \
wback = xRAX + (nextop & 7) + (rex.b << 3); \
wb2 = 0; \
} else { \
wback = (nextop & 7); \
wb2 = (wback >> 2) * 8; \
wback = xRAX + (wback & 3); \
} \
if (wb2) { \
if (rv64_xtheadbb) { \
TH_EXTU(i, wback, 15, 8); \
} else { \
MV(i, wback); \
SRLI(i, i, wb2); \
ANDI(i, i, 0xff); \
} \
} else \
ANDI(i, wback, 0xff); \
wb1 = 0; \
ed = i; \
} else { \
SMREAD(); \
addr = geted32(dyn, addr, ninst, nextop, &wback, x3, x2, &fixedaddress, rex, NULL, 1, D); \
LBU(i, wback, fixedaddress); \
wb1 = 1; \
ed = i; \
}
// GETGB will use i for gd
#define GETGB(i) \
if (rex.rex) { \
gb1 = xRAX + ((nextop & 0x38) >> 3) + (rex.r << 3); \
gb2 = 0; \
} else { \
gd = (nextop & 0x38) >> 3; \
gb2 = ((gd & 4) >> 2); \
gb1 = xRAX + (gd & 3); \
} \
gd = i; \
if (gb2) { \
if (rv64_xtheadbb) { \
TH_EXTU(gd, gb1, 15, 8); \
} else { \
SRLI(gd, gb1, 8); \
ANDI(gd, gd, 0xff); \
} \
} else \
ANDI(gd, gb1, 0xff);
// Write gb (gd) back to original register / memory, using s1 as scratch
#define GBBACK(s1) do { \
if (gb2) { \
MOV64x(s1, 0xffffffffffff00ffLL); \
AND(gb1, gb1, s1); \
SLLI(s1, gd, 8); \
OR(gb1, gb1, s1); \
} else { \
ANDI(gb1, gb1, ~0xff); \
OR(gb1, gb1, gd); \
} } while (0)
// Write eb (ed) back to original register / memory, using s1 as scratch
#define EBBACK(s1, c) \
if (wb1) { \
SB(ed, wback, fixedaddress); \
SMWRITE(); \
} else if (wb2) { \
MOV64x(s1, 0xffffffffffff00ffLL); \
AND(wback, wback, s1); \
if (c) { ANDI(ed, ed, 0xff); } \
SLLI(s1, ed, 8); \
OR(wback, wback, s1); \
} else { \
ANDI(wback, wback, ~0xff); \
if (c) { ANDI(ed, ed, 0xff); } \
OR(wback, wback, ed); \
}
// Get direction with size Z and based of F_DF flag, on register r ready for load/store fetching
// using s as scratch.
#define GETDIR(r, s, Z) \
MOV32w(r, Z); /* mask=1<<10 */ \
ANDI(s, xFlags, 1 << F_DF); \
BEQZ(s, 8); \
SUB(r, xZR, r);
// Generic get GD, but reg value in gd (R_RAX is not added)
#define GETG gd = ((nextop & 0x38) >> 3) + (rex.r << 3)
// Get GX as a Single (might use x2)
#define GETGXSS(a) \
gd = ((nextop & 0x38) >> 3) + (rex.r << 3); \
a = sse_get_reg(dyn, ninst, x2, gd, 1)
// Get GX as a Single (might use x2), no fetching old value
#define GETGXSS_empty(a) \
gd = ((nextop & 0x38) >> 3) + (rex.r << 3); \
a = sse_get_reg_empty(dyn, ninst, x2, gd, 1)
// Get GX as a Double (might use x2)
#define GETGXSD(a) \
gd = ((nextop & 0x38) >> 3) + (rex.r << 3); \
a = sse_get_reg(dyn, ninst, x2, gd, 0)
// Get GX as a Double (might use x2), no fetching old value
#define GETGXSD_empty(a) \
gd = ((nextop & 0x38) >> 3) + (rex.r << 3); \
a = sse_get_reg_empty(dyn, ninst, x2, gd, 0)
// Get Ex as a single, not a quad (warning, x1 get used, x2 might too)
#define GETEXSS(a, D) \
if (MODREG) { \
a = sse_get_reg(dyn, ninst, x1, (nextop & 7) + (rex.b << 3), 1); \
} else { \
SMREAD(); \
a = fpu_get_scratch(dyn); \
addr = geted(dyn, addr, ninst, nextop, &ed, x1, x2, &fixedaddress, rex, NULL, 1, D); \
FLW(a, ed, fixedaddress); \
}
// Get Ex as a double, not a quad (warning, x1 get used, x2 might too)
#define GETEXSD(a, D) \
if (MODREG) { \
a = sse_get_reg(dyn, ninst, x1, (nextop & 7) + (rex.b << 3), 0); \
} else { \
SMREAD(); \
a = fpu_get_scratch(dyn); \
addr = geted(dyn, addr, ninst, nextop, &ed, x1, x2, &fixedaddress, rex, NULL, 1, D); \
FLD(a, ed, fixedaddress); \
}
// Will get pointer to GX in general register a, will purge SS or SD if loaded. May use x3. can use gback as load address
#define GETGX() \
gd = ((nextop & 0x38) >> 3) + (rex.r << 3); \
sse_forget_reg(dyn, ninst, x3, gd); \
gback = xEmu; \
gdoffset = offsetof(x64emu_t, xmm[gd])
// Get Ex address in general register a, will purge SS or SD if it's reg and is loaded. May use x3. Use wback as load address!
#define GETEX(a, D) \
if (MODREG) { \
ed = (nextop & 7) + (rex.b << 3); \
sse_forget_reg(dyn, ninst, x3, ed); \
fixedaddress = offsetof(x64emu_t, xmm[ed]); \
wback = xEmu; \
} else { \
SMREAD(); \
ed = 16; \
addr = geted(dyn, addr, ninst, nextop, &wback, a, x3, &fixedaddress, rex, NULL, 0, D); \
fixedaddress = 0; /* TODO: optimize this! */ \
}
// Get GX as a quad (might use x1)
#define GETGX_vector(a, w) \
gd = ((nextop & 0x38) >> 3) + (rex.r << 3); \
a = sse_get_reg_vector(dyn, ninst, x1, gd, w)
// Get EX as a quad, (x1 is used)
#define GETEX_vector(a, w, D) \
if (MODREG) { \
a = sse_get_reg_vector(dyn, ninst, x1, (nextop & 7) + (rex.b << 3), w); \
} else { \
SMREAD(); \
addr = geted(dyn, addr, ninst, nextop, &ed, x3, x2, &fixedaddress, rex, NULL, 1, D); \
a = fpu_get_scratch(dyn); \
ADDI(x2, ed, fixedaddress); \
VL1RE64_V(a, x2); \
}
#define GETGM() \
gd = ((nextop & 0x38) >> 3); \
mmx_forget_reg(dyn, ninst, gd); \
gback = xEmu; \
gdoffset = offsetof(x64emu_t, mmx[gd])
// Get EM, might use x3
#define GETEM(a, D) \
if (MODREG) { \
ed = (nextop & 7); \
mmx_forget_reg(dyn, ninst, ed); \
fixedaddress = offsetof(x64emu_t, mmx[ed]); \
wback = xEmu; \
} else { \
SMREAD(); \
ed = 8; \
addr = geted(dyn, addr, ninst, nextop, &wback, a, x3, &fixedaddress, rex, NULL, 0, D); \
fixedaddress = 0; /* TODO: optimize this! */ \
}
#define GETGX_empty_vector(a) \
gd = ((nextop & 0x38) >> 3) + (rex.r << 3); \
a = sse_get_reg_empty_vector(dyn, ninst, x1, gd)
#define SSE_LOOP_D_ITEM(GX1, EX1, F, i) \
LWU(GX1, gback, gdoffset + i * 4); \
LWU(EX1, wback, fixedaddress + i * 4); \
F; \
SW(GX1, gback, gdoffset + i * 4);
// Loop for SSE opcode that use 32bits value and write to GX.
#define SSE_LOOP_D(GX1, EX1, F) \
SSE_LOOP_D_ITEM(GX1, EX1, F, 0) \
SSE_LOOP_D_ITEM(GX1, EX1, F, 1) \
SSE_LOOP_D_ITEM(GX1, EX1, F, 2) \
SSE_LOOP_D_ITEM(GX1, EX1, F, 3)
#define SSE_LOOP_DS_ITEM(GX1, EX1, F, i) \
LW(GX1, gback, gdoffset + i * 4); \
LW(EX1, wback, fixedaddress + i * 4); \
F; \
SW(GX1, gback, gdoffset + i * 4);
// Loop for SSE opcode that use 32bits value and write to GX.
#define SSE_LOOP_DS(GX1, EX1, F) \
SSE_LOOP_DS_ITEM(GX1, EX1, F, 0) \
SSE_LOOP_DS_ITEM(GX1, EX1, F, 1) \
SSE_LOOP_DS_ITEM(GX1, EX1, F, 2) \
SSE_LOOP_DS_ITEM(GX1, EX1, F, 3)
#define MMX_LOOP_D(GX1, EX1, F) \
for (int i = 0; i < 2; ++i) { \
LWU(GX1, gback, gdoffset + i * 4); \
LWU(EX1, wback, fixedaddress + i * 4); \
F; \
SW(GX1, gback, gdoffset + i * 4); \
}
#define MMX_LOOP_DS(GX1, EX1, F) \
for (int i = 0; i < 2; ++i) { \
LW(GX1, gback, gdoffset + i * 4); \
LW(EX1, wback, fixedaddress + i * 4); \
F; \
SW(GX1, gback, gdoffset + i * 4); \
}
#define MMX_LOOP_W(GX1, EX1, F) \
for (int i = 0; i < 4; ++i) { \
LHU(GX1, gback, gdoffset + i * 2); \
LHU(EX1, wback, fixedaddress + i * 2); \
F; \
SH(GX1, gback, gdoffset + i * 2); \
}
#define MMX_LOOP_WS(GX1, EX1, F) \
for (int i = 0; i < 4; ++i) { \
LH(GX1, gback, gdoffset + i * 2); \
LH(EX1, wback, fixedaddress + i * 2); \
F; \
SH(GX1, gback, gdoffset + i * 2); \
}
#define SSE_LOOP_W(GX1, EX1, F) \
for (int i = 0; i < 8; ++i) { \
LHU(GX1, gback, gdoffset + i * 2); \
LHU(EX1, wback, fixedaddress + i * 2); \
F; \
SH(GX1, gback, gdoffset + i * 2); \
}
#define SSE_LOOP_WS(GX1, EX1, F) \
for (int i = 0; i < 8; ++i) { \
LH(GX1, gback, gdoffset + i * 2); \
LH(EX1, wback, fixedaddress + i * 2); \
F; \
SH(GX1, gback, gdoffset + i * 2); \
}
#define SSE_LOOP_D_S_ITEM(EX1, F, i) \
LWU(EX1, wback, fixedaddress + i * 4); \
F; \
SW(EX1, wback, fixedaddress + i * 4);
// Loop for SSE opcode that use 32bits value and write to EX.
#define SSE_LOOP_D_S(EX1, F) \
SSE_LOOP_D_S_ITEM(EX1, F, 0) \
SSE_LOOP_D_S_ITEM(EX1, F, 1) \
SSE_LOOP_D_S_ITEM(EX1, F, 2) \
SSE_LOOP_D_S_ITEM(EX1, F, 3)
#define SSE_LOOP_Q_ITEM(GX1, EX1, F, i) \
LD(GX1, gback, gdoffset + i * 8); \
LD(EX1, wback, fixedaddress + i * 8); \
F; \
SD(GX1, gback, gdoffset + i * 8);
// Loop for SSE opcode that use 64bits value and write to GX.
#define SSE_LOOP_Q(GX1, EX1, F) \
SSE_LOOP_Q_ITEM(GX1, EX1, F, 0) \
SSE_LOOP_Q_ITEM(GX1, EX1, F, 1)
#define SSE_LOOP_FQ_ITEM(GX1, EX1, F, i) \
FLD(v0, gback, gdoffset + i * 8); \
FLD(v1, wback, fixedaddress + i * 8); \
F; \
FSD(v0, gback, gdoffset + i * 8);
#define SSE_LOOP_FQ(GX1, EX1, F) \
v0 = fpu_get_scratch(dyn); \
v1 = fpu_get_scratch(dyn); \
SSE_LOOP_FQ_ITEM(GX1, EX1, F, 0) \
SSE_LOOP_FQ_ITEM(GX1, EX1, F, 1)
#define SSE_LOOP_MV_Q_ITEM(s, i) \
LD(s, wback, fixedaddress + i * 8); \
SD(s, gback, gdoffset + i * 8);
// Loop for SSE opcode that moves 64bits value from wback to gback, use s as scratch.
#define SSE_LOOP_MV_Q(s) \
SSE_LOOP_MV_Q_ITEM(s, 0) \
SSE_LOOP_MV_Q_ITEM(s, 1)
#define SSE_LOOP_MV_Q_ITEM2(s, i) \
LD(s, gback, gdoffset + i * 8); \
SD(s, wback, fixedaddress + i * 8);
// Loop for SSE opcode that moves 64bits value from gback to wback, use s as scratch.
#define SSE_LOOP_MV_Q2(s) \
SSE_LOOP_MV_Q_ITEM2(s, 0) \
SSE_LOOP_MV_Q_ITEM2(s, 1)
// CALL will use x6 for the call address. Return value can be put in ret (unless ret is -1)
// R0 will not be pushed/popd if ret is -2
#define CALL(F, ret) call_c(dyn, ninst, F, x6, ret, 1, 0)
// CALL_ will use x6 for the call address. Return value can be put in ret (unless ret is -1)
// R0 will not be pushed/popd if ret is -2
#define CALL_(F, ret, reg) call_c(dyn, ninst, F, x6, ret, 1, reg)
// CALL_S will use x6 for the call address. Return value can be put in ret (unless ret is -1)
// R0 will not be pushed/popd if ret is -2. Flags are not save/restored
#define CALL_S(F, ret) call_c(dyn, ninst, F, x6, ret, 0, 0)
#define MARKi(i) dyn->insts[ninst].mark[i] = dyn->native_size
#define GETMARKi(i) dyn->insts[ninst].mark[i]
#define MARK MARKi(0)
#define GETMARK GETMARKi(0)
#define MARK2 MARKi(1)
#define GETMARK2 GETMARKi(1)
#define MARK3 MARKi(2)
#define GETMARK3 GETMARKi(2)
#define MARKFi(i) dyn->insts[ninst].markf[i] = dyn->native_size
#define GETMARKFi(i) dyn->insts[ninst].markf[i]
#define MARKF MARKFi(0)
#define GETMARKF GETMARKFi(0)
#define MARKF2 MARKFi(1)
#define GETMARKF2 GETMARKFi(1)
#define MARKSEG dyn->insts[ninst].markseg = dyn->native_size
#define GETMARKSEG dyn->insts[ninst].markseg
#define MARKLOCK dyn->insts[ninst].marklock = dyn->native_size
#define GETMARKLOCK dyn->insts[ninst].marklock
#define Bxx_gen(OP, M, reg1, reg2) \
j64 = GET##M - dyn->native_size; \
B##OP(reg1, reg2, j64)
#define Bxx_geni(OP, M, reg1, reg2, i) \
j64 = GET##M##i(i) - dyn->native_size; \
B##OP(reg1, reg2, j64)
// Branch to MARK if reg1==reg2 (use j64)
#define BEQ_MARK(reg1, reg2) Bxx_gen(EQ, MARK, reg1, reg2)
#define BEQ_MARKi(reg1, reg2, i) Bxx_geni(EQ, MARK, reg1, reg2, i)
// Branch to MARK if reg1==0 (use j64)
#define BEQZ_MARK(reg) BEQ_MARK(reg, xZR)
#define BEQZ_MARKi(reg, i) BEQ_MARKi(reg, xZR, i)
// Branch to MARK if reg1!=reg2 (use j64)
#define BNE_MARK(reg1, reg2) Bxx_gen(NE, MARK, reg1, reg2)
#define BNE_MARKi(reg1, reg2, i) Bxx_geni(NE, MARK, reg1, reg2, i)
// Branch to MARK if reg1!=0 (use j64)
#define BNEZ_MARK(reg) BNE_MARK(reg, xZR)
#define BNEZ_MARKi(reg, i) BNE_MARKi(reg, xZR, i)
// Branch to MARK instruction unconditionnal (use j64)
#define B_MARK_nocond Bxx_gen(__, MARK, 0, 0)
#define B_MARKi_nocond Bxx_geni(__, MARK, 0, 0, i)
// Branch to MARK if reg1<reg2 (use j64)
#define BLT_MARK(reg1, reg2) Bxx_gen(LT, MARK, reg1, reg2)
#define BLT_MARKi(reg1, reg2) Bxx_geni(LT, MARK, reg1, reg2, i)
// Branch to MARK if reg1<reg2 (use j64)
#define BLTU_MARK(reg1, reg2) Bxx_gen(LTU, MARK, reg1, reg2)
#define BLTU_MARKi(reg1, reg2) Bxx_geni(LTU, MARK, reg1, reg2, i)
// Branch to MARK if reg1>=reg2 (use j64)
#define BGE_MARK(reg1, reg2) Bxx_gen(GE, MARK, reg1, reg2)
#define BGE_MARKi(reg1, reg2) Bxx_geni(GE, MARK, reg1, reg2, i)
// Branch to MARK2 if reg1==reg2 (use j64)
#define BEQ_MARK2(reg1, reg2) Bxx_gen(EQ, MARK2, reg1, reg2)
// Branch to MARK2 if reg1!=reg2 (use j64)
#define BNE_MARK2(reg1, reg2) Bxx_gen(NE, MARK2, reg1, reg2)
// Branch to MARK2 if reg1!=0 (use j64)
#define BNEZ_MARK2(reg) BNE_MARK2(reg, xZR)
// Branch to MARK2 if reg1<reg2 (use j64)
#define BLT_MARK2(reg1, reg2) Bxx_gen(LT, MARK2, reg1, reg2)
// Branch to MARK2 instruction unconditionnal (use j64)
#define B_MARK2_nocond Bxx_gen(__, MARK2, 0, 0)
// Branch to MARK3 if reg1==reg2 (use j64)
#define BEQ_MARK3(reg1, reg2) Bxx_gen(EQ, MARK3, reg1, reg2)
// Branch to MARK3 if reg1!=reg2 (use j64)
#define BNE_MARK3(reg1, reg2) Bxx_gen(NE, MARK3, reg1, reg2)
// Branch to MARK3 if reg1!>=reg2 (use j64)
#define BGE_MARK3(reg1, reg2) Bxx_gen(GE, MARK3, reg1, reg2)
// Branch to MARK3 if reg1!=0 (use j64)
#define BNEZ_MARK3(reg) BNE_MARK3(reg, xZR)
// Branch to MARK3 if reg1==0 (use j64)
#define BEQZ_MARK3(reg) BEQ_MARK3(reg, xZR)
// Branch to MARK3 instruction unconditionnal (use j64)
#define B_MARK3_nocond Bxx_gen(__, MARK3, 0, 0)
// Branch to MARKLOCK if reg1!=reg2 (use j64)
#define BNE_MARKLOCK(reg1, reg2) Bxx_gen(NE, MARKLOCK, reg1, reg2)
// Branch to MARKLOCK if reg1!=0 (use j64)
#define BNEZ_MARKLOCK(reg) BNE_MARKLOCK(reg, xZR)
// Branch to NEXT if reg1==reg2 (use j64)
#define BEQ_NEXT(reg1, reg2) \
j64 = (dyn->insts) ? (dyn->insts[ninst].epilog - (dyn->native_size)) : 0; \
BEQ(reg1, reg2, j64)
// Branch to NEXT if reg1!=reg2 (use j64)
#define BNE_NEXT(reg1, reg2) \
j64 = (dyn->insts) ? (dyn->insts[ninst].epilog - (dyn->native_size)) : 0; \
BNE(reg1, reg2, j64)
// Branch to NEXT if reg1==0 (use j64)
#define CBZ_NEXT(reg1) \
j64 = (dyn->insts) ? (dyn->insts[ninst].epilog - (dyn->native_size)) : 0; \
BEQ(reg1, xZR, j64)
// Branch to NEXT if reg1!=0 (use j64)
#define CBNZ_NEXT(reg1) \
j64 = (dyn->insts) ? (dyn->insts[ninst].epilog - (dyn->native_size)) : 0; \
BNE(reg1, xZR, j64)
// Branch to next instruction unconditionnal (use j64)
#define B_NEXT_nocond \
j64 = (dyn->insts) ? (dyn->insts[ninst].epilog - (dyn->native_size)) : 0; \
B(j64)
// Branch to MARKSEG if reg is 0 (use j64)
#define CBZ_MARKSEG(reg) \
j64 = GETMARKSEG - (dyn->native_size); \
BEQZ(reg, j64);
// Branch to MARKSEG if reg is not 0 (use j64)
#define CBNZ_MARKSEG(reg) \
j64 = GETMARKSEG - (dyn->native_size); \
BNEZ(reg, j64);
#define IFX(A) if ((dyn->insts[ninst].x64.gen_flags & (A)))
#define IFX_PENDOR0 if ((dyn->insts[ninst].x64.gen_flags & (X_PEND) || !dyn->insts[ninst].x64.gen_flags))
#define IFXX(A) if ((dyn->insts[ninst].x64.gen_flags == (A)))
#define IFX2X(A, B) if ((dyn->insts[ninst].x64.gen_flags == (A) || dyn->insts[ninst].x64.gen_flags == (B) || dyn->insts[ninst].x64.gen_flags == ((A) | (B))))
#define IFXN(A, B) if ((dyn->insts[ninst].x64.gen_flags & (A) && !(dyn->insts[ninst].x64.gen_flags & (B))))
#define STORE_REG(A) SD(x##A, xEmu, offsetof(x64emu_t, regs[_##A]))
#define LOAD_REG(A) LD(x##A, xEmu, offsetof(x64emu_t, regs[_##A]))
// Need to also store current value of some register, as they may be used by functions like setjmp
#define STORE_XEMU_CALL(s0) \
if (rv64_xtheadmempair) { \
ADDI(s0, xEmu, offsetof(x64emu_t, regs[_RSP])); \
TH_SDD(xRDX, xRBX, xEmu, 1); \
TH_SDD(xRSP, xRBP, s0, 0); \
TH_SDD(xRSI, xRDI, s0, 1); \
TH_SDD(xR8, xR9, s0, 2); \
TH_SDD(xR10, xR11, s0, 3); \
} else { \
STORE_REG(RBX); \
STORE_REG(RDX); \
STORE_REG(RSP); \
STORE_REG(RBP); \
STORE_REG(RDI); \
STORE_REG(RSI); \
STORE_REG(R8); \
STORE_REG(R9); \
STORE_REG(R10); \
STORE_REG(R11); \
}
#define LOAD_XEMU_CALL()
#define LOAD_XEMU_REM(s0) \
if (rv64_xtheadmempair) { \
ADDI(s0, xEmu, offsetof(x64emu_t, regs[_RSP])); \
TH_LDD(xRDX, xRBX, xEmu, 1); \
TH_LDD(xRSP, xRBP, s0, 0); \
TH_LDD(xRSI, xRDI, s0, 1); \
TH_LDD(xR8, xR9, s0, 2); \
TH_LDD(xR10, xR11, s0, 3); \
} else { \
LOAD_REG(RBX); \
LOAD_REG(RDX); \
LOAD_REG(RSP); \
LOAD_REG(RBP); \
LOAD_REG(RDI); \
LOAD_REG(RSI); \
LOAD_REG(R8); \
LOAD_REG(R9); \
LOAD_REG(R10); \
LOAD_REG(R11); \
}
#define SET_DFNONE() \
do { \
dyn->f.dfnone_here=1; \
if (!dyn->f.dfnone) { \
SW(xZR, xEmu, offsetof(x64emu_t, df)); \
dyn->f.dfnone = 1; \
} } while(0);
#define SET_DF(S, N) \
if ((N) != d_none) { \
MOV_U12(S, (N)); \
SW(S, xEmu, offsetof(x64emu_t, df)); \
dyn->f.dfnone = 0; \
} else \
SET_DFNONE()
#define SET_NODF() dyn->f.dfnone = 0
#define SET_DFOK() dyn->f.dfnone = 1; dyn->f.dfnone_here=1
#define CLEAR_FLAGS() \
IFX(X_ALL) { ANDI(xFlags, xFlags, ~((1UL << F_AF) | (1UL << F_CF) | (1UL << F_OF2) | (1UL << F_ZF) | (1UL << F_SF) | (1UL << F_PF))); }
#define CALC_SUB_FLAGS(op1_, op2, res, scratch1, scratch2, width) \
IFX(X_AF | X_CF | X_OF) \
{ \
/* calc borrow chain */ \
/* bc = (res & (~op1 | op2)) | (~op1 & op2) */ \
OR(scratch1, op1_, op2); \
AND(scratch2, res, scratch1); \
AND(op1_, op1_, op2); \
OR(scratch2, scratch2, op1_); \
IFX(X_AF) \
{ \
/* af = bc & 0x8 */ \
ANDI(scratch1, scratch2, 8); \
BEQZ(scratch1, 8); \
ORI(xFlags, xFlags, 1 << F_AF); \
} \
IFX(X_CF) \
{ \
/* cf = bc & (1<<(width-1)) */ \
if ((width) == 8) { \
ANDI(scratch1, scratch2, 0x80); \
} else { \
SRLI(scratch1, scratch2, (width)-1); \
if ((width) != 64) ANDI(scratch1, scratch1, 1); \
} \
BEQZ(scratch1, 8); \
ORI(xFlags, xFlags, 1 << F_CF); \
} \
IFX(X_OF) \
{ \
/* of = ((bc >> (width-2)) ^ (bc >> (width-1))) & 0x1; */ \
SRLI(scratch1, scratch2, (width)-2); \
SRLI(scratch2, scratch1, 1); \
XOR(scratch1, scratch1, scratch2); \
ANDI(scratch1, scratch1, 1); \
BEQZ(scratch1, 8); \
ORI(xFlags, xFlags, 1 << F_OF2); \
} \
}
// Adjust the flags bit 11 -> bit 5, result in reg (can be same as flags, but not s1)
#define FLAGS_ADJUST_FROM11(reg, flags, s1) \
ANDI(reg, flags, ~(1 << 5)); \
SRLI(s1, reg, 11 - 5); \
ANDI(s1, s1, 1 << 5); \
OR(reg, reg, s1)
// Adjust the xFlags bit 5 -> bit 11, src and dst can be the same (and can be xFlags, but not s1)
#define FLAGS_ADJUST_TO11(dst, src, s1) \
LUI(s1, 0xFFFFF); \
ADDIW(s1, s1, 0x7DF); \
AND(s1, src, s1); \
ANDI(dst, src, 1 << 5); \
SLLI(dst, dst, 11 - 5); \
OR(dst, dst, s1)
#if STEP == 0
#define X87_PUSH_OR_FAIL(var, dyn, ninst, scratch, t) var = x87_do_push(dyn, ninst, scratch, t)
#define X87_PUSH_EMPTY_OR_FAIL(dyn, ninst, scratch) x87_do_push_empty(dyn, ninst, scratch)
#define X87_POP_OR_FAIL(dyn, ninst, scratch) x87_do_pop(dyn, ninst, scratch)
#else
#define X87_PUSH_OR_FAIL(var, dyn, ninst, scratch, t) \
if ((dyn->e.x87stack==8) || (dyn->e.pushed==8)) { \
if(box64_dynarec_dump) dynarec_log(LOG_NONE, " Warning, suspicious x87 Push, stack=%d/%d on inst %d\n", dyn->e.x87stack, dyn->e.pushed, ninst); \
dyn->abort = 1; \
return addr; \
} \
var = x87_do_push(dyn, ninst, scratch, t);
#define X87_PUSH_EMPTY_OR_FAIL(dyn, ninst, scratch) \
if ((dyn->e.x87stack==8) || (dyn->e.pushed==8)) { \
if(box64_dynarec_dump) dynarec_log(LOG_NONE, " Warning, suspicious x87 Push, stack=%d/%d on inst %d\n", dyn->e.x87stack, dyn->e.pushed, ninst); \
dyn->abort = 1; \
return addr; \
} \
x87_do_push_empty(dyn, ninst, scratch);
#define X87_POP_OR_FAIL(dyn, ninst, scratch) \
if ((dyn->e.x87stack==-8) || (dyn->e.poped==8)) { \
if(box64_dynarec_dump) dynarec_log(LOG_NONE, " Warning, suspicious x87 Pop, stack=%d/%d on inst %d\n", dyn->e.x87stack, dyn->e.poped, ninst); \
dyn->abort = 1; \
return addr; \
} \
x87_do_pop(dyn, ninst, scratch);
#endif
#ifndef MAYSETFLAGS
#define MAYSETFLAGS() do {} while (0)
#endif
#ifndef READFLAGS
#define READFLAGS(A) \
if (((A) != X_PEND && dyn->f.pending != SF_SET) \
&& (dyn->f.pending != SF_SET_PENDING)) { \
if (dyn->f.pending != SF_PENDING) { \
LD(x3, xEmu, offsetof(x64emu_t, df)); \
j64 = (GETMARKF) - (dyn->native_size); \
BEQ(x3, xZR, j64); \
} \
CALL_(UpdateFlags, -1, 0); \
MARKF; \
dyn->f.pending = SF_SET; \
SET_DFOK(); \
}
#endif
#ifndef SETFLAGS
#define SETFLAGS(A, B) \
if (dyn->f.pending != SF_SET \
&& ((B)&SF_SUB) \
&& (dyn->insts[ninst].x64.gen_flags & (~(A)))) \
READFLAGS(((dyn->insts[ninst].x64.gen_flags & X_PEND) ? X_ALL : dyn->insts[ninst].x64.gen_flags) & (~(A))); \
if (dyn->insts[ninst].x64.gen_flags) switch (B) { \
case SF_SUBSET: \
case SF_SET: dyn->f.pending = SF_SET; break; \
case SF_SET_DF: dyn->f.pending = SF_SET; dyn->f.dfnone = 1; break; \
case SF_SET_NODF: dyn->f.pending = SF_SET; dyn->f.dfnone = 0; break; \
case SF_PENDING: dyn->f.pending = SF_PENDING; break; \
case SF_SUBSET_PENDING: \
case SF_SET_PENDING: \
dyn->f.pending = (dyn->insts[ninst].x64.gen_flags & X_PEND) ? SF_SET_PENDING : SF_SET; \
break; \
} \
else \
dyn->f.pending = SF_SET
#endif
#ifndef JUMP
#define JUMP(A, C)
#endif
#ifndef BARRIER
#define BARRIER(A)
#endif
#ifndef BARRIER_NEXT
#define BARRIER_NEXT(A)
#endif
#ifndef SET_HASCALLRET
#define SET_HASCALLRET()
#endif
#define UFLAG_OP1(A) \
if (dyn->insts[ninst].x64.gen_flags) { SDxw(A, xEmu, offsetof(x64emu_t, op1)); }
#define UFLAG_OP2(A) \
if (dyn->insts[ninst].x64.gen_flags) { SDxw(A, xEmu, offsetof(x64emu_t, op2)); }
#define UFLAG_OP12(A1, A2) \
if (dyn->insts[ninst].x64.gen_flags) { \
SDxw(A1, xEmu, offsetof(x64emu_t, op1)); \
SDxw(A2, xEmu, offsetof(x64emu_t, op2)); \
}
#define UFLAG_RES(A) \
if (dyn->insts[ninst].x64.gen_flags) { SDxw(A, xEmu, offsetof(x64emu_t, res)); }
#define UFLAG_DF(r, A) \
if (dyn->insts[ninst].x64.gen_flags) { SET_DF(r, A) }
#define UFLAG_IF if (dyn->insts[ninst].x64.gen_flags)
#ifndef DEFAULT
#define DEFAULT \
*ok = -1; \
BARRIER(2)
#endif
#ifndef DEFAULT_VECTOR
#define DEFAULT_VECTOR return 0
#endif
#ifndef TABLE64
#define TABLE64(A, V)
#endif
#ifndef FTABLE64
#define FTABLE64(A, V)
#endif
#define ARCH_INIT() \
dyn->vector_sew = VECTOR_SEWNA;
#define ARCH_RESET() \
dyn->vector_sew = VECTOR_SEWNA;
#if STEP < 2
#define GETIP(A) TABLE64(0, 0)
#define GETIP_(A) TABLE64(0, 0)
#else
// put value in the Table64 even if not using it for now to avoid difference between Step2 and Step3. Needs to be optimized later...
#define GETIP(A) \
if (dyn->last_ip && ((A)-dyn->last_ip) < 2048) { \
uint64_t _delta_ip = (A)-dyn->last_ip; \
dyn->last_ip += _delta_ip; \
if (_delta_ip) { \
ADDI(xRIP, xRIP, _delta_ip); \
} \
} else { \
dyn->last_ip = (A); \
if (dyn->last_ip < 0xffffffff) { \
MOV64x(xRIP, dyn->last_ip); \
} else \
TABLE64(xRIP, dyn->last_ip); \
}
#define GETIP_(A) \
if (dyn->last_ip && ((A)-dyn->last_ip) < 2048) { \
int64_t _delta_ip = (A)-dyn->last_ip; \
if (_delta_ip) { ADDI(xRIP, xRIP, _delta_ip); } \
} else { \
if ((A) < 0xffffffff) { \
MOV64x(xRIP, (A)); \
} else \
TABLE64(xRIP, (A)); \
}
#endif
#define CLEARIP() dyn->last_ip = 0
#if STEP < 2
#define PASS2IF(A, B) if (A)
#elif STEP == 2
#define PASS2IF(A, B) \
if (A) dyn->insts[ninst].pass2choice = B; \
if (dyn->insts[ninst].pass2choice == B)
#else
#define PASS2IF(A, B) if (dyn->insts[ninst].pass2choice == B)
#endif
#define MODREG ((nextop & 0xC0) == 0xC0)
#ifndef SET_ELEMENT_WIDTH
#define SET_ELEMENT_WIDTH(s1, sew) \
do { \
if (sew == VECTOR_SEWNA) { \
} else if (sew == VECTOR_SEWANY && dyn->vector_sew != VECTOR_SEWNA) { \
} else if (sew == dyn->vector_sew) { \
} else { \
vector_vsetvl_emul1(dyn, ninst, s1, sew); \
} \
dyn->vector_sew = sew; \
} while (0)
#endif
void rv64_epilog(void);
void rv64_epilog_fast(void);
void* rv64_next(x64emu_t* emu, uintptr_t addr);
#ifndef STEPNAME
#define STEPNAME3(N, M) N##M
#define STEPNAME2(N, M) STEPNAME3(N, M)
#define STEPNAME(N) STEPNAME2(N, STEP)
#endif
#define native_pass STEPNAME(native_pass)
#define dynarec64_00 STEPNAME(dynarec64_00)
#define dynarec64_00_0 STEPNAME(dynarec64_00_0)
#define dynarec64_00_1 STEPNAME(dynarec64_00_1)
#define dynarec64_00_2 STEPNAME(dynarec64_00_2)
#define dynarec64_00_3 STEPNAME(dynarec64_00_3)
#define dynarec64_0F STEPNAME(dynarec64_0F)
#define dynarec64_64 STEPNAME(dynarec64_64)
#define dynarec64_65 STEPNAME(dynarec64_65)
#define dynarec64_66 STEPNAME(dynarec64_66)
#define dynarec64_67 STEPNAME(dynarec64_67)
#define dynarec64_67_32 STEPNAME(dynarec64_67_32)
#define dynarec64_D8 STEPNAME(dynarec64_D8)
#define dynarec64_D9 STEPNAME(dynarec64_D9)
#define dynarec64_DA STEPNAME(dynarec64_DA)
#define dynarec64_DB STEPNAME(dynarec64_DB)
#define dynarec64_DC STEPNAME(dynarec64_DC)
#define dynarec64_DD STEPNAME(dynarec64_DD)
#define dynarec64_DE STEPNAME(dynarec64_DE)
#define dynarec64_DF STEPNAME(dynarec64_DF)
#define dynarec64_F0 STEPNAME(dynarec64_F0)
#define dynarec64_660F STEPNAME(dynarec64_660F)
#define dynarec64_66F20F STEPNAME(dynarec64_66F20F)
#define dynarec64_66F30F STEPNAME(dynarec64_66F30F)
#define dynarec64_6664 STEPNAME(dynarec64_6664)
#define dynarec64_66F0 STEPNAME(dynarec64_66F0)
#define dynarec64_F20F STEPNAME(dynarec64_F20F)
#define dynarec64_F30F STEPNAME(dynarec64_F30F)
#define dynarec64_660F_vector STEPNAME(dynarec64_660F_vector)
#define geted STEPNAME(geted)
#define geted32 STEPNAME(geted32)
#define geted16 STEPNAME(geted16)
#define jump_to_epilog STEPNAME(jump_to_epilog)
#define jump_to_epilog_fast STEPNAME(jump_to_epilog_fast)
#define jump_to_next STEPNAME(jump_to_next)
#define ret_to_epilog STEPNAME(ret_to_epilog)
#define retn_to_epilog STEPNAME(retn_to_epilog)
#define iret_to_epilog STEPNAME(iret_to_epilog)
#define call_c STEPNAME(call_c)
#define call_n STEPNAME(call_n)
#define grab_segdata STEPNAME(grab_segdata)
#define emit_cmp8 STEPNAME(emit_cmp8)
#define emit_cmp16 STEPNAME(emit_cmp16)
#define emit_cmp32 STEPNAME(emit_cmp32)
#define emit_cmp8_0 STEPNAME(emit_cmp8_0)
#define emit_cmp16_0 STEPNAME(emit_cmp16_0)
#define emit_cmp32_0 STEPNAME(emit_cmp32_0)
#define emit_test8 STEPNAME(emit_test8)
#define emit_test16 STEPNAME(emit_test16)
#define emit_test32 STEPNAME(emit_test32)
#define emit_test32c STEPNAME(emit_test32)
#define emit_add32 STEPNAME(emit_add32)
#define emit_add32c STEPNAME(emit_add32c)
#define emit_add8 STEPNAME(emit_add8)
#define emit_add8c STEPNAME(emit_add8c)
#define emit_sub32 STEPNAME(emit_sub32)
#define emit_sub32c STEPNAME(emit_sub32c)
#define emit_sub8 STEPNAME(emit_sub8)
#define emit_sub8c STEPNAME(emit_sub8c)
#define emit_or32 STEPNAME(emit_or32)
#define emit_or32c STEPNAME(emit_or32c)
#define emit_xor32 STEPNAME(emit_xor32)
#define emit_xor32c STEPNAME(emit_xor32c)
#define emit_and32 STEPNAME(emit_and32)
#define emit_and32c STEPNAME(emit_and32c)
#define emit_or8 STEPNAME(emit_or8)
#define emit_or8c STEPNAME(emit_or8c)
#define emit_xor8 STEPNAME(emit_xor8)
#define emit_xor8c STEPNAME(emit_xor8c)
#define emit_and8 STEPNAME(emit_and8)
#define emit_and8c STEPNAME(emit_and8c)
#define emit_add16 STEPNAME(emit_add16)
#define emit_add16c STEPNAME(emit_add16c)
#define emit_sub16 STEPNAME(emit_sub16)
#define emit_sub16c STEPNAME(emit_sub16c)
#define emit_or16 STEPNAME(emit_or16)
#define emit_or16c STEPNAME(emit_or16c)
#define emit_xor16 STEPNAME(emit_xor16)
#define emit_xor16c STEPNAME(emit_xor16c)
#define emit_and16 STEPNAME(emit_and16)
#define emit_and16c STEPNAME(emit_and16c)
#define emit_inc32 STEPNAME(emit_inc32)
#define emit_inc16 STEPNAME(emit_inc16)
#define emit_inc8 STEPNAME(emit_inc8)
#define emit_dec32 STEPNAME(emit_dec32)
#define emit_dec16 STEPNAME(emit_dec16)
#define emit_dec8 STEPNAME(emit_dec8)
#define emit_adc32 STEPNAME(emit_adc32)
#define emit_adc32c STEPNAME(emit_adc32c)
#define emit_adc8 STEPNAME(emit_adc8)
#define emit_adc8c STEPNAME(emit_adc8c)
#define emit_adc16 STEPNAME(emit_adc16)
#define emit_adc16c STEPNAME(emit_adc16c)
#define emit_sbb32 STEPNAME(emit_sbb32)
#define emit_sbb32c STEPNAME(emit_sbb32c)
#define emit_sbb8 STEPNAME(emit_sbb8)
#define emit_sbb8c STEPNAME(emit_sbb8c)
#define emit_sbb16 STEPNAME(emit_sbb16)
#define emit_sbb16c STEPNAME(emit_sbb16c)
#define emit_neg32 STEPNAME(emit_neg32)
#define emit_neg16 STEPNAME(emit_neg16)
#define emit_neg8 STEPNAME(emit_neg8)
#define emit_shl8c STEPNAME(emit_shl8c)
#define emit_shr8c STEPNAME(emit_shr8c)
#define emit_sar8c STEPNAME(emit_sar8c)
#define emit_shl8 STEPNAME(emit_shl8)
#define emit_shr8 STEPNAME(emit_shr8)
#define emit_sar8 STEPNAME(emit_sar8)
#define emit_shl16c STEPNAME(emit_shl16c)
#define emit_shr16c STEPNAME(emit_shr16c)
#define emit_sar16c STEPNAME(emit_sar16c)
#define emit_shl16 STEPNAME(emit_shl16)
#define emit_shr16 STEPNAME(emit_shr16)
#define emit_sar16 STEPNAME(emit_sar16)
#define emit_shl32 STEPNAME(emit_shl32)
#define emit_shl32c STEPNAME(emit_shl32c)
#define emit_shr32 STEPNAME(emit_shr32)
#define emit_shr32c STEPNAME(emit_shr32c)
#define emit_sar32c STEPNAME(emit_sar32c)
#define emit_rol32 STEPNAME(emit_rol32)
#define emit_ror32 STEPNAME(emit_ror32)
#define emit_rol32c STEPNAME(emit_rol32c)
#define emit_ror32c STEPNAME(emit_ror32c)
#define emit_shrd32c STEPNAME(emit_shrd32c)
#define emit_shld32c STEPNAME(emit_shld32c)
#define emit_shrd32 STEPNAME(emit_shld32)
#define emit_shld32 STEPNAME(emit_shld32)
#define emit_shld16c STEPNAME(emit_shld16c)
#define emit_shrd16c STEPNAME(emit_shrd16c)
#define emit_pf STEPNAME(emit_pf)
#define x87_do_push STEPNAME(x87_do_push)
#define x87_do_push_empty STEPNAME(x87_do_push_empty)
#define x87_do_pop STEPNAME(x87_do_pop)
#define x87_get_current_cache STEPNAME(x87_get_current_cache)
#define x87_get_cache STEPNAME(x87_get_cache)
#define x87_get_extcache STEPNAME(x87_get_extcache)
#define x87_get_st STEPNAME(x87_get_st)
#define x87_get_st_empty STEPNAME(x87_get_st)
#define x87_free STEPNAME(x87_free)
#define x87_refresh STEPNAME(x87_refresh)
#define x87_forget STEPNAME(x87_forget)
#define x87_reget_st STEPNAME(x87_reget_st)
#define x87_stackcount STEPNAME(x87_stackcount)
#define x87_unstackcount STEPNAME(x87_unstackcount)
#define x87_swapreg STEPNAME(x87_swapreg)
#define x87_setround STEPNAME(x87_setround)
#define x87_restoreround STEPNAME(x87_restoreround)
#define sse_setround STEPNAME(sse_setround)
#define mmx_get_reg STEPNAME(mmx_get_reg)
#define mmx_get_reg_empty STEPNAME(mmx_get_reg_empty)
#define mmx_forget_reg STEPNAME(mmx_forget_reg)
#define sse_get_reg STEPNAME(sse_get_reg)
#define sse_get_reg_empty STEPNAME(sse_get_reg_empty)
#define sse_forget_reg STEPNAME(sse_forget_reg)
#define sse_purge07cache STEPNAME(sse_purge07cache)
#define sse_reflect_reg STEPNAME(sse_reflect_reg)
#define sse_get_reg_empty_vector STEPNAME(sse_get_reg_empty_vector)
#define sse_get_reg_vector STEPNAME(sse_get_reg_vector)
#define sse_forget_reg_vector STEPNAME(sse_forget_reg_vector)
#define fpu_pushcache STEPNAME(fpu_pushcache)
#define fpu_popcache STEPNAME(fpu_popcache)
#define fpu_reset_cache STEPNAME(fpu_reset_cache)
#define fpu_propagate_stack STEPNAME(fpu_propagate_stack)
#define fpu_purgecache STEPNAME(fpu_purgecache)
#define mmx_purgecache STEPNAME(mmx_purgecache)
#define x87_purgecache STEPNAME(x87_purgecache)
#define sse_purgecache STEPNAME(sse_purgecache)
#define fpu_reflectcache STEPNAME(fpu_reflectcache)
#define fpu_unreflectcache STEPNAME(fpu_unreflectcache)
#define CacheTransform STEPNAME(CacheTransform)
#define rv64_move64 STEPNAME(rv64_move64)
#define rv64_move32 STEPNAME(rv64_move32)
#define vector_vsetvl_emul1 STEPNAME(vector_vsetvl_emul1)
/* setup r2 to address pointed by */
uintptr_t geted(dynarec_rv64_t* dyn, uintptr_t addr, int ninst, uint8_t nextop, uint8_t* ed, uint8_t hint, uint8_t scratch, int64_t* fixaddress, rex_t rex, int* l, int i12, int delta);
/* setup r2 to address pointed by */
uintptr_t geted32(dynarec_rv64_t* dyn, uintptr_t addr, int ninst, uint8_t nextop, uint8_t* ed, uint8_t hint, uint8_t scratch, int64_t* fixaddress, rex_t rex, int* l, int i12, int delta);
/* setup r2 to address pointed by */
// uintptr_t geted16(dynarec_rv64_t* dyn, uintptr_t addr, int ninst, uint8_t nextop, uint8_t* ed, uint8_t hint, int64_t* fixaddress, int absmax, uint32_t mask, int s);
// generic x64 helper
void jump_to_epilog(dynarec_rv64_t* dyn, uintptr_t ip, int reg, int ninst);
void jump_to_epilog_fast(dynarec_rv64_t* dyn, uintptr_t ip, int reg, int ninst);
void jump_to_next(dynarec_rv64_t* dyn, uintptr_t ip, int reg, int ninst, int is32bits);
void ret_to_epilog(dynarec_rv64_t* dyn, int ninst, rex_t rex);
void retn_to_epilog(dynarec_rv64_t* dyn, int ninst, rex_t rex, int n);
void iret_to_epilog(dynarec_rv64_t* dyn, int ninst, int is64bits);
void call_c(dynarec_rv64_t* dyn, int ninst, void* fnc, int reg, int ret, int saveflags, int save_reg);
void call_n(dynarec_rv64_t* dyn, int ninst, void* fnc, int w);
void grab_segdata(dynarec_rv64_t* dyn, uintptr_t addr, int ninst, int reg, int segment);
void emit_cmp8(dynarec_rv64_t* dyn, int ninst, int s1, int s2, int s3, int s4, int s5, int s6);
void emit_cmp16(dynarec_rv64_t* dyn, int ninst, int s1, int s2, int s3, int s4, int s5, int s6);
void emit_cmp32(dynarec_rv64_t* dyn, int ninst, rex_t rex, int s1, int s2, int s3, int s4, int s5, int s6);
void emit_cmp8_0(dynarec_rv64_t* dyn, int ninst, int s1, int s3, int s4);
void emit_cmp16_0(dynarec_rv64_t* dyn, int ninst, int s1, int s3, int s4);
void emit_cmp32_0(dynarec_rv64_t* dyn, int ninst, rex_t rex, int s1, int s3, int s4);
void emit_test8(dynarec_rv64_t* dyn, int ninst, int s1, int s2, int s3, int s4, int s5);
void emit_test16(dynarec_rv64_t* dyn, int ninst, int s1, int s2, int s3, int s4, int s5);
void emit_test32(dynarec_rv64_t* dyn, int ninst, rex_t rex, int s1, int s2, int s3, int s4, int s5);
void emit_test32c(dynarec_rv64_t* dyn, int ninst, rex_t rex, int s1, int64_t c, int s3, int s4, int s5);
void emit_add32(dynarec_rv64_t* dyn, int ninst, rex_t rex, int s1, int s2, int s3, int s4, int s5);
void emit_add32c(dynarec_rv64_t* dyn, int ninst, rex_t rex, int s1, int64_t c, int s2, int s3, int s4, int s5);
void emit_add8(dynarec_rv64_t* dyn, int ninst, int s1, int s2, int s3, int s4);
void emit_add8c(dynarec_rv64_t* dyn, int ninst, int s1, int32_t c, int s2, int s3, int s4);
void emit_sub32(dynarec_rv64_t* dyn, int ninst, rex_t rex, int s1, int s2, int s3, int s4, int s5);
void emit_sub32c(dynarec_rv64_t* dyn, int ninst, rex_t rex, int s1, int64_t c, int s2, int s3, int s4, int s5);
void emit_sub8(dynarec_rv64_t* dyn, int ninst, int s1, int s2, int s3, int s4, int s5);
void emit_sub8c(dynarec_rv64_t* dyn, int ninst, int s1, int32_t c, int s2, int s3, int s4, int s5);
void emit_or32(dynarec_rv64_t* dyn, int ninst, rex_t rex, int s1, int s2, int s3, int s4);
void emit_or32c(dynarec_rv64_t* dyn, int ninst, rex_t rex, int s1, int64_t c, int s3, int s4);
void emit_xor32(dynarec_rv64_t* dyn, int ninst, rex_t rex, int s1, int s2, int s3, int s4);
void emit_xor32c(dynarec_rv64_t* dyn, int ninst, rex_t rex, int s1, int64_t c, int s3, int s4);
void emit_and32(dynarec_rv64_t* dyn, int ninst, rex_t rex, int s1, int s2, int s3, int s4);
void emit_and32c(dynarec_rv64_t* dyn, int ninst, rex_t rex, int s1, int64_t c, int s3, int s4);
void emit_or8(dynarec_rv64_t* dyn, int ninst, int s1, int s2, int s3, int s4);
void emit_or8c(dynarec_rv64_t* dyn, int ninst, int s1, int32_t c, int s2, int s3, int s4);
void emit_xor8(dynarec_rv64_t* dyn, int ninst, int s1, int s2, int s3, int s4);
void emit_xor8c(dynarec_rv64_t* dyn, int ninst, int s1, int32_t c, int s3, int s4);
void emit_and8(dynarec_rv64_t* dyn, int ninst, int s1, int s2, int s3, int s4);
void emit_and8c(dynarec_rv64_t* dyn, int ninst, int s1, int32_t c, int s3, int s4);
void emit_add16(dynarec_rv64_t* dyn, int ninst, int s1, int s2, int s3, int s4, int s5);
// void emit_add16c(dynarec_rv64_t* dyn, int ninst, int s1, int32_t c, int s3, int s4);
void emit_sub16(dynarec_rv64_t* dyn, int ninst, int s1, int s2, int s3, int s4, int s5);
// void emit_sub16c(dynarec_rv64_t* dyn, int ninst, int s1, int32_t c, int s3, int s4);
void emit_or16(dynarec_rv64_t* dyn, int ninst, int s1, int s2, int s3, int s4);
// void emit_or16c(dynarec_rv64_t* dyn, int ninst, int s1, int32_t c, int s3, int s4);
void emit_xor16(dynarec_rv64_t* dyn, int ninst, int s1, int s2, int s3, int s4, int s5);
// void emit_xor16c(dynarec_rv64_t* dyn, int ninst, int s1, int32_t c, int s3, int s4);
void emit_and16(dynarec_rv64_t* dyn, int ninst, int s1, int s2, int s3, int s4);
// void emit_and16c(dynarec_rv64_t* dyn, int ninst, int s1, int32_t c, int s3, int s4);
void emit_inc32(dynarec_rv64_t* dyn, int ninst, rex_t rex, int s1, int s2, int s3, int s4, int s5);
void emit_inc16(dynarec_rv64_t* dyn, int ninst, int s1, int s2, int s3, int s4);
void emit_inc8(dynarec_rv64_t* dyn, int ninst, int s1, int s2, int s3, int s4);
void emit_dec32(dynarec_rv64_t* dyn, int ninst, rex_t rex, int s1, int s2, int s3, int s4, int s5);
void emit_dec16(dynarec_rv64_t* dyn, int ninst, int s1, int s2, int s3, int s4, int s5);
void emit_dec8(dynarec_rv64_t* dyn, int ninst, int s1, int s2, int s3, int s4);
void emit_adc32(dynarec_rv64_t* dyn, int ninst, rex_t rex, int s1, int s2, int s3, int s4, int s5, int s6);
// void emit_adc32c(dynarec_rv64_t* dyn, int ninst, int s1, int32_t c, int s3, int s4);
void emit_adc8(dynarec_rv64_t* dyn, int ninst, int s1, int s2, int s3, int s4, int s5);
void emit_adc8c(dynarec_rv64_t* dyn, int ninst, int s1, int32_t c, int s3, int s4, int s5, int s6);
void emit_adc16(dynarec_rv64_t* dyn, int ninst, int s1, int s2, int s3, int s4, int s5);
// void emit_adc16c(dynarec_rv64_t* dyn, int ninst, int s1, int32_t c, int s3, int s4);
void emit_sbb32(dynarec_rv64_t* dyn, int ninst, rex_t rex, int s1, int s2, int s3, int s4, int s5);
// void emit_sbb32c(dynarec_rv64_t* dyn, int ninst, int s1, int32_t c, int s3, int s4);
void emit_sbb8(dynarec_rv64_t* dyn, int ninst, int s1, int s2, int s3, int s4, int s5);
void emit_sbb8c(dynarec_rv64_t* dyn, int ninst, int s1, int32_t c, int s3, int s4, int s5, int s6);
void emit_sbb16(dynarec_rv64_t* dyn, int ninst, int s1, int s2, int s3, int s4, int s5);
// void emit_sbb16c(dynarec_rv64_t* dyn, int ninst, int s1, int32_t c, int s3, int s4);
void emit_neg32(dynarec_rv64_t* dyn, int ninst, rex_t rex, int s1, int s2, int s3);
void emit_neg16(dynarec_rv64_t* dyn, int ninst, int s1, int s3, int s4);
void emit_neg8(dynarec_rv64_t* dyn, int ninst, int s1, int s3, int s4);
void emit_shl8c(dynarec_rv64_t* dyn, int ninst, int s1, uint32_t c, int s3, int s4, int s5);
void emit_shr8c(dynarec_rv64_t* dyn, int ninst, int s1, uint32_t c, int s3, int s4, int s5);
void emit_sar8c(dynarec_rv64_t* dyn, int ninst, int s1, uint32_t c, int s3, int s4, int s5);
void emit_shl8(dynarec_rv64_t* dyn, int ninst, int s1, int s2, int s3, int s4, int s5);
void emit_shr8(dynarec_rv64_t* dyn, int ninst, int s1, int s2, int s3, int s4, int s5);
void emit_sar8(dynarec_rv64_t* dyn, int ninst, int s1, int s2, int s3, int s4, int s5);
void emit_shl16c(dynarec_rv64_t* dyn, int ninst, int s1, uint32_t c, int s3, int s4, int s5);
void emit_shr16c(dynarec_rv64_t* dyn, int ninst, int s1, uint32_t c, int s3, int s4, int s5);
void emit_sar16c(dynarec_rv64_t* dyn, int ninst, int s1, uint32_t c, int s3, int s4, int s5);
void emit_shl16(dynarec_rv64_t* dyn, int ninst, int s1, int s2, int s3, int s4, int s5);
void emit_shr16(dynarec_rv64_t* dyn, int ninst, int s1, int s2, int s3, int s4, int s5);
void emit_sar16(dynarec_rv64_t* dyn, int ninst, int s1, int s2, int s3, int s4, int s5);
void emit_shl32(dynarec_rv64_t* dyn, int ninst, rex_t rex, int s1, int s2, int s3, int s4, int s5);
void emit_shl32c(dynarec_rv64_t* dyn, int ninst, rex_t rex, int s1, uint32_t c, int s3, int s4, int s5);
void emit_shr32(dynarec_rv64_t* dyn, int ninst, rex_t rex, int s1, int s2, int s3, int s4);
void emit_shr32c(dynarec_rv64_t* dyn, int ninst, rex_t rex, int s1, uint32_t c, int s3, int s4);
void emit_sar32c(dynarec_rv64_t* dyn, int ninst, rex_t rex, int s1, uint32_t c, int s3, int s4);
void emit_rol32(dynarec_rv64_t* dyn, int ninst, rex_t rex, int s1, int s2, int s3, int s4);
void emit_ror32(dynarec_rv64_t* dyn, int ninst, rex_t rex, int s1, int s2, int s3, int s4);
void emit_rol32c(dynarec_rv64_t* dyn, int ninst, rex_t rex, int s1, uint32_t c, int s3, int s4);
void emit_ror32c(dynarec_rv64_t* dyn, int ninst, rex_t rex, int s1, uint32_t c, int s3, int s4);
void emit_shrd32c(dynarec_rv64_t* dyn, int ninst, rex_t rex, int s1, int s2, uint32_t c, int s3, int s4);
void emit_shld32c(dynarec_rv64_t* dyn, int ninst, rex_t rex, int s1, int s2, uint32_t c, int s3, int s4);
void emit_shrd32(dynarec_rv64_t* dyn, int ninst, rex_t rex, int s1, int s2, int s5, int s3, int s4, int s6);
void emit_shld32(dynarec_rv64_t* dyn, int ninst, rex_t rex, int s1, int s2, int s5, int s3, int s4, int s6);
void emit_shrd16c(dynarec_rv64_t* dyn, int ninst, rex_t rex, int s1, int s2, uint32_t c, int s3, int s4, int s5);
void emit_shld16c(dynarec_rv64_t* dyn, int ninst, rex_t rex, int s1, int s2, uint32_t c, int s3, int s4, int s5);
void emit_pf(dynarec_rv64_t* dyn, int ninst, int s1, int s3, int s4);
// x87 helper
// cache of the local stack counter, to avoid upadte at every call
int x87_stackcount(dynarec_rv64_t* dyn, int ninst, int scratch);
// restore local stack counter
void x87_unstackcount(dynarec_rv64_t* dyn, int ninst, int scratch, int count);
// fpu push. Return the Dd value to be used
int x87_do_push(dynarec_rv64_t* dyn, int ninst, int s1, int t);
// fpu push. Do not allocate a cache register. Needs a scratch register to do x87stack synch (or 0 to not do it)
void x87_do_push_empty(dynarec_rv64_t* dyn, int ninst, int s1);
// fpu pop. All previous returned Dd should be considered invalid
void x87_do_pop(dynarec_rv64_t* dyn, int ninst, int s1);
// get cache index for a x87 reg, return -1 if cache doesn't exist
int x87_get_current_cache(dynarec_rv64_t* dyn, int ninst, int st, int t);
// get cache index for a x87 reg, create the entry if needed
int x87_get_cache(dynarec_rv64_t* dyn, int ninst, int populate, int s1, int s2, int a, int t);
// get extcache index for a x87 reg
int x87_get_extcache(dynarec_rv64_t* dyn, int ninst, int s1, int s2, int a);
// get vfpu register for a x87 reg, create the entry if needed
int x87_get_st(dynarec_rv64_t* dyn, int ninst, int s1, int s2, int a, int t);
// get vfpu register for a x87 reg, create the entry if needed. Do not fetch the Stx if not already in cache
int x87_get_st_empty(dynarec_rv64_t* dyn, int ninst, int s1, int s2, int a, int t);
// Free st, using the FFREE opcode (so it's freed but stack is not moved)
void x87_free(dynarec_rv64_t* dyn, int ninst, int s1, int s2, int s3, int st);
// refresh a value from the cache ->emu (nothing done if value is not cached)
void x87_refresh(dynarec_rv64_t* dyn, int ninst, int s1, int s2, int st);
// refresh a value from the cache ->emu and then forget the cache (nothing done if value is not cached)
void x87_forget(dynarec_rv64_t* dyn, int ninst, int s1, int s2, int st);
// refresh the cache value from emu
void x87_reget_st(dynarec_rv64_t* dyn, int ninst, int s1, int s2, int st);
// swap 2 x87 regs
void x87_swapreg(dynarec_rv64_t* dyn, int ninst, int s1, int s2, int a, int b);
// Set rounding according to cw flags, return reg to restore flags
int x87_setround(dynarec_rv64_t* dyn, int ninst, int s1, int s2);
// Restore round flag
void x87_restoreround(dynarec_rv64_t* dyn, int ninst, int s1);
// Set rounding according to mxcsr flags, return reg to restore flags
int sse_setround(dynarec_rv64_t* dyn, int ninst, int s1, int s2);
void CacheTransform(dynarec_rv64_t* dyn, int ninst, int cacheupd, int s1, int s2, int s3);
void rv64_move64(dynarec_rv64_t* dyn, int ninst, int reg, int64_t val);
void rv64_move32(dynarec_rv64_t* dyn, int ninst, int reg, int32_t val, int zeroup);
void vector_vsetvl_emul1(dynarec_rv64_t* dyn, int ninst, int s1, int sew);
#if STEP < 2
#define CHECK_CACHE() 0
#else
#define CHECK_CACHE() (cacheupd = CacheNeedsTransform(dyn, ninst))
#endif
#define extcache_st_coherency STEPNAME(extcache_st_coherency)
int extcache_st_coherency(dynarec_rv64_t* dyn, int ninst, int a, int b);
#if STEP == 0
#define ST_IS_F(A) 0
#define ST_IS_I64(A) 0
#define X87_COMBINE(A, B) EXT_CACHE_ST_D
#define X87_ST0 EXT_CACHE_ST_D
#define X87_ST(A) EXT_CACHE_ST_D
#elif STEP == 1
#define ST_IS_F(A) (extcache_get_current_st(dyn, ninst, A) == EXT_CACHE_ST_F)
#define ST_IS_I64(A) (extcache_get_current_st(dyn, ninst, A) == EXT_CACHE_ST_I64)
#define X87_COMBINE(A, B) extcache_combine_st(dyn, ninst, A, B)
#define X87_ST0 extcache_no_i64(dyn, ninst, 0, extcache_get_current_st(dyn, ninst, 0))
#define X87_ST(A) extcache_no_i64(dyn, ninst, A, extcache_get_current_st(dyn, ninst, A))
#else
#define ST_IS_F(A) (extcache_get_st(dyn, ninst, A) == EXT_CACHE_ST_F)
#define ST_IS_I64(A) (extcache_get_st(dyn, ninst, A) == EXT_CACHE_ST_I64)
#if STEP == 3
#define X87_COMBINE(A, B) extcache_st_coherency(dyn, ninst, A, B)
#else
#define X87_COMBINE(A, B) extcache_get_st(dyn, ninst, A)
#endif
#define X87_ST0 extcache_get_st(dyn, ninst, 0)
#define X87_ST(A) extcache_get_st(dyn, ninst, A)
#endif
// MMX helpers
// get float register for a MMX reg, create the entry if needed
int mmx_get_reg(dynarec_rv64_t* dyn, int ninst, int s1, int s2, int s3, int a);
// get float register for a MMX reg, but don't try to synch it if it needed to be created
int mmx_get_reg_empty(dynarec_rv64_t* dyn, int ninst, int s1, int s2, int s3, int a);
// forget float register for a MMX reg, create the entry if needed
void mmx_forget_reg(dynarec_rv64_t* dyn, int ninst, int a);
// SSE/SSE2 helpers
// get float register for a SSE reg, create the entry if needed
int sse_get_reg(dynarec_rv64_t* dyn, int ninst, int s1, int a, int single);
// get rvv register for a SSE reg, create the entry if needed
int sse_get_reg_vector(dynarec_rv64_t* dyn, int ninst, int s1, int a, int forwrite);
// get float register for a SSE reg, but don't try to synch it if it needed to be created
int sse_get_reg_empty(dynarec_rv64_t* dyn, int ninst, int s1, int a, int single);
// get rvv register for an SSE reg, but don't try to synch it if it needed to be created
int sse_get_reg_empty_vector(dynarec_rv64_t* dyn, int ninst, int s1, int a);
// forget float register for a SSE reg, create the entry if needed
void sse_forget_reg(dynarec_rv64_t* dyn, int ninst, int s1, int a);
// forget rvv register for a SSE reg, does nothing if the regs is not loaded
void sse_forget_reg_vector(dynarec_rv64_t* dyn, int ninst, int s1, int a);
// purge the XMM0..XMM7 cache (before function call)
void sse_purge07cache(dynarec_rv64_t* dyn, int ninst, int s1);
// Push current value to the cache
void sse_reflect_reg(dynarec_rv64_t* dyn, int ninst, int s1, int a);
// common coproc helpers
// reset the cache with n
void fpu_reset_cache(dynarec_rv64_t* dyn, int ninst, int reset_n);
// propagate stack state
void fpu_propagate_stack(dynarec_rv64_t* dyn, int ninst);
// purge the FPU cache (needs 3 scratch registers)
void fpu_purgecache(dynarec_rv64_t* dyn, int ninst, int next, int s1, int s2, int s3);
// purge MMX cache
void mmx_purgecache(dynarec_rv64_t* dyn, int ninst, int next, int s1);
// purge x87 cache
void x87_purgecache(dynarec_rv64_t* dyn, int ninst, int next, int s1, int s2, int s3);
void fpu_reflectcache(dynarec_rv64_t* dyn, int ninst, int s1, int s2, int s3);
void fpu_unreflectcache(dynarec_rv64_t* dyn, int ninst, int s1, int s2, int s3);
void fpu_pushcache(dynarec_rv64_t* dyn, int ninst, int s1, int not07);
void fpu_popcache(dynarec_rv64_t* dyn, int ninst, int s1, int not07);
uintptr_t dynarec64_00(dynarec_rv64_t* dyn, uintptr_t addr, uintptr_t ip, int ninst, rex_t rex, int rep, int* ok, int* need_epilog);
uintptr_t dynarec64_00_0(dynarec_rv64_t* dyn, uintptr_t addr, uintptr_t ip, int ninst, rex_t rex, int rep, int* ok, int* need_epilog);
uintptr_t dynarec64_00_1(dynarec_rv64_t* dyn, uintptr_t addr, uintptr_t ip, int ninst, rex_t rex, int rep, int* ok, int* need_epilog);
uintptr_t dynarec64_00_2(dynarec_rv64_t* dyn, uintptr_t addr, uintptr_t ip, int ninst, rex_t rex, int rep, int* ok, int* need_epilog);
uintptr_t dynarec64_00_3(dynarec_rv64_t* dyn, uintptr_t addr, uintptr_t ip, int ninst, rex_t rex, int rep, int* ok, int* need_epilog);
uintptr_t dynarec64_0F(dynarec_rv64_t* dyn, uintptr_t addr, uintptr_t ip, int ninst, rex_t rex, int* ok, int* need_epilog);
uintptr_t dynarec64_64(dynarec_rv64_t* dyn, uintptr_t addr, uintptr_t ip, int ninst, rex_t rex, int rep, int seg, int* ok, int* need_epilog);
// uintptr_t dynarec64_65(dynarec_rv64_t* dyn, uintptr_t addr, uintptr_t ip, int ninst, rex_t rex, int rep,int* ok, int* need_epilog);
uintptr_t dynarec64_66(dynarec_rv64_t* dyn, uintptr_t addr, uintptr_t ip, int ninst, rex_t rex, int rep, int* ok, int* need_epilog);
uintptr_t dynarec64_67(dynarec_rv64_t* dyn, uintptr_t addr, uintptr_t ip, int ninst, rex_t rex, int rep, int* ok, int* need_epilog);
uintptr_t dynarec64_67_32(dynarec_rv64_t* dyn, uintptr_t addr, uintptr_t ip, int ninst, rex_t rex, int rep, int* ok, int* need_epilog);
uintptr_t dynarec64_D8(dynarec_rv64_t* dyn, uintptr_t addr, uintptr_t ip, int ninst, rex_t rex, int rep, int* ok, int* need_epilog);
uintptr_t dynarec64_D9(dynarec_rv64_t* dyn, uintptr_t addr, uintptr_t ip, int ninst, rex_t rex, int rep, int* ok, int* need_epilog);
uintptr_t dynarec64_DA(dynarec_rv64_t* dyn, uintptr_t addr, uintptr_t ip, int ninst, rex_t rex, int rep, int* ok, int* need_epilog);
uintptr_t dynarec64_DB(dynarec_rv64_t* dyn, uintptr_t addr, uintptr_t ip, int ninst, rex_t rex, int rep, int* ok, int* need_epilog);
uintptr_t dynarec64_DC(dynarec_rv64_t* dyn, uintptr_t addr, uintptr_t ip, int ninst, rex_t rex, int rep, int* ok, int* need_epilog);
uintptr_t dynarec64_DD(dynarec_rv64_t* dyn, uintptr_t addr, uintptr_t ip, int ninst, rex_t rex, int rep, int* ok, int* need_epilog);
uintptr_t dynarec64_DE(dynarec_rv64_t* dyn, uintptr_t addr, uintptr_t ip, int ninst, rex_t rex, int rep, int* ok, int* need_epilog);
uintptr_t dynarec64_DF(dynarec_rv64_t* dyn, uintptr_t addr, uintptr_t ip, int ninst, rex_t rex, int rep, int* ok, int* need_epilog);
uintptr_t dynarec64_F0(dynarec_rv64_t* dyn, uintptr_t addr, uintptr_t ip, int ninst, rex_t rex, int rep, int* ok, int* need_epilog);
uintptr_t dynarec64_660F(dynarec_rv64_t* dyn, uintptr_t addr, uintptr_t ip, int ninst, rex_t rex, int* ok, int* need_epilog);
uintptr_t dynarec64_66F20F(dynarec_rv64_t* dyn, uintptr_t addr, uintptr_t ip, int ninst, rex_t rex, int* ok, int* need_epilog);
uintptr_t dynarec64_66F30F(dynarec_rv64_t* dyn, uintptr_t addr, uintptr_t ip, int ninst, rex_t rex, int* ok, int* need_epilog);
uintptr_t dynarec64_6664(dynarec_rv64_t* dyn, uintptr_t addr, uintptr_t ip, int ninst, rex_t rex, int seg, int* ok, int* need_epilog);
uintptr_t dynarec64_66F0(dynarec_rv64_t* dyn, uintptr_t addr, uintptr_t ip, int ninst, rex_t rex, int rep, int* ok, int* need_epilog);
uintptr_t dynarec64_F20F(dynarec_rv64_t* dyn, uintptr_t addr, uintptr_t ip, int ninst, rex_t rex, int* ok, int* need_epilog);
uintptr_t dynarec64_F30F(dynarec_rv64_t* dyn, uintptr_t addr, uintptr_t ip, int ninst, rex_t rex, int* ok, int* need_epilog);
uintptr_t dynarec64_660F_vector(dynarec_rv64_t* dyn, uintptr_t addr, uintptr_t ip, int ninst, rex_t rex, int* ok, int* need_epilog);
#if STEP < 2
#define PASS2(A)
#else
#define PASS2(A) A
#endif
#if STEP < 3
#define PASS3(A)
#else
#define PASS3(A) A
#endif
#if STEP < 3
#define MAYUSE(A) (void)A
#else
#define MAYUSE(A)
#endif
// GOCOND will use x1 and x3
#define GOCOND(B, T1, T2) \
case B + 0x0: \
INST_NAME(T1 "O " T2); \
GO(ANDI(x1, xFlags, 1 << F_OF2), EQZ, NEZ, X_OF) \
break; \
case B + 0x1: \
INST_NAME(T1 "NO " T2); \
GO(ANDI(x1, xFlags, 1 << F_OF2), NEZ, EQZ, X_OF) \
break; \
case B + 0x2: \
INST_NAME(T1 "C " T2); \
GO(ANDI(x1, xFlags, 1 << F_CF), EQZ, NEZ, X_CF) \
break; \
case B + 0x3: \
INST_NAME(T1 "NC " T2); \
GO(ANDI(x1, xFlags, 1 << F_CF), NEZ, EQZ, X_CF) \
break; \
case B + 0x4: \
INST_NAME(T1 "Z " T2); \
GO(ANDI(x1, xFlags, 1 << F_ZF), EQZ, NEZ, X_ZF) \
break; \
case B + 0x5: \
INST_NAME(T1 "NZ " T2); \
GO(ANDI(x1, xFlags, 1 << F_ZF), NEZ, EQZ, X_ZF) \
break; \
case B + 0x6: \
INST_NAME(T1 "BE " T2); \
GO(ANDI(x1, xFlags, (1 << F_CF) | (1 << F_ZF)), EQZ, NEZ, X_CF | X_ZF) \
break; \
case B + 0x7: \
INST_NAME(T1 "NBE " T2); \
GO(ANDI(x1, xFlags, (1 << F_CF) | (1 << F_ZF)), NEZ, EQZ, X_CF | X_ZF) \
break; \
case B + 0x8: \
INST_NAME(T1 "S " T2); \
GO(ANDI(x1, xFlags, 1 << F_SF), EQZ, NEZ, X_SF) \
break; \
case B + 0x9: \
INST_NAME(T1 "NS " T2); \
GO(ANDI(x1, xFlags, 1 << F_SF), NEZ, EQZ, X_SF) \
break; \
case B + 0xA: \
INST_NAME(T1 "P " T2); \
GO(ANDI(x1, xFlags, 1 << F_PF), EQZ, NEZ, X_PF) \
break; \
case B + 0xB: \
INST_NAME(T1 "NP " T2); \
GO(ANDI(x1, xFlags, 1 << F_PF), NEZ, EQZ, X_PF) \
break; \
case B + 0xC: \
INST_NAME(T1 "L " T2); \
GO(SRLI(x1, xFlags, F_SF - F_OF2); \
XOR(x1, x1, xFlags); \
ANDI(x1, x1, 1 << F_OF2), EQZ, NEZ, X_SF | X_OF) \
break; \
case B + 0xD: \
INST_NAME(T1 "GE " T2); \
GO(SRLI(x1, xFlags, F_SF - F_OF2); \
XOR(x1, x1, xFlags); \
ANDI(x1, x1, 1 << F_OF2), NEZ, EQZ, X_SF | X_OF) \
break; \
case B + 0xE: \
INST_NAME(T1 "LE " T2); \
GO(SRLI(x1, xFlags, F_SF - F_OF2); \
XOR(x1, x1, xFlags); \
ANDI(x1, x1, 1 << F_OF2); \
ANDI(x3, xFlags, 1 << F_ZF); \
OR(x1, x1, x3); \
ANDI(x1, x1, (1 << F_OF2) | (1 << F_ZF)), EQZ, NEZ, X_SF | X_OF | X_ZF) \
break; \
case B + 0xF: \
INST_NAME(T1 "G " T2); \
GO(SRLI(x1, xFlags, F_SF - F_OF2); \
XOR(x1, x1, xFlags); \
ANDI(x1, x1, 1 << F_OF2); \
ANDI(x3, xFlags, 1 << F_ZF); \
OR(x1, x1, x3); \
ANDI(x1, x1, (1 << F_OF2) | (1 << F_ZF)), NEZ, EQZ, X_SF | X_OF | X_ZF) \
break
#define NOTEST(s1) \
if (box64_dynarec_test) { \
SW(xZR, xEmu, offsetof(x64emu_t, test.test)); \
SW(xZR, xEmu, offsetof(x64emu_t, test.clean)); \
}
#define SKIPTEST(s1) \
if (box64_dynarec_test) { \
SW(xZR, xEmu, offsetof(x64emu_t, test.clean)); \
}
#define GOTEST(s1, s2) \
if (box64_dynarec_test) { \
MOV32w(s2, 1); \
SW(s2, xEmu, offsetof(x64emu_t, test.test)); \
}
#define GETREX() \
rex.rex = 0; \
if (!rex.is32bits) \
while (opcode >= 0x40 && opcode <= 0x4f) { \
rex.rex = opcode; \
opcode = F8; \
}
#define FCOM(w, v1, v2, s1, s2, s3, s4, s5) \
LHU(s3, xEmu, offsetof(x64emu_t, sw)); \
MOV32w(s1, 0b1011100011111111); /* mask off c0,c1,c2,c3 */ \
AND(s3, s3, s1); \
FEQ##w(s5, v1, v1); \
FEQ##w(s4, v2, v2); \
AND(s5, s5, s4); \
BEQZ(s5, 24); /* undefined/NaN */ \
FEQ##w(s5, v1, v2); \
BNEZ(s5, 28); /* equal */ \
FLT##w(s2, v1, v2); /* x2 = (v1<v2)?1:0 */ \
SLLI(s1, s2, 8); \
J(20); /* end */ \
/* undefined/NaN */ \
LUI(s1, 4); \
ADDI(s1, s1, 0b010100000000); \
J(8); /* end */ \
/* equal */ \
LUI(s1, 4); \
/* end */ \
OR(s3, s3, s1); \
SH(s3, xEmu, offsetof(x64emu_t, sw));
#define FCOMS(v1, v2, s1, s2, s3, s4, s5) FCOM(S, v1, v2, s1, s2, s3, s4, s5)
#define FCOMD(v1, v2, s1, s2, s3, s4, s5) FCOM(D, v1, v2, s1, s2, s3, s4, s5)
#define FCOMI(w, v1, v2, s1, s2, s3, s4, s5) \
IFX(X_OF|X_AF|X_SF|X_PEND) { \
MOV64x(s2, ~((1<<F_OF2)|(1<<F_AF)|(1<<F_SF))); \
AND(xFlags, xFlags, s2); \
} \
IFX(X_CF|X_PF|X_ZF|X_PEND) { \
MOV32w(s2, 0b01000101); \
if(rv64_zbb) { \
ANDN(xFlags, xFlags, s2); \
} else { \
NOT(s3, s2); \
AND(xFlags, xFlags, s3); \
} \
FEQ##w(s5, v1, v1); \
FEQ##w(s4, v2, v2); \
AND(s5, s5, s4); \
BEQZ(s5, 5*4); /* undefined/NaN */ \
FEQ##w(s5, v1, v2); \
BNEZ(s5, 5*4); /* equal */ \
FLT##w(s1, v1, v2); /* s1 = (v1<v2)?1:0 */ \
J(4*4); /* end */ \
/* undefined/NaN */ \
MV(s1, s2); \
J(2*4); /* end */ \
/* equal */ \
ADDI(s1, xZR, 0b01000000); \
/* end */ \
OR(xFlags, xFlags, s1); \
} \
SET_DFNONE()
#define FCOMIS(v1, v2, s1, s2, s3, s4, s5) FCOMI(S, v1, v2, s1, s2, s3, s4, s5)
#define FCOMID(v1, v2, s1, s2, s3, s4, s5) FCOMI(D, v1, v2, s1, s2, s3, s4, s5)
#define PURGE_YMM() /* TODO */
// reg = (reg < -32768) ? -32768 : ((reg > 32767) ? 32767 : reg)
#define SAT16(reg, s) \
LUI(s, 0xFFFF8); /* -32768 */ \
BGE(reg, s, 4 + 2 * 4); \
MV(reg, s); \
J(4 + 4 * 3); \
LUI(s, 8); /* 32768 */ \
BLT(reg, s, 4 + 4); \
ADDIW(reg, s, -1);
#endif //__DYNAREC_RV64_HELPER_H__
|