about summary refs log tree commit diff stats
path: root/src/elfs/elfdwarf_private.c
blob: ed954e35225c4f216316f1a4ac27e44f8c552fd1 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>

#include "debug.h"
#include "elfloader_private.h"
#include "elfdwarf_private.h"

typedef struct dwarf_unwind_constr_s {
    uint8_t reg_count;
    uint64_t *table;
    uint8_t *statuses;
#define GET_STATUS(n,i) (((n).statuses[(i) >> 1] >> (((i) & 1) << 2)) & 0xF)
#define SET_STATUS(n,i,v) (n).statuses[(i) >> 1] = ((n).statuses[(i) >> 1] & (0xF0 >> (((i) & 1) << 2))) | (v << (((i) & 1) << 2))
#define REGSTATUS_undefined     0b0000
#define REGSTATUS_same_val      0b0101
#define REGSTATUS_offset        0b0010
#define REGSTATUS_val_offset    0b0011
#define REGSTATUS_register      0b0100
} dwarf_unwind_constr_t;

#define DW_EH_PE_uptr       0x00
#define DW_EH_PE_uleb128    0x01
#define DW_EH_PE_udata2     0x02
#define DW_EH_PE_udata4     0x03
#define DW_EH_PE_udata8     0x04
#define DW_EH_PE_SIZE_MASK  0x07
#define DW_EH_PE_signed     0x08
#define DW_EH_PE_absptr     0x00
#define DW_EH_PE_pcrel      0x10
#define DW_EH_PE_textrel    0x20 // Unsupported
#define DW_EH_PE_datarel    0x30 // Unsupported
#define DW_EH_PE_indirect   0x80 // May crash
#define DW_EH_PE_omit       0xff

#define READ_U1(var, ptr) do { (var) = *( uint8_t*)(ptr); (ptr) += 1; } while (0)
#define READ_S1(var, ptr) do { (var) = *(  int8_t*)(ptr); (ptr) += 1; } while (0)
#define READ_U2(var, ptr) do { (var) = *(uint16_t*)(ptr); (ptr) += 2; } while (0)
#define READ_S2(var, ptr) do { (var) = *( int16_t*)(ptr); (ptr) += 2; } while (0)
#define READ_U4(var, ptr) do { (var) = *(uint32_t*)(ptr); (ptr) += 4; } while (0)
#define READ_S4(var, ptr) do { (var) = *( int32_t*)(ptr); (ptr) += 4; } while (0)
#define READ_U8(var, ptr) do { (var) = *(uint64_t*)(ptr); (ptr) += 8; } while (0)
#define READ_S8(var, ptr) do { (var) = *( int64_t*)(ptr); (ptr) += 8; } while (0)
#define READ_ULEB128(var, ptr) readULEB(&(var), &(ptr))
#define READ_SLEB128(var, ptr) readSLEB((int64_t*)&(var), &(ptr))
// Seems like DW_EH_PE_signed is actually an invalid encoding
#define READ_ENCODED(var, ptr, enc, isptr) do { uintptr_t optr = (uintptr_t)(ptr); \
         if ((((enc) & DW_EH_PE_SIZE_MASK) == DW_EH_PE_uleb128) &&  ((enc) & DW_EH_PE_signed)) READ_SLEB128(var, ptr); \
    else if ((((enc) & DW_EH_PE_SIZE_MASK) == DW_EH_PE_uleb128) && !((enc) & DW_EH_PE_signed)) READ_ULEB128(var, ptr); \
    else if ((((enc) & DW_EH_PE_SIZE_MASK) == DW_EH_PE_udata2 ) &&  ((enc) & DW_EH_PE_signed)) READ_S2     (var, ptr); \
    else if ((((enc) & DW_EH_PE_SIZE_MASK) == DW_EH_PE_udata2 ) && !((enc) & DW_EH_PE_signed)) READ_U2     (var, ptr); \
    else if ((((enc) & DW_EH_PE_SIZE_MASK) == DW_EH_PE_udata4 ) &&  ((enc) & DW_EH_PE_signed)) READ_S4     (var, ptr); \
    else if ((((enc) & DW_EH_PE_SIZE_MASK) == DW_EH_PE_udata4 ) && !((enc) & DW_EH_PE_signed)) READ_U4     (var, ptr); \
    else if ((((enc) & DW_EH_PE_SIZE_MASK) == DW_EH_PE_udata8 ) &&  ((enc) & DW_EH_PE_signed)) READ_S8     (var, ptr); \
    else if ((((enc) & DW_EH_PE_SIZE_MASK) == DW_EH_PE_udata8 ) && !((enc) & DW_EH_PE_signed)) READ_U8     (var, ptr); \
    else if ((((enc) & DW_EH_PE_SIZE_MASK) == DW_EH_PE_uptr   ) &&  ((enc) & DW_EH_PE_signed)) READ_S8     (var, ptr); \
    else if ((((enc) & DW_EH_PE_SIZE_MASK) == DW_EH_PE_uptr   ) && !((enc) & DW_EH_PE_signed)) READ_U8     (var, ptr); \
    else { printf_log(LOG_DEBUG, "Invalid encoding 0x%02X\n", (enc)); (var) = 0; } \
    if (((enc) & DW_EH_PE_pcrel) && isptr) (var) += optr; \
    if ((enc) & DW_EH_PE_indirect) (var) = *(uint64_t*)(var); \
} while (0)
#define SKIP_1(ptr) (ptr) += 1
#define SKIP_2(ptr) (ptr) += 2
#define SKIP_4(ptr) (ptr) += 4
#define SKIP_8(ptr) (ptr) += 8
#define SKIP_LEB128(ptr) do { ++(ptr); } while (((*(((unsigned char*)(ptr))-1))) & (1 << 7))
#define SKIP_ENCODED(ptr, enc) \
    do { if (((enc) & DW_EH_PE_SIZE_MASK) == DW_EH_PE_uleb128) SKIP_LEB128(ptr); \
    else if (((enc) & DW_EH_PE_SIZE_MASK) == DW_EH_PE_udata2 ) SKIP_2     (ptr); \
    else if (((enc) & DW_EH_PE_SIZE_MASK) == DW_EH_PE_udata4 ) SKIP_4     (ptr); \
    else if (((enc) & DW_EH_PE_SIZE_MASK) == DW_EH_PE_udata8 ) SKIP_8     (ptr); \
    else if (((enc) & DW_EH_PE_SIZE_MASK) == DW_EH_PE_uptr   ) SKIP_8     (ptr); \
    else printf_log(LOG_DEBUG, "Invalid encoding 0x%02X\n", (enc)); \
} while (0)

// LEB128 wil only work on 64 bits numbers (unsigned long, like the Linux kernel)
void readULEB(uint64_t *var, unsigned char **ptr) {
    *var = 0;
    int shift = 0;
    while (1) {
        unsigned char byte = **ptr; ++*ptr;
        *var |= ((byte & 0x7F) << shift);
        if (!(byte & (1 << 7))) break;
        shift += 7;
    }
}
void readSLEB(int64_t *var, unsigned char **ptr) {
    uint64_t tmp = 0;
    int shift = 0;
    unsigned char byte;
    while (1) {
        byte = **ptr; ++*ptr;
        tmp |= ((byte & 0x7F) << shift);
        if (!(byte & (1 << 7))) break;
        shift += 7;
    }
    // Sign extend
    if (byte & (1 << 6)) {
        *(uint64_t*)var = tmp | (0xFFFFFFFFFFFFFFFFull << (shift + 7));
    } else {
        *var = tmp;
    }
}

uintptr_t get_parent_registers(dwarf_unwind_t *unwind, const elfheader_t *ehdr, uintptr_t addr, char *success) {
    if (!ehdr) {
        *success = 0;
        return 0;
    }
    if(!IsAddressInElfSpace(ehdr, ehdr->ehframehdr+ehdr->delta)) {
        *success = 0;
        return 0;
    }
    unsigned char ehfh_version = *(unsigned char*)(ehdr->ehframehdr+ehdr->delta);
    if (ehfh_version != 1) {
        *success = 0;
        return 0;
    }

    // printf_log(LOG_NONE, "Address: 0x%016lX\nEH frame address: 0x%016lX\n", addr, ehdr->ehframe);

    // Not using the binary search table (for now)

    unsigned char *cur_addr = (unsigned char*)(ehdr->ehframe+ehdr->delta);
    unsigned char *end_addr = (unsigned char*)(ehdr->ehframe_end+ehdr->delta);

#define AUG_EHDATA      (1 << 0)
#define AUG_AUGDATA     (1 << 1)
#define AUG_LSDA        (1 << 2)
#define AUG_PARG        (1 << 3)
#define AUG_FDEENC      (1 << 4)
#define AUG_SIGHDLER    (1 << 5)
    unsigned short aug_fields = 0;
    unsigned char lsda_encoding = DW_EH_PE_omit;
    unsigned char fde_encoding  = DW_EH_PE_omit;
    uint64_t eh_data = 0;               // Note: these are never reset, so use aug_fields & AUG_EHDATA
    uint64_t code_alignment_factor = 0;
    int64_t data_alignment_factor = 0;
    uint64_t cie_aug_data_len = 0;      // Note: these are never reset, so use aug_fields & AUG_AUGDATA
    unsigned char *cie_aug_data = NULL; // Note: these are never reset, so use aug_fields & AUG_AUGDATA
    unsigned char *initCIEinstr = NULL; // Never NULL if initialized
    unsigned char *endCIEinstr = NULL;  // Never NULL if initialized
    uint64_t return_addr_reg = 0;       // Description absent in the LSBCS 5.0, but still present
    while (cur_addr < end_addr) {
        // Length
        uint64_t len; int extended = 0;
        READ_U4(len, cur_addr);
        if (!len) {
            // Terminator, end parsing
            *success = 0;
            return 0;
        } else if (len == 0xFFFFFFFF) {
            // Extended Length (optional)
            extended = 1;
            READ_U8(len, cur_addr);
        }
        (void)extended;
        // printf_log(LOG_NONE, "[???] Length          %02X\n", len);
        // printf_log(LOG_NONE, "[???] Extended        %c\n", extended ? 'Y' : 'N');
        unsigned char *next_addr = cur_addr + len;

        // CIE ID (always 0) or CIE Pointer (never 0)
        uint32_t cie_ptr;
        READ_U4(cie_ptr, cur_addr);
        if (cie_ptr == 0) {
            // Current block is a CIE
            // printf_log(LOG_NONE, "[CIE] ID              %02X\n", cie_ptr);

            // Version (always 1 or 3)
            uint8_t cie_version;
            READ_U1(cie_version, cur_addr);
            // printf_log(LOG_NONE, "[CIE] Version         %01X\n", cie_version);
            if ((cie_version != 1) && (cie_version != 3)) { // Only 1 is in the LSBCS 5.0 but I found 3 exists as well
                // Invalid CIE version
                printf_log(LOG_DEBUG, "Invalid CIE version %d (should be 1 or 3), stopping parsing\n", cie_version);
                // Failed to process CIE
                *success = 0;
                return 0;
            }

            // Augmentation String
            char *aug_str = (char*)cur_addr; cur_addr += strlen(aug_str) + 1;
            // printf_log(LOG_NONE, "[CIE] Augmentation st %s\n", aug_str);
            aug_fields = (aug_str[0] == 'z') ? AUG_AUGDATA : 0;
            for (char *aug_str2 = aug_str + ((aug_fields & AUG_AUGDATA) ? 1 : 0); *aug_str2; ++aug_str2) {
                if ((aug_str2[0] == 'e') && (aug_str2[1] == 'h')) {
                    // Use has also been left untold in the Linux Standard Base Core Specification 3.0RC1
                    printf_log(LOG_DEBUG, "Warning: EH data detected but this was removed from the standard\n");
                    aug_fields |= AUG_EHDATA; ++aug_str2;
                } else if (aug_fields & AUG_AUGDATA) {
                    if (aug_str2[0] == 'L') {
                        aug_fields |= AUG_LSDA;
                    } else if (aug_str2[0] == 'P') {
                        aug_fields |= AUG_PARG;
                        printf_log(LOG_DEBUG, "Warning: augmentation string attribute 'P' unsupported\n");
                    } else if (aug_str2[0] == 'S') {
                        aug_fields |= AUG_SIGHDLER;
                        printf_log(LOG_DEBUG, "Warning: augmentation string attribute 'S' ignored\n");
                    } else if (aug_str2[0] == 'R') {
                        aug_fields |= AUG_FDEENC;
                    } else {
                        printf_log(LOG_DEBUG, "Error: invalid augmentation string %s\n", aug_str);
                        // Failed to process augmentation string
                        break;
                    }
                } else {
                    printf_log(LOG_DEBUG, "Error: invalid augmentation string %s\n", aug_str);
                    // Failed to process augmentation string
                    break;
                }
            }
            // printf_log(LOG_NONE, "[CIE] Augmentation fs %02x\n", aug_fields);

            // Code Alignment Factor
            READ_ULEB128(code_alignment_factor, cur_addr);
            // printf_log(LOG_NONE, "[CIE] Code AF         %d\n", code_alignment_factor);
            // Data Alignment Factor
            READ_SLEB128(data_alignment_factor, cur_addr);
            // printf_log(LOG_NONE, "[CIE] Data AF         %d\n", data_alignment_factor);

            if (cie_version == 1) {
                READ_U1(return_addr_reg, cur_addr);
            } else {
                READ_ULEB128(return_addr_reg, cur_addr);
            }
            // printf_log(LOG_NONE, "[CIE] Return addr reg %01X\n", return_addr_reg);

            lsda_encoding = DW_EH_PE_omit;
            fde_encoding  = DW_EH_PE_absptr;
            if (aug_fields & AUG_AUGDATA) {
                // Augmentation Data Length (optional)
                READ_ULEB128(cie_aug_data_len, cur_addr);
                // printf_log(LOG_NONE, "[CIE] Aug data len    %01X\n", cie_aug_data_len);
                // Augmentation Data (optional)
                cie_aug_data = cur_addr; cur_addr += cie_aug_data_len;
                char *cie_aug_data2 = (char*)cie_aug_data;
                for (char *aug_str2 = aug_str + ((aug_fields & AUG_AUGDATA) ? 1 : 0); *aug_str2; ++aug_str2) {
                    if ((aug_str2[0] == 'e') && (aug_str2[1] == 'h')) {
                        break; // Unknown usage
                    } else if (aug_fields & AUG_AUGDATA) {
                        if (aug_str2[0] == 'L') {
                            READ_U1(lsda_encoding, cie_aug_data2);
                            if (lsda_encoding != DW_EH_PE_omit) printf_log(LOG_DEBUG, "Warning: LSDA unsupported\n");
                        } else if (aug_str2[0] == 'P') {
                            unsigned char pencoding;
                            READ_U1(pencoding, cie_aug_data2);
                            SKIP_ENCODED(cie_aug_data2, pencoding);
                        } else if (aug_str2[0] == 'S') {
                        } else if (aug_str2[0] == 'R') {
                            READ_U1(fde_encoding, cie_aug_data2);
                            // printf_log(LOG_NONE, "[CIE] FDE encoding    %02X\n", fde_encoding);
                            if (fde_encoding == DW_EH_PE_omit) printf_log(LOG_DEBUG, "Error: FDE encoding set to 'omit'\n");
                        } else {
                            break;
                        }
                    } else {
                        break;
                    }
                }
            }
        
            // Initial Instructions
            initCIEinstr = cur_addr;
            endCIEinstr = next_addr;
        } else if (initCIEinstr) {
            // Current block is a FDE
            // printf_log(LOG_NONE, "[FDE] Ptr             %02X\n", cie_ptr);

            // PC Begin
            uintptr_t pc_begin;
            READ_ENCODED(pc_begin, cur_addr, fde_encoding, 1);
            // printf_log(LOG_NONE, "[FDE] PC begin        %016lX\n", pc_begin);
            // PC Range
            uint64_t pc_range;
            READ_ENCODED(pc_range, cur_addr, fde_encoding, 0);
            // printf_log(LOG_NONE, "[FDE] PC end          %016lX\n", pc_begin + pc_range);
            
            uint64_t aug_data_len;
            unsigned char *aug_data;
            if (aug_fields & AUG_AUGDATA) {
                // Augmentation Data Length (optional)
                READ_ULEB128(aug_data_len, cur_addr);
                // printf_log(LOG_NONE, "[FDE] Aug data len    %01X\n", aug_data_len);
                // Augmentation Data (optional)
                aug_data = cur_addr; cur_addr += aug_data_len;
                (void)aug_data;
            }

            if (lsda_encoding != DW_EH_PE_omit) {
                SKIP_ENCODED(cur_addr, lsda_encoding);
            }

            // Call Frame Instructions
            if ((pc_begin <= addr) && (addr < pc_begin + pc_range)) {
                // Corresponding Frame Descriptor Entry found!

#define setmax(a, b) a = (a < (b) ? (b) : a)
                dwarf_unwind_constr_t unwind_constr;
                unwind_constr.reg_count = return_addr_reg;
                uint64_t maxstacksize = 0;
                uint64_t curstacksize = 0;
                unsigned char *cur_inst = initCIEinstr;
                uint64_t nreg;
#define PARSE_INST \
        switch (inst >> 6) {                                        \
        case 0b01:                                                  \
            break;                                                  \
        case 0b10:                                                  \
            setmax(unwind_constr.reg_count, inst & 0x3F);           \
            SKIP_LEB128(cur_inst);                                  \
            break;                                                  \
        case 0b11:                                                  \
            setmax(unwind_constr.reg_count, inst & 0x3F);           \
            break;                                                  \
        case 0b00:                                                  \
            switch (inst & 0x3F) {                                  \
            case 0b000000:                                          \
                break;                                              \
            case 0b001010:                                          \
                ++curstacksize;                                     \
                setmax(maxstacksize, curstacksize);                 \
                break;                                              \
            case 0b001011:                                          \
                if (!curstacksize) {                                \
                    printf_log(LOG_DEBUG, "Negative stack size during CFI execution\n"); \
                    *success = 0;                                   \
                    return 0;                                       \
                }                                                   \
                --curstacksize;                                     \
                break;                                              \
            case 0b000010:                                          \
                SKIP_1(cur_inst);                                   \
                break;                                              \
            case 0b000011:                                          \
                SKIP_2(cur_inst);                                   \
                break;                                              \
            case 0b000100:                                          \
                SKIP_4(cur_inst);                                   \
                break;                                              \
            case 0b000001:                                          \
                SKIP_8(cur_inst);                                   \
                break;                                              \
            case 0b001110:                                          \
            case 0b010011:                                          \
                SKIP_LEB128(cur_inst);                              \
                break;                                              \
            case 0b000110:                                          \
            case 0b000111:                                          \
            case 0b001000:                                          \
            case 0b001101:                                          \
                READ_ULEB128(nreg, cur_inst);                       \
                setmax(unwind_constr.reg_count, nreg);              \
                break;                                              \
            case 0b000101:                                          \
            case 0b001100:                                          \
            case 0b010001:                                          \
            case 0b010010:                                          \
            case 0b010100:                                          \
            case 0b010101:                                          \
                READ_ULEB128(nreg, cur_inst);                       \
                setmax(unwind_constr.reg_count, nreg);              \
                SKIP_LEB128(cur_inst);                              \
                break;                                              \
            case 0b001001:                                          \
                READ_ULEB128(nreg, cur_inst);                       \
                setmax(unwind_constr.reg_count, nreg);              \
                READ_ULEB128(nreg, cur_inst);                       \
                setmax(unwind_constr.reg_count, nreg);              \
                break;                                              \
            default:                                                \
                /* Contains undefined, user and expression CFIs */  \
                printf_log(LOG_DEBUG, "Unknown CFI 0x%02X\n", inst); \
                *success = 0;                                       \
                return 0;                                        \
            }                                                       \
            break;                                                  \
        }
                while (cur_inst < endCIEinstr) {
                    unsigned char inst; READ_U1(inst, cur_inst);
                    PARSE_INST
                }
                cur_inst = cur_addr;
                while (cur_inst < next_addr) {
                    unsigned char inst; READ_U1(inst, cur_inst);
                    PARSE_INST
                }
#undef PARSE_INST

                uint64_t cfa_reg = -1;
                unsigned char cfa_signed = 0;
                union { uint64_t uoff; int64_t soff; } cfa_offset = { .uoff = 0 };
                ++unwind_constr.reg_count;
                size_t tablelen = unwind_constr.reg_count * sizeof(uint64_t);
                size_t statuseslen = ((unwind_constr.reg_count+1) >> 1) * sizeof(uint8_t);
                unwind_constr.table = (uint64_t*)box_malloc(tablelen);
                unwind_constr.statuses = (uint8_t*)box_calloc((unwind_constr.reg_count+1) >> 1, sizeof(uint8_t));
                // ~~undefined is 0: no initialization needed~~ still initialize the first 17 to same_val
                for (int i = 0; (i < 17) && (i <= unwind_constr.reg_count); ++i) {
                    SET_STATUS(unwind_constr, i, REGSTATUS_same_val);
                }

                curstacksize = 0;
                uint64_t **table_stack = (uint64_t**)box_malloc(maxstacksize * sizeof(uint64_t*));
                for (uint64_t i = 0; i < maxstacksize; ++i) {
                    table_stack[i] = (uint64_t*)box_malloc(tablelen);
                }
                cur_inst = initCIEinstr;
                uintptr_t cur_pointed_addr = pc_begin;
                // Missing:
                /* DW_CFA_def_cfa_expression    0   0x0f      BLOCK                              */
                /* DW_CFA_expression            0   0x10      ULEB128 register  BLOCK            */
                /* DW_CFA_val_expression        0   0x16      ULEB128 BLOCK                      */
                /* DW_CFA_lo_user               0   0x1c                                         */
                /* DW_CFA_GNU_args_size         0   0x2e      ULEB128 argsize                    */
                /* DW_CFA_GNU_negative_offset_extended 0 0x2f ULEB128 register  ULEB128 offset (obsoleted by DW_CFA_offset_extended_sf) */
                /* DW_CFA_hi_user               0   0x3f                                         */
                // Known "bug": DW_CFA_set_loc can go backwards, this is ignored
                uint64_t tmpreg;
                uint64_t tmpuval;
                int64_t tmpsval;
#define PARSE_INST \
        switch (inst >> 6) {                                                                                    \
        case 0b01:         /* DW_CFA_advance_loc           0x1 delta                                        */  \
            cur_pointed_addr += (inst & 0x3F) * code_alignment_factor;                                          \
            break;                                                                                              \
        case 0b10:         /* DW_CFA_offset                0x2 register  ULEB128 offset                     */  \
            READ_ULEB128(tmpuval, cur_inst);                                                                    \
            SET_STATUS(unwind_constr, inst & 0x3F, REGSTATUS_offset);                                           \
            unwind_constr.table[inst & 0x3F] = (int64_t)tmpuval * data_alignment_factor;                        \
            break;                                                                                              \
        case 0b11:         /* DW_CFA_restore               0x3 register                                     */  \
            RESTORE_REG(inst & 0x3F)                                                                            \
            break;                                                                                              \
        case 0b00:                                                                                              \
            switch (inst & 0x3F) {                                                                              \
            case 0b000001: /* DW_CFA_set_loc               0   0x01      address                            */  \
                READ_U8(cur_pointed_addr, cur_inst);                                                            \
                break;                                                                                          \
            case 0b000010: /* DW_CFA_advance_loc1          0   0x02      1-byte delta                       */  \
                READ_U1(tmpuval, cur_inst);                                                                     \
                cur_pointed_addr += tmpuval * code_alignment_factor;                                            \
                break;                                                                                          \
            case 0b000011: /* DW_CFA_advance_loc2          0   0x03      2-byte delta                       */  \
                READ_U2(tmpuval, cur_inst);                                                                     \
                cur_pointed_addr += tmpuval * code_alignment_factor;                                            \
                break;                                                                                          \
            case 0b000100: /* DW_CFA_advance_loc4          0   0x04      4-byte delta                       */  \
                READ_U4(tmpuval, cur_inst);                                                                     \
                cur_pointed_addr += tmpuval * code_alignment_factor;                                            \
                break;                                                                                          \
            \
            case 0b001100: /* DW_CFA_def_cfa               0   0x0c      ULEB128 register  ULEB128 offset   */  \
                READ_ULEB128(cfa_reg, cur_inst);                                                                \
                cfa_signed = 0;                                                                                 \
                READ_ULEB128(cfa_offset.uoff, cur_inst);                                                        \
                break;                                                                                          \
            case 0b010010: /* DW_CFA_def_cfa_sf            0   0x12      ULEB128 register  SLEB128 offset   */  \
                READ_ULEB128(cfa_reg, cur_inst);                                                                \
                cfa_signed = 1;                                                                                 \
                READ_SLEB128(cfa_offset.soff, cur_inst);                                                        \
                cfa_offset.soff *= data_alignment_factor;                                                       \
                break;                                                                                          \
            case 0b001101: /* DW_CFA_def_cfa_register      0   0x0d      ULEB128 register                   */  \
                READ_ULEB128(cfa_reg, cur_inst);                                                                \
                break;                                                                                          \
            case 0b001110: /* DW_CFA_def_cfa_offset        0   0x0e      ULEB128 offset                     */  \
                cfa_signed = 0;                                                                                 \
                READ_ULEB128(cfa_offset.uoff, cur_inst);                                                        \
                break;                                                                                          \
            case 0b010011: /* DW_CFA_def_cfa_offset_sf     0   0x13      SLEB128 offset                     */  \
                READ_SLEB128(cfa_offset.soff, cur_inst);                                                        \
                cfa_offset.soff *= data_alignment_factor;                                                       \
                break;                                                                                          \
            /* DW_CFA_def_cfa_expression */ \
            \
            case 0b000111: /* DW_CFA_undefined             0   0x07      ULEB128 register                   */  \
                READ_ULEB128(tmpreg, cur_inst);                                                                 \
                SET_STATUS(unwind_constr, tmpreg, REGSTATUS_undefined);                                         \
                break;                                                                                          \
            case 0b001000: /* DW_CFA_same_value            0   0x08      ULEB128 register                   */  \
                READ_ULEB128(tmpreg, cur_inst);                                                                 \
                SET_STATUS(unwind_constr, tmpreg, REGSTATUS_same_val);                                          \
                break;                                                                                          \
            case 0b000101: /* DW_CFA_offset_extended       0   0x05      ULEB128 register  ULEB128 offset   */  \
                READ_ULEB128(tmpreg, cur_inst);                                                                 \
                READ_ULEB128(tmpuval, cur_inst);                                                                \
                SET_STATUS(unwind_constr, tmpreg, REGSTATUS_offset);                                            \
                unwind_constr.table[tmpreg] = (int64_t)tmpuval * data_alignment_factor;                         \
                break;                                                                                          \
            case 0b010001: /* DW_CFA_offset_extended_sf    0   0x11      ULEB128 register  SLEB128 offset   */  \
                READ_ULEB128(tmpreg, cur_inst);                                                                 \
                READ_SLEB128(tmpsval, cur_inst);                                                                \
                SET_STATUS(unwind_constr, tmpreg, REGSTATUS_offset);                                            \
                unwind_constr.table[tmpreg] = tmpsval * data_alignment_factor;                                  \
                break;                                                                                          \
            case 0b010100: /* DW_CFA_val_offset            0   0x14      ULEB128 register  ULEB128 offset   */  \
                READ_ULEB128(tmpreg, cur_inst);                                                                 \
                READ_ULEB128(tmpuval, cur_inst);                                                                \
                SET_STATUS(unwind_constr, tmpreg, REGSTATUS_val_offset);                                        \
                unwind_constr.table[tmpreg] = (int64_t)tmpuval * data_alignment_factor;                         \
                break;                                                                                          \
            case 0b010101: /* DW_CFA_val_offset_sf         0   0x15      ULEB128 register  SLEB128 offset   */  \
                READ_ULEB128(tmpreg, cur_inst);                                                                 \
                READ_SLEB128(tmpsval, cur_inst);                                                                \
                SET_STATUS(unwind_constr, tmpreg, REGSTATUS_val_offset);                                        \
                unwind_constr.table[tmpreg] = tmpsval * data_alignment_factor;                                  \
                break;                                                                                          \
            case 0b001001: /* DW_CFA_register              0   0x09      ULEB128 register  ULEB128 register */  \
                READ_ULEB128(tmpreg, cur_inst);                                                                 \
                READ_ULEB128(tmpuval, cur_inst);                                                                \
                SET_STATUS(unwind_constr, tmpreg, REGSTATUS_register);                                          \
                unwind_constr.table[tmpreg] = tmpuval;                                                          \
                break;                                                                                          \
            /* DW_CFA_expression */ \
            /* DW_CFA_val_expression */ \
            case 0b000110: /* DW_CFA_restore_extended      0   0x06      ULEB128 register                   */  \
                READ_ULEB128(tmpreg, cur_inst);                                                                 \
                RESTORE_REG(tmpreg)                                                                             \
                break;                                                                                          \
            \
            case 0b001010: /* DW_CFA_remember_state        0   0x0a                                         */  \
                memcpy(table_stack[curstacksize], unwind_constr.table, tablelen);                               \
                ++curstacksize;                                                                                 \
                break;                                                                                          \
            case 0b001011: /* DW_CFA_restore_state         0   0x0b                                         */  \
                --curstacksize;                                                                                 \
                memcpy(unwind_constr.table, table_stack[curstacksize], tablelen);                               \
                break;                                                                                          \
            \
            case 0b000000: /* DW_CFA_nop                   0   0                                            */  \
                break;                                                                                          \
            default:                                                                                            \
                /* Contains undefined, user and expression CFIs */                                              \
                printf_log(LOG_DEBUG, "Unknown CFI 0x%02X\n", inst);                                             \
                FAILED                                                                                          \
            }                                                                                                   \
            break;                                                                                              \
        }
#define RESTORE_REG(reg) \
    printf_log(LOG_DEBUG, "Trying to restore register 0x%02lX while in the initial CFIs\n", (uint64_t)reg); \
    FAILED
#define FAILED \
    box_free(unwind_constr.statuses);                                       \
    box_free(unwind_constr.table);                                          \
    for (uint64_t i = 0; i < maxstacksize; ++i) box_free(table_stack[i]);   \
    box_free(table_stack);                                                  \
    *success = 0; return 0;
                while (cur_inst < endCIEinstr) {
                    unsigned char inst; READ_U1(inst, cur_inst);
                    // printf_log(LOG_NONE, "Executing pre 0x%02X\n", inst);
                    PARSE_INST
                }
#undef FAILED
#undef RESTORE_REG
                uint64_t *init_table = (uint64_t*)box_malloc(tablelen);
                memcpy(init_table, unwind_constr.table, tablelen);
                uint8_t *init_statuses = (uint8_t*)box_malloc(statuseslen);
                memcpy(init_statuses, unwind_constr.statuses, statuseslen);
                cur_inst = cur_addr;
#define RESTORE_REG(reg) \
    unwind_constr.table[reg] = init_table[reg]; \
    SET_STATUS(unwind_constr, (reg), ((init_statuses[(reg) >> 1] >> (((reg) & 1) << 2)) & 0xF));
#define FAILED \
    box_free(init_statuses);                                                \
    box_free(init_table);                                                   \
    box_free(unwind_constr.statuses);                                       \
    box_free(unwind_constr.table);                                          \
    for (uint64_t i = 0; i < maxstacksize; ++i) box_free(table_stack[i]);   \
    box_free(table_stack);                                                  \
    *success = 0; return 0;
                while ((cur_inst < next_addr) && (cur_pointed_addr <= addr)) {
                    unsigned char inst; READ_U1(inst, cur_inst);
                    // printf_log(LOG_NONE, "Executing post 0x%02X\n", inst);
                    PARSE_INST
                }
#undef FAILED
#undef RESTORE_REG
#undef PARSE_INST
                box_free(init_statuses);
                box_free(init_table);
                for (uint64_t i = 0; i < maxstacksize; ++i) {
                    box_free(table_stack[i]);
                }
                box_free(table_stack);

                dwarf_unwind_t new_unwind;
                new_unwind.reg_count = unwind_constr.reg_count;
                new_unwind.regs = box_calloc(unwind_constr.reg_count, sizeof(uint64_t));
                uintptr_t cfa = unwind->regs[cfa_reg];
                if (cfa_signed) cfa += cfa_offset.soff;
                else            cfa += cfa_offset.uoff;
                
                // printf_log(LOG_NONE, "Done, rewriting registers (CFA at r%d(0x%016lX) + %lld (%c) -> 0x%016lX\n", cfa_reg, unwind->regs[cfa_reg], cfa_offset.soff, cfa_signed ? 's' : 'u', cfa);
                for (uint64_t i = 0; i < unwind_constr.reg_count; ++i) {
                    switch (GET_STATUS(unwind_constr, i)) {
                    case REGSTATUS_undefined:
                        // printf_log(LOG_NONE, "Register %02lX: (undefined)\n", i);
                        break;
                    case REGSTATUS_same_val:
                        if (i >= unwind->reg_count) {
                            printf_log(LOG_DEBUG, "Invalid register status (value copied from register 0x%02lX)\n", i);
                            box_free(unwind_constr.statuses);
                            box_free(unwind_constr.table);
                            box_free(new_unwind.regs);
                            *success = 0;
                            return 0;
                        }
                        new_unwind.regs[i] = unwind->regs[i];
                        // printf_log(LOG_NONE, "Register %02lX: copy   %016lX\n", i, new_unwind.regs[i]);
                        break;
                    case REGSTATUS_offset:
                        new_unwind.regs[i] = *(uint64_t*)(cfa + (int64_t)unwind_constr.table[i]);
                        // printf_log(LOG_NONE, "Register %02lX: offset %016lX [%016lX + %lld]\n", i, new_unwind.regs[i], cfa, (int64_t)unwind_constr.table[i]);
                        break;
                    case REGSTATUS_val_offset:
                        new_unwind.regs[i] = (uint64_t)(cfa + (int64_t)unwind_constr.table[i]);
                        // printf_log(LOG_NONE, "Register %02lX: voff   %016lX\n", i, new_unwind.regs[i]);
                        break;
                    case REGSTATUS_register:
                        if (unwind_constr.table[i] >= unwind->reg_count) {
                            printf_log(LOG_DEBUG, "Invalid register status (value copied from register 0x%02lX)\n", unwind_constr.table[i]);
                            box_free(unwind_constr.statuses);
                            box_free(unwind_constr.table);
                            box_free(new_unwind.regs);
                            *success = 0;
                            return 0;
                        }
                        new_unwind.regs[i] = unwind->regs[unwind_constr.table[i]];
                        // printf_log(LOG_NONE, "Register %02lX: reg    %016lX\n", i, new_unwind.regs[i]);
                        break;
                    }
                }
                *success = (GET_STATUS(unwind_constr, return_addr_reg) == REGSTATUS_undefined) ? 0 : ((aug_fields & AUG_SIGHDLER) ? 2 : 1);
                box_free(unwind_constr.statuses);
                box_free(unwind_constr.table);
                
                box_free(unwind->regs);
                unwind->reg_count = new_unwind.reg_count;
                unwind->regs = new_unwind.regs;

                // Maybe?
                unwind->regs[cfa_reg] = cfa;

                // printf_log(LOG_NONE, "Returning %016lX\n", unwind->regs[return_addr_reg]);
                return unwind->regs[return_addr_reg];
            }
        } else {
            // printf_log(LOG_NONE, "[FDE] Ptr             %02X\n", cie_ptr);
            printf_log(LOG_DEBUG, "Unexpected FDE, corresponding CIE missing\n");
            return 0;
        }

        cur_addr = next_addr;
    }
    *success = 0;
    return 0;
}

dwarf_unwind_t *init_dwarf_unwind_registers(x64emu_t *emu) {
    dwarf_unwind_t *unwind_struct = (dwarf_unwind_t*)box_malloc(sizeof(dwarf_unwind_t));
    unwind_struct->reg_count = 17;
    unwind_struct->regs = (uint64_t*)box_malloc(17*sizeof(uint64_t));
    /* x86_64-abi-0.99.pdf
     * Register Name                    | Number | Abbreviation
     * General Purpose Register RAX     | 0      | %rax
     * General Purpose Register RDX     | 1      | %rdx
     * General Purpose Register RCX     | 2      | %rcx
     * General Purpose Register RBX     | 3      | %rbx
     * General Purpose Register RSI     | 4      | %rsi
     * General Purpose Register RDI     | 5      | %rdi
     * Frame Pointer Register   RBP     | 6      | %rbp
     * Stack Pointer Register   RSP     | 7      | %rsp
     * Extended Integer Registers 8-15  | 8-15   | %r8-%r15
     * Return Address RA                | 16     |
     * Vector Registers 0-7             | 17-24  | %xmm0-%xmm7
     * Extended Vector Registers 8-15   | 25-32  | %xmm8-%xmm15
     * Floating Point Registers 0-7     | 33-40  | %st0-%st7
     * MMX Registers 0-7                | 41-48  | %mm0-%mm7
     * Flag Register                    | 49     | %rFLAGS
     * Segment Register ES              | 50     | %es
     * Segment Register CS              | 51     | %cs
     * Segment Register SS              | 52     | %ss
     * Segment Register DS              | 53     | %ds
     * Segment Register FS              | 54     | %fs
     * Segment Register GS              | 55     | %gs
     * Reserved                         | 56-57  |
     * FS Base address                  | 58     | %fs.base
     * GS Base address                  | 59     | %gs.base
     * Reserved                         | 60-61  |
     * Task Register                    | 62     | %tr
     * LDT Register                     | 63     | %ldtr
     * 128-bit Media Control and Status | 64     | %mxcsr
     * x87 Control Word                 | 65     | %fcw
     * x87 Status Word                  | 66     | %fsw
     */
    unwind_struct->regs[ 0] = emu->regs[_RAX].q[0];
    unwind_struct->regs[ 1] = emu->regs[_RDX].q[0];
    unwind_struct->regs[ 2] = emu->regs[_RCX].q[0];
    unwind_struct->regs[ 3] = emu->regs[_RBX].q[0];
    unwind_struct->regs[ 4] = emu->regs[_RSI].q[0];
    unwind_struct->regs[ 5] = emu->regs[_RDI].q[0];
    unwind_struct->regs[ 6] = emu->regs[_RBP].q[0];
    unwind_struct->regs[ 7] = emu->regs[_RSP].q[0] + 8;
    unwind_struct->regs[ 8] = emu->regs[_R8 ].q[0];
    unwind_struct->regs[ 9] = emu->regs[_R9 ].q[0];
    unwind_struct->regs[10] = emu->regs[_R10].q[0];
    unwind_struct->regs[11] = emu->regs[_R11].q[0];
    unwind_struct->regs[12] = emu->regs[_R12].q[0];
    unwind_struct->regs[13] = emu->regs[_R13].q[0];
    unwind_struct->regs[14] = emu->regs[_R14].q[0];
    unwind_struct->regs[15] = emu->regs[_R15].q[0];
    unwind_struct->regs[16] = emu->ip.q[0];
    return unwind_struct;
}

void free_dwarf_unwind_registers(dwarf_unwind_t **unwind_struct) {
    box_free((*unwind_struct)->regs);
    box_free(*unwind_struct);
    *unwind_struct = NULL;
}