1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
|
from transformers import pipeline
from os import path, listdir, makedirs
from datetime import timedelta
from time import monotonic
from argparse import ArgumentParser
parser = ArgumentParser(prog='classifier.py')
parser.add_argument('-f', '--full', action='store_true', help="use whole dataset")
parser.add_argument('-m', '--multi_label', action='store_true', help="enable multi_label for the classifier")
parser.add_argument('--model', default="facebook/bart-large-mnli", type=str, help="main model to use")
parser.add_argument('--compare', nargs='?', const="MoritzLaurer/deberta-v3-large-zeroshot-v2.0", type=str, help="second model for comparison")
args = parser.parse_args()
positive_categories = ['semantic', 'TCG', 'assembly', 'architecture', 'mistranslation', 'register', 'user-level']
architectures = ['x86', 'arm', 'risc-v', 'i386', 'alpha', 'ppc']
negative_categories = ['boot', 'network', 'KVM', 'vnc', 'graphic', 'device', 'socket', 'debug', 'files', 'PID', 'permissions', 'performance', 'kernel', 'peripherals', 'VMM', 'hypervisor', 'virtual', 'operating system']
categories = positive_categories + negative_categories + architectures
def list_files_recursive(directory):
result = []
for entry in listdir(directory):
full_path = path.join(directory, entry)
if path.isdir(full_path):
result = result + list_files_recursive(full_path)
else:
result.append(full_path)
return result
def output(text : str, category : str, labels : list, scores : list, identifier : str):
file_path = f"output/{category}/{identifier}"
makedirs(path.dirname(file_path), exist_ok = True)
with open(file_path, "w") as file:
for label, score in zip(labels, scores):
if label == "SPLIT":
file.write(f"--------------------\n")
else:
file.write(f"{label}: {score:.3f}\n")
file.write("\n")
file.write(text)
def get_category(classification : dict):
highest_category = classification['labels'][0]
if not args.multi_label:
return highest_category
if all(i < 0.8 for i in classification["scores"]):
return "none"
elif sum(1 for i in classification["scores"] if i > 0.85) >= 20:
return "all"
elif classification["scores"][0] - classification["scores"][-1] <= 0.2:
return "unknown"
result = highest_category
arch = None
pos = None
for label, score in zip(classification["labels"], classification["scores"]):
if label in negative_categories and (not arch and not pos or score >= 0.92):
return label
if label in positive_categories and not pos and score > 0.8:
pos = label
if not arch:
result = label
else:
result = label + "-" + arch
if label in architectures and not arch and score > 0.8:
arch = label
if pos:
result = pos + "-" + label
return result
def compare_category(classification : dict, category : str):
if sum(1 for i in positive_categories if i in category) < 1:
return category
for label, score in zip(classification["labels"], classification["scores"]):
if label in positive_categories and score >= 0.85:
return category
if label in category and score >= 0.85:
return category
return "review"
def main():
classifier = pipeline("zero-shot-classification", model=args.model)
if args.compare:
compare_classifier = pipeline("zero-shot-classification", model=args.compare)
bugs = list_files_recursive("../results/scraper/mailinglist")
if not args.full:
bugs = bugs + list_files_recursive("../results/scraper/gitlab/semantic_issues")
bugs = bugs + [ "../results/scraper/launchpad/1809546", "../results/scraper/launchpad/1156313" ]
else:
bugs = bugs + list_files_recursive("../results/scraper/launchpad")
bugs = bugs + list_files_recursive("../results/scraper/gitlab/issues_text")
print(f"{len(bugs)} number of bugs will be processed")
for bug in bugs:
print(f"Processing {bug}")
with open(bug, "r") as file:
text = file.read()
result = classifier(text, categories, multi_label=args.multi_label)
category = get_category(result)
if args.compare:
compare_result = compare_classifier(text, categories, multi_label=args.multi_label)
category = compare_category(compare_result, category)
result['labels'] = result['labels'] + ['SPLIT'] + compare_result['labels']
result['scores'] = result['scores'] + [0] + compare_result['scores']
output(text, category, result['labels'], result['scores'], path.basename(bug))
if __name__ == "__main__":
start_time = monotonic()
main()
end_time = monotonic()
print(timedelta(seconds=end_time - start_time))
|