1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
|
// Handling of TLS calls, include x86 specifi set_thread_area
#include <unistd.h>
#include <string.h>
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include "debug.h"
#include "box64context.h"
#include "x64emu.h"
#include "x64emu_private.h"
#include "x64tls.h"
#include "elfloader.h"
typedef struct thread_area_s
{
int entry_number;
uintptr_t base_addr;
unsigned int limit;
unsigned int seg_32bit:1;
unsigned int contents:2;
unsigned int read_exec_only:1;
unsigned int limit_in_pages:1;
unsigned int seg_not_present:1;
unsigned int useable:1;
} thread_area_t;
static pthread_once_t thread_key_once0 = PTHREAD_ONCE_INIT;
static pthread_once_t thread_key_once1 = PTHREAD_ONCE_INIT;
static pthread_once_t thread_key_once2 = PTHREAD_ONCE_INIT;
static pthread_once_t thread_key_once3 = PTHREAD_ONCE_INIT;
static void thread_key_alloc0() {
pthread_key_create(&my_context->segtls[0].key, NULL);
}
static void thread_key_alloc1() {
pthread_key_create(&my_context->segtls[1].key, NULL);
}
static void thread_key_alloc2() {
pthread_key_create(&my_context->segtls[2].key, NULL);
}
static void thread_key_alloc3() {
pthread_key_create(&my_context->segtls[3].key, NULL);
}
uint32_t my_set_thread_area(thread_area_t* td)
{
printf_log(LOG_DEBUG, "set_thread_area(%p[%d/base=%p/limit=%u/32bits:%u/%u/%u...])\n", td, td->entry_number, (void*)td->base_addr, td->limit_in_pages, td->seg_32bit, td->contents, td->read_exec_only);
int isempty = 0;
// first, check if the "user_desc", here td, is "empty"
if(td->read_exec_only==1 && td->seg_not_present==1)
if( !td->base_addr
&& !td->limit
&& !td->seg_32bit
&& !td->contents
&& !td->limit_in_pages
&& !td->useable)
isempty = 1;
int idx = td->entry_number;
if(idx==-1) {
// find a free one
for (int i=0; i<3 && idx==-1; ++i)
if(!my_context->segtls[i].present)
idx=i;
if(idx==-1) {
errno = ESRCH;
return (uint32_t)-1;
}
idx+=7;
td->entry_number = idx;
}
if(isempty && (td->entry_number<7 || td->entry_number>7+2)) {
errno = EINVAL;
return (uint32_t)-1;
}
if(isempty) {
memset(&my_context->segtls[td->entry_number-7], 0, sizeof(base_segment_t));
return 0;
}
if((idx<7 || idx>7+2)) {
errno = EINVAL;
return (uint32_t)-1;
}
my_context->segtls[idx-7].base = td->base_addr;
my_context->segtls[idx-7].limit = td->limit;
my_context->segtls[idx-7].present = 1;
switch (idx-7) {
case 0: pthread_once(&thread_key_once0, thread_key_alloc0); break;
case 1: pthread_once(&thread_key_once1, thread_key_alloc1); break;
case 2: pthread_once(&thread_key_once2, thread_key_alloc2); break;
}
pthread_setspecific(my_context->segtls[idx-7].key, (void*)my_context->segtls[idx-7].base);
ResetSegmentsCache(thread_get_emu());
return 0;
}
uint32_t my_modify_ldt(x64emu_t* emu, int op, thread_area_t* td, int size)
{
printf_log(/*LOG_DEBUG*/LOG_INFO, "modify_ldt(0x%x, %p[0x%x/base=%p/limit=%u/32bits:%u/%u/%u...], %d)\n", op, td, td->entry_number, (void*)td->base_addr, td->limit_in_pages, td->seg_32bit, td->contents, td->read_exec_only, size);
if(!td) {
errno = EFAULT;
return (uint32_t)-1;
}
if(op!=0x11) {
errno = ENOSYS;
return (uint32_t)-1;
}
if(!td->seg_32bit) {
// not handling 16bits segments for now
errno = EINVAL;
return (uint32_t)-1;
}
int idx = td->entry_number - 7;
if(idx<0 || idx>2) {
errno = EINVAL;
return (uint32_t)-1;
}
/*
my_context->segtls[idx].base = td->base_addr;
my_context->segtls[idx].limit = td->limit;
pthread_setspecific(my_context->segtls[idx].key, (void*)my_context->segtls[idx].base);
*/
ResetSegmentsCache(emu);
return 0;
}
int my_arch_prctl(x64emu_t *emu, int code, void* addr)
{
#define ARCH_SET_GS 0x1001
#define ARCH_SET_FS 0x1002
#define ARCH_GET_FS 0x1003
#define ARCH_GET_GS 0x1004
switch(code) {
case ARCH_GET_GS:
*(void**)addr = GetSegmentBase(emu->segs[_GS]);
return 0;
case ARCH_SET_GS:
pthread_once(&thread_key_once3, thread_key_alloc3);
if(emu->segs[_GS]!=(0xa<<3))
emu->segs[_GS] = 0xa<<3; // should not move!
emu->segs_serial[_GS] = 0;
my_context->segtls[3].base = (uintptr_t)addr;
my_context->segtls[3].limit = 0;
my_context->segtls[3].present = 1;
pthread_setspecific(my_context->segtls[3].key, (void*)my_context->segtls[3].base);
return 0;
case ARCH_GET_FS:
*(void**)addr = GetSegmentBase(emu->segs[_FS]);
return 0;
}
// other are unsupported
printf_log(LOG_INFO, "warning, call to unsupported arch_prctl(0x%x, %p)\n", code, addr);
return -1;
}
#define POS_TLS 0x200
/*
tls record should looks like:
void* tcb 0x00
void* dtv 0x08
void* self 0x10
int multiple 0x18
int gscope 0x1c
void* sysinfo 0x20
uintptr_t stack_guard 0x28
uitnptr_t pointer_guard 0x30
uint64_t vgetcpu[2] 0x38
uint32_t features 0x48
int unused 0x4c
void* private[4] 0x50
void* private_ss 0x70
uintptr_t ssp_base 0x78
.... padding .... 0x200?
*/
static int sizeDTS(box64context_t* context)
{
return ((context->elfsize+0xff)&~0xff)*16;
}
static int sizeTLSData(int s)
{
return (s+0xfff)&~0xfff;
}
static tlsdatasize_t* setupTLSData(box64context_t* context)
{
// Setup the GS segment:
int dtssize = sizeDTS(context);
int datasize = sizeTLSData(context->tlssize);
void *ptr_oversized = (char*)malloc(dtssize+POS_TLS+datasize);
void *ptr = (void*)((uintptr_t)ptr_oversized + datasize);
memcpy((void*)((uintptr_t)ptr-context->tlssize), context->tlsdata, context->tlssize);
tlsdatasize_t *data = (tlsdatasize_t*)calloc(1, sizeof(tlsdatasize_t));
data->data = ptr;
data->tlssize = context->tlssize;
data->ptr = ptr_oversized;
data->n_elfs = context->elfsize;
pthread_setspecific(context->tlskey, data);
// copy canary...
memset((void*)((uintptr_t)ptr), 0, POS_TLS+dtssize); // set to 0 remining bytes
memcpy((void*)((uintptr_t)ptr+0x28), context->canary, sizeof(void*)); // put canary in place
uintptr_t tlsptr = (uintptr_t)ptr;
memcpy((void*)((uintptr_t)ptr+0x0), &tlsptr, sizeof(void*));
memcpy((void*)((uintptr_t)ptr+0x10), &tlsptr, sizeof(void*)); // set tcb and self same address
uintptr_t dtp = (uintptr_t)ptr+POS_TLS;
memcpy((void*)(tlsptr+sizeof(void*)), &dtp, sizeof(void*));
if(dtssize) {
for (int i=0; i<context->elfsize; ++i) {
// set pointer
dtp = (uintptr_t)ptr + GetTLSBase(context->elfs[i]);
*(uint64_t*)((uintptr_t)ptr+POS_TLS+i*16) = dtp;
*(uint64_t*)((uintptr_t)ptr+POS_TLS+i*16+8) = i; // index
}
}
memcpy((void*)((uintptr_t)ptr+0x20), &context->vsyscall, sizeof(void*)); // address of vsyscall
return data;
}
void* fillTLSData(box64context_t *context)
{
pthread_mutex_lock(&context->mutex_tls);
tlsdatasize_t *data = setupTLSData(context);
pthread_mutex_unlock(&context->mutex_tls);
return data;
}
void* resizeTLSData(box64context_t *context, void* oldptr)
{
pthread_mutex_lock(&context->mutex_tls);
tlsdatasize_t* oldata = (tlsdatasize_t*)oldptr;
if(sizeTLSData(oldata->tlssize)!=sizeTLSData(context->tlssize) || (oldata->n_elfs/0xff)!=(context->elfsize/0xff)) {
tlsdatasize_t *data = setupTLSData(context);
// copy the relevent old part, in case something changed
memcpy((void*)((uintptr_t)data->data-oldata->tlssize), (void*)((uintptr_t)oldata->data-oldata->tlssize), oldata->tlssize);
// all done, update new size, free old pointer and exit
pthread_mutex_unlock(&context->mutex_tls);
free_tlsdatasize(oldptr);
return data;
} else {
// keep the same tlsdata, but fill in the blanks
// adjust tlsdata
void *ptr = oldata->data;
if(context->tlssize!=oldata->tlssize) {
memcpy((void*)((uintptr_t)ptr-context->tlssize), context->tlsdata, context->tlssize-oldata->tlssize);
oldata->tlssize = context->tlssize;
}
// adjust DTS
if(oldata->n_elfs!=context->elfsize) {
uintptr_t dtp = (uintptr_t)ptr+POS_TLS;
for (int i=oldata->n_elfs; i<context->elfsize; ++i) {
// set pointer
dtp = (uintptr_t)ptr + GetTLSBase(context->elfs[i]);
*(uint64_t*)((uintptr_t)ptr+POS_TLS+i*16) = dtp;
*(uint64_t*)((uintptr_t)ptr+POS_TLS+i*16+8) = i; // index
}
oldata->n_elfs = context->elfsize;
}
pthread_mutex_unlock(&context->mutex_tls);
return oldata;
}
}
static void* GetSeg33Base()
{
tlsdatasize_t* ptr;
if ((ptr = (tlsdatasize_t*)pthread_getspecific(my_context->tlskey)) == NULL) {
ptr = (tlsdatasize_t*)fillTLSData(my_context);
}
if(ptr->tlssize != my_context->tlssize)
ptr = (tlsdatasize_t*)resizeTLSData(my_context, ptr);
return ptr->data;
}
void* GetSegmentBase(uint32_t desc)
{
if(!desc) {
printf_log(LOG_NONE, "Warning, accessing segment NULL\n");
return NULL;
}
int base = desc>>3;
if(base==0xe || base==0xf)
return NULL; // regular value...
if(base==0x6)
return GetSeg33Base();
if(base>6 && base<11 && my_context->segtls[base-7].present) {
void* ptr = pthread_getspecific(my_context->segtls[base-7].key);
return ptr;
}
printf_log(LOG_NONE, "Warning, accessing segment unknown 0x%x or unset\n", desc);
return NULL;
}
|